
Imperial College London

Department of Computing

Sequent Calculi with Context Restrictions

and Applications to Conditional Logic

Björn Lellmann

October 28, 2013

Supervised by Dirk Pattinson

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

1





Declaration

I hereby declare that all work reported in this thesis is my own unless stated otherwise.

Björn Lellmann

3





Abstract

In this thesis we consider generic tools and techniques for the proof-theoretic investigation of

not necessarily normal modal logics based on minimal, intuitionistic or classical propositional

logic. The underlying framework is that of ordinary symmetric or asymmetric two-sided sequent

calculi without additional structural connectives, and the point of interest are the logical rules

in such a system. We introduce the format of a sequent rule with context restrictions and

the slightly weaker format of a shallow rule. The format of a rule with context restrictions

is expressive enough to capture most normal modal logics in the S5 cube, standard systems

for minimal, intuitionistic and classical propositional logic and a wide variety of non-normal

modal logics. For systems given by such rules we provide sufficient criteria for cut elimination

and decidability together with generic complexity results. We also explore the expressivity of

such systems with the cut rule in terms of axioms in a Hilbert-style system by exhibiting a

corresponding syntactically defined class of axioms along with automatic translations between

axioms and rules. This enables us to show a number of limitative results concerning amongst

others the modal logic S5. As a step towards a generic construction of cut free and tractable

sequent calculi we then introduce the notion of cut trees as representations of rules constructed

by absorbing cuts. With certain limitations this allows the automatic construction of a cut

free and tractable sequent system from a finite number of rules. For cases where such a system

is to be constructed by hand we introduce a graphical representation of rules with context

restrictions which simplifies this process. Finally, we apply the developed tools and techniques

and construct new cut free sequent systems for a number of Lewis’ conditional logics extending

the logic V. The systems yield purely syntactic decision procedures of optimal complexity and

proofs of the Craig interpolation property for the logics at hand.
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1 Introduction

1.1 The Questions

The emergence of ever new propositional modal logics in particular in the field of Computer

Science calls for the development of generic methods to deal with such logics in a systematic

way. Not only can such generic methods provide a starting point for more specific treatments

of particular logics, they can also serve to reveal general principles which in turn may

guide the development and discovery of new logics with good properties. Unfortunately, the

matter is slightly complicated by the fact that the introduced logics often are based on a

semantics different from the standard Kripke semantics and hence often make use of non-

normal modalities. Moreover, e.g. in the context of logics describing aspects of computation,

there is an increasing number of modal logics based on non-classical propositional logic, and

in particular on intuitionistic propositional logic (see e.g. [Wij90, FM97, GGGP11]). To be

maximally useful a generic treatment should therefore try to incorporate non-normal modalities

and non-classical propositional base logics as well.

One of the main questions when dealing with such logics, and therefore a good candidate

for a generic treatment, is that of decidability and complexity of the logic in question. Proof

theory, and in particular its branch dedicated to the study of sequent calculi, has turned out

to be a valuable tool for tackling these questions. This is mainly due to the fact that cut free

sequent calculi, the main objects of study in this field, usually enjoy the subformula property

which in turn often can be exploited to derive decidability and complexity results. Combining

all the mentioned aspects it is therefore of increasing interest to study generic methods in the

proof theory, and in particular the theory of sequent calculi, for such logics. This gives rise

to the first main question we are going to consider, a question of distinctively constructive

character:

Question 1.1.1. Are there generic methods to automatically generate ’nice’ sequent calculi

for modal logics?

Ideally, such generic methods would yield sequent calculi which can be used in generic

decision procedures for the logics in question. But of course there are (even reasonably simple)

undecidable modal logics [KNSS95], so we should not expect to find methods which work for

arbitrary modal logics. In order to delineate the domain where the envisaged generic methods

have a chance of succeeding it is therefore imperative to investigate limiting factors as well.
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1.1. THE QUESTIONS

Thus immediately connected with our first question is the second main question considered

here, the character of which is best described as limitative:

Question 1.1.2. Exactly which modal logics have ’nice’ sequent calculi?

Obviously, the answers to these questions depend on at least two major factors. On the one

hand we need to know which format the modal logics originally are given in. On the other

hand it is necessary to clarify what exactly we mean by a ’nice’ sequent calculus. While for

normal modal logics the semantics offers a convenient starting point (see e.g. [Neg05, Lah13]),

due to the plethora of different semantics for non-normal modal logics or logics based on

non-classical propositional logic this seems not to be the optimal approach in our setting. On

the other hand, the purely syntactic formulation of modal logics in terms of axioms for a

Hilbert-style system can be and very often is used to give a relatively concise and intuitive

presentation of the logic under scrutiny. Moreover, this formulation is independent of the

semantics and can be used also if the underlying propositional logic is non-classical. For these

reasons here we take the formulation in terms of axioms as the point of departure.

Regarding the second major factor, the question what exactly is meant by a ’nice’ sequent

calculus, things become a little bit more complicated. The first issue is that there are many

different formats of ’sequent calculi’ for modal logics. Apart from extensions of the original

sequent calculi for propositional logic introduced by Gentzen [Gen34] with new logical rules

for the modalities [Gob74, Lei81] there are the formats of labelled sequent calculi [Neg05],

hypersequent calculi [Avr96, Pog08], nested sequent calculi [Brü09, Pog09] or display logic

[Bel82, Kra96] just to name a few. While some of these extensions are very powerful, it should

be noted that this comes at the price of considerable additional machinery, typically mirrored

by less efficient decision procedures as well. Of course ultimately we would like to have generic

treatments incorporating all of the mentioned frameworks, but this should perhaps be seen

more as a research programme, founded on detailed studies for each framework on its own.

As a starting point for such a programme it seems wise to first consider frameworks with

little additional machinery and to try to fully understand and exploit the power of one formal

framework before considering extensions or different frameworks. For this reason here we are

going to stick to the first mentioned framework of standard sequent calculi with new logical

rules for the modalities, not because the other extensions are not interesting or fruitful – they

most certainly are – but because this extension is one of the simplest and requires the least

additional machinery.

Having settled the question of what kind of sequent calculus we are going to consider we

need to clarify which properties a ’nice’ sequent calculus should possess. There is a lot of

philosophically minded debate about this question (see e.g. [Wan02, Pog11]), but since here

we are mainly concerned with the computational properties of the sequent calculi we are not

going to enter this discussion. But even ignoring all philosophical considerations, the fact

that we are aiming for decidability of the calculi in question gives some clues about which

17



CHAPTER 1. INTRODUCTION

properties we should demand of such a system. Since the subformula property is one of the

standard tools for proving decidability results and since the presence of the cut rule tends to

destroy this property, surely at least admissibility of the cut rule should be one of the criteria

for a ’nice’ system. On the other hand, this can not be the only such condition, since given

a Hilbert-style system we may simply introduce zero-premiss sequent rules ⇒ A for every

theorem A of the Hilbert-style system. The cut rule is trivially admissible in the resulting

sequent system, but obviously the computational properties of this system are no better than

those of the original Hilbert-system, so we have not gained anything. In order to prevent

trivial systems as the one mentioned, we will restrict the format of the sequent rules in a

suitable way. Ideally, the rule format should strike a sensible balance between tractability

and expressivity: it should allow for a generic proof theoretic treatment, ideally resulting in

relatively efficient decision procedures, while at the same time being general enough to cover

a wide variety of logics. Here we introduce and propose the format of a rule with context

restrictions, an abstraction of the standard sequent rules for modal logics such as K,KT or S4.

As such this format is general enough to capture many of the standard normal modal logics,

all logics axiomatised by non-iterative modal axioms over classical propositional logic and

many non-normal logics based on intuitionistic or classical propositional logic. At the same

time we can give reasonably simple criteria on the rule set ensuring that generic syntactic cut

elimination or complexity theorems hold. Since ultimately we would like to generate cut free

systems we will take these criteria as a guide as to what constitutes a ’nice’ sequent system.

This finally allows us to make Question 1.1.1 more precise:

Question 1.1.3. Are there generic methods to automatically generate sets of rules with

context restrictions satisfying the generic criteria for cut elimination and complexity from sets

of axioms for a Hilbert-style system?

Regarding our second question we will need to take into account that unfortunately our

generic criteria for cut elimination are only sufficient and not necessary for admissibility of the

cut rule. While due to the fact that syntactic cut elimination is only one method of proving cut

admissibility this situation might be expected, it also means that we cannot use these criteria

to characterise the class of (sets of) axioms corresponding to (sets of) rules with restrictions

which generate cut free systems. But even so we may still try to limit this class from above

using the fact that adding the cut rule to a sequent calculus does not jeopardise soundness.

This gives us the following more precise formulation of Question 1.1.2:

Question 1.1.4. Exactly which sets of axioms for a Hilbert-style system correspond to sets

of rules with context restrictions?

We will see that this question can be answered by defining a purely syntactically characterised

class of axioms for Hilbert-style systems and translations from axioms in this class into

equivalent rules with restrictions and vice versa. This also allows us to begin to extend a
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1.2. CONTRIBUTION AND ORGANISATION OF THE THESIS

research programme originally developed in the field of substructural logics to the realm of

modal logics, namely the programme of characterising logics according to the necessary proof-

theoretic strength of corresponding sequent-style derivation systems (see e.g. [CGT08, CGT12]).

In this spirit we will see limitative results about a number of standard normal modal logics

including the logics KT,K4,B,GL and S5. Even though these results should only be considered

a first step towards a comprehensive characterisation, they might also provide a small step

towards a formal explanation of why certain logics (most notably S5) seem to require additional

machinery on top of the format of ’standard’ sequent calculi, machinery such as labelled

sequents, hypersequents or nested sequents.

While Question 1.1.4 thus has a reasonably comprehensive answer, the situation for Ques-

tion 1.1.3 is somewhat less satisfying. While we will see a number of generic results, we will

not see a fully automatic procedure to turn a set of axiom into a cut free sequent system

given by rules of our format which also gives rise to efficient decision procedures. In many

cases we will still need to manually check that the rule sets satisfy certain criteria. The fact

that it is not always easy to check whether these criteria are satisfied and that for some sets

of axioms this semi-automatic procedure does not yield a satisfactory set of sequent rules

furthermore suggests the development of tools to aid the manual construction of cut-free

sequent calculi from sets of axioms. With this in mind we will develop a graphical tool for

manually manipulating sequent rules and absorbing cuts into the rule set. Finally, we will put

the introduced tools and techniques to work and construct new cut-free sequent calculi for a

number of strong systems of conditional logic.

1.2 Contribution and Organisation of the Thesis

In summary, the main contributions reported in this thesis are the following.

1. The conceptual development of the notions of shallow rules and rules with context

restrictions (Definition 2.3.3) together with generic cut elimination and complexity

theorems for sequent calculi given by such rules (Theorems 2.4.16, 2.7.5, 2.7.8) which

significantly extend the results from [SP09, PS09].

2. The identification and purely syntactical characterisation of classes of axioms for a

Hilbert-style system corresponding to shallow rules or rules with restrictions including

translations from axiom into rules and vice versa (Theorem 3.3.18).

3. The application of these characterisations to derive limitative results for a number of

modal logics including GL (Theorem 3.4.16) and S5 (Theorem 3.4.18).

4. The introduction of the notion of cut trees (Definition 4.1.3) to automate the absorption

of cuts into a set of rules which under certain conditions gives an automatic construction
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CHAPTER 1. INTRODUCTION

of a cut-free sequent calculus suitable for deciding the logic (Theorem 4.1.19 and

Corollaries 4.1.20 and 4.1.21).

5. The introduction of a graphical tool for the manipulation of sequent rules (Defini-

tion 4.2.14) which aids the process of manually absorbing cuts into a set of rules.

6. New cut free sequent calculi for a number of conditional logics extending Lewis’ logic V
formulated using the comparative plausibility operator or the strong counterfactual impli-

cation (Definitions 5.2.1, 5.3.3, 5.4.4) which yield syntactic decision procedures of optimal

complexity and facilitate proofs of the Craig interpolation property (Theorem 5.5.4 and

Corollary 5.5.7).

The remainder of the work is organised as follows.

After a brief recapitulation of some basic notions and notations in Section 1.4 we delve

into the main part of the thesis in Chapter 2. Here we introduce the fundamental notions

including the rule formats of one-step rules, shallow rules and rules with context restrictions

in Section 2.3. This is followed by a close investigation of the sequent calculi generated

by sets of such rules, including the criteria for generic cut elimination in Sections 2.4 and

2.5, admissibility of the contraction rule in a slightly modified rule set in Section 2.6 and

decidability and complexity issues in Section 2.7.

Chapter 3 is dedicated to the study of the connection between rules with context restrictions

and axioms for Hilbert-style systems. Following some preparatory considerations in Section 3.1

we define the syntactic format of a translatable clause in Section 3.2 and provide a translation

from axioms of this format into sequent rules with context restrictions. The translation from

sequent rules with context restrictions into sets of translatable clauses for monotone modalities

is given in Section 3.3. Together, these two translations yield characterisations of the classes

of axioms corresponding to each of the formats of one-step rules, shallow rules and rules with

context restrictions. These characterisations are summarised in Table 3.2 on page 96. In the

following Section 3.4 we put the characterisations to work and prove limitative results about a

number of standard normal modal logics.

Generic methods and tools for the construction of cut-free sequent systems from a finite set

of rules with context restrictions are the subject of Chaper 4. In Section 4.1 we consider

the method of absorbing (principal) cuts into the rule set and identify a representation of

the resulting rules in terms of cut trees. Provided the corresponding rule sets satisfy certain

criteria these representations can be used in the generic decision procedures introduced earlier

and thus provide a step towards generic decidability and complexity results. For cases where

these criteria are not satisfied we then introduce in Section 4.2 a graphical representation of

sequents and sequent rules by doodles resp. rule doodles, which can be used in the manual

construction of such a cut absorbing rule set. Examples considered in this chapter include

Elgesem’s logic of agency and ability and weak systems of conditional logic.
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Finally, in Chapter 5 we apply these methods in the construction of new cut free sequent

calculi for strong systems of conditional logic formulated using the comparative plausibility

operator. After a brief introduction to conditional logics with sphere semantics in Section 5.1

the basic systems are constructed using the representation of sequent rules as rule doodles

in Section 5.2 for the basic logic V4 and in Section 5.3 for extensions of this logic. These

calculi are then adapted to the strong counterfactual implication as primitive connective in

Section 5.4 and used to prove new interpolation results in Section 5.5.

Each chapter closes with a short section titled ’Notes’ containing further discussions about

related approaches, literature or open problems. Pointers to the relevant notions and definitions

can be found in the index.
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CHAPTER 1. INTRODUCTION

1.4 Notation and Other Preliminaries

Notation. We use the following standard notation.

N = {0, 1, 2, 3, . . . }

[n] = {1, 2, . . . , n} for n ∈ N with n > 0

[0] = ∅

brc = max{n ∈ N | n ≤ r} for non-negative rational r

dre = min{n ∈ N | n ≥ r} for non-negative rational r

|A| = cardinality of the set A

P(A) = powerset of the set A

Complexity Theory. While not fundamental to the understanding of this work, we make

use of some basic notions from computational complexity theory for which we briefly recall the

main intuitions. The complexity classes occurring are based on the notion of a deterministic

or non-deterministic Turing machine, where a deterministic Turing machine intuitively on

receiving a string over a finite alphabet as input calculates simple functions such as boolean

addition and multiplication on the cells of a work tape according to a fixed set of instructions

and depending on the input. A computation of such a machine on a given input is successful

if it eventually stops and returns ’yes’. A non-deterministic Turing machines in addition can

make existential or universal guesses by non-deterministically writing a symbol in a cell on its

work tape. A computation of a non-deterministic Turing machine beginning with an existential

guess is successful if at least one of the immediate subcomputations is successful, whereas for a

computation beginning with a universal guess to be successful all immediate subcomputations

need to be successful. The time and space needed by the computation are measured in terms

of the size n of (the encoding of) the input and are given by the maximal number of steps

a computation executes on a given input resp. the amount of cells the computation uses on

the work tape. Time and space required to solve a problem are called polynomial if they are

bounded by a polynomial, i.e. by nk for some k ∈ N and exponential if they are bounded by

an exponential function, i.e. by 2n
k

for some k ∈ N. The considered complexity classes are

given in Table 1.1. The relations between these classes are

coNP ⊆ APtime = Pspace ⊆ Exptime ⊆ NExptime .

Detailed treatments of these notions can be found e.g. in [Pap94, AB09].
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1.4. NOTATION AND OTHER PRELIMINARIES

coNP the class of decision problems accepted in polynomial time by a
non-deterministic Turing machine making universal guesses

APtime the class of decision problems accepted in polynomial time by a
non-deterministic Turing machine making universal and existential guesses

Pspace the class of decision problems accepted in polynomial space by a
deterministic Turing machine

Exptime the class of decision problems accepted in exponential time by a
deterministic Turing machine

NExptime the class of decision problems accepted in exponential time by a
non-deterministic Turing machine making existential guesses

Table 1.1: Overview over the considered complexity classes.
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2 Sequent Systems and Cut Elimination

We begin our investigations by defining three different formats of sequent rules, those of

one-step rules, shallow rules and rules with context restrictions. While the general format of

one-step rules has been investigated before in the context of rank-1 modal logics [PS08, PS10]

and the format of shallow rules is a natural extension of this format, which captures e.g. the

standard propositional rules, the most general of these formats, that of rules with context

restrictions, is motivated by standard sequent calculi for common normal modal logics. In

such calculi one often restricts the context formulae in the premisses to formulae of a certain

format, e.g. to boxed formulae. Furthermore, usually only one layer of modalities is introduced

in the principal formulae of the rule. These two properties will be the main ingredients of the

notion of a rule with context restrictions.

After a brief introduction of the fundamental notions in Section 2.1 we will informally

consider some intuitions in Section 2.2 using standard sequent rules for some well-known modal

logics. This will be followed by a formal introduction of the rule format in Section 2.3 before

we take a look at one of the main issues when investigating sequent calculi: cut elimination.

Standard syntactical proofs of cut elimination by stepwise transformation of derivations usually

involve two or more nested inductions and a plethora of cases. Moreover, adapting the standard

proofs to a new calculus often involves ad hoc constructions or modifications to ensure that

all the cases go through. These two issues might account for the fact that syntactic cut

elimination proofs are notoriously error-prone, as witnessed e.g. by the quest for a correct cut

elimination proof for the sequent calculus for Gödel Löb logic GL [Lei81, Moe01, Val83, GR08].

Thus, similar in spirit to the methods used in display logic [Bel82] and building on the

characterisations in [PS08, PS10] we try to simplify this process in Sections 2.4 and 2.5

by identifying reasonably simple syntactic criteria on rule sets, which are verifiable on a

rule-by-rule basis, and which are sufficient to allow a generic proof of cut elimination to go

through.

If we are interested in not only constructing a cut-free sequent calculus, but also in using it

to decide which formulae are valid in the corresponding logic, we normally also would like

to show that the structural rule of Contraction is admissible. In Section 2.6 we will see how

cut-free systems given by sets of rules with context restrictions can be slightly modified in

the spirit of the G3-systems of [Kle52] to ensure that this is the case. Since the resulting

cut-free sequent calculi enjoy the subformula property, they often can be used to decide which

formulae are derivable. In Section 2.7 we give generic decision procedures for such sequent
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2.1. CONNECTIVES, FORMULAE AND SEQUENTS

calculi along with generic complexity results.

The format of rules with restrictions together with a variant of the cut elimination theorem,

admissibility of contraction and decidability has been published in [LP13a]. Analogous results

for shallow rules were published in [LP11].

2.1 Connectives, Formulae and Sequents

Let us first consider the basic notions. Although the emphasis of this work lies on sequent

systems for modal logics, from a syntactical point of view the modalities are on par with

the standard boolean connectives. Thus we will take a slightly more general perspective and

consider modalities as connectives.

Definition 2.1.1. Let Λ be a finite set of connectives, that is symbols with associated

arities in N. Furthermore let Var be a countable set of propositional variable symbols.

The set F(Λ) of formulae over Λ is defined by F(Λ) 3 ϕ ::= p | ♥(ϕ1, . . . , ϕn) where

p ∈ Var and ♥ ∈ Λ has arity n. If F is a set of formulae we write Λ(F ) for the set

{♥(A1, . . . , An) | ♥ ∈ Λ n-ary and Ai ∈ F for i ∈ {1, . . . , n}}. For a formula A we write

var (A) for the set of propositional variable symbols occurring in A. We sometimes abbreviate

finite sequences A1, . . . , An of formulae to ~A.

Usually we stipulate that the binary boolean connectives →,∧,∨ and the 0-ary connective

⊥ are in Λ, and we write the former ones in infix notation. We use the standard definitions

> := ⊥ → ⊥

¬A := A→ ⊥

A↔ B := (A→ B) ∧ (B → A) .

Furthermore we adopt the standard conventions concerning the binding strength of the unary

and binary boolean connectives to economise on brackets with the order (from strongest to

weakest binding strength): ¬,∧,∨,→,↔. Connectives other than the boolean connectives are

also called modal connectives or simply modalities. The notions of rank and modal nesting

depth are defined as usual and give rise to the important notions of shallow and rank-1

formulae.

Definition 2.1.2. For a set Λ of connectives the rank of a formula A over Λ is the number

rk (A) defined by rk (p) := 0 for every propositional variable p and rk (♥(A1, . . . , An)) :=

max({0} ∪ {rk (Ai) | 1 ≤ i ≤ n}) + 1 for n ≥ 0 and ♥ an n-ary connective. The modal nesting
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depth or modal rank of formulae in F(Λ) is defined by mrk (p) := mrk (⊥) := 0 and

mrk (♥(A1, . . . , An)) :=

max{mrk (Ai) | 1 ≤ i ≤ n} if ♥ ∈ {→,∧,∨}

max({0} ∪ {mrk (Ai) | 1 ≤ i ≤ n}) + 1 otherwise.

A formula A is called non-iterative if mrk (A) ≤ 1. A propositional variable occurs on the top

level of a formula if it occurs at least once in the formula and none of its occurrences in the

formula are in the scope of a modality. A formula A is a rank-1 formula if mrk (A) = 1 and

no propositional variable occurs on its top level.

Thus the rank of a formula is the maximal nesting depth of connectives including the

boolean connectives, whereas the modal rank only counts the modalities. In particular, rank-1

formulae are non-iterative formulae as well.

Example 2.1.3. We consider formulae over the set Λ� := {→,∧,∨,⊥,�} of connectives.

1. The formula �p∧�q → �(p∧ q) has rank 3 and modal rank 1. Thus it is a non-iterative

formula. Since moreover all occurring propositional variables are in the scope of a

modality it is also a rank-1 formula.

2. The formula (T) = �p → p has rank 2 and modal rank 1 and thus is a non-iterative

formula. Since the variable p occurs on the top level of (T) it is not a rank-1 formula.

3. The formula (4) = ��p → �p has rank 3 and modal rank 2. Thus it is neither a

non-iterative nor a rank-1 formula.

We will also make use of the standard notion of a substitution:

Definition 2.1.4. For a finite set Λ of connectives a Λ-substitution is a function σ : Var→
F(Λ). If the set Λ is clear from the context we also simply say that such a σ is a substitution.

As usual we extend substitutions to functions on F(Λ) by the clauses

σ(♥(A1, . . . , An)) := ♥(σ(A1), . . . , σ(An))

for every n > 0 and n-ary connective ♥ from Λ and also write Aσ for σ(A).

We are mainly going to consider modal logics based on some form of propositional logic.

This motivates the following definition of a logic as a set of formulae including the theorems

of the respective propositional logic.

Definition 2.1.5. Let Λ be a finite set of connectives including the boolean connectives. A

Λ-logic based on classical (resp. intuitionistic resp. minimal) propositional logic is a set L of

formulae from F(Λ) which
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1. includes all theorems of classical (resp. intuitionistic resp. minimal) propositional logic

2. is closed under substitution: if A ∈ L and σ is a substitution, then Aσ ∈ L

3. is closed under modus ponens: if A→ B ∈ L and A ∈ L, then B ∈ L.

If the set Λ of connectives and the underlying propositional logic are clear from the context,

we also simply speak of a logic. Keeping to the standard notations we also write |=L A for

A ∈ L and 6|=L A for A /∈ L and say that A is L-valid if |=L A. If Λ = {�} we say that a

Λ-logic is normal if it contains the formulae �p ∧�q ↔ �(p ∧ q) and �> and is closed under

congruence: if A↔ B ∈ L, then �A↔ �B ∈ L.

Example 2.1.6. 1. The set of theorems of classical (resp. intuitionistic resp. minimal)

logic itself is a {→,∧,∨,⊥}-logic based on classical (resp. intuitionistic resp. minimal)

logic.

2. The standard modal logics such as K,KT,K4 and S4 (see e.g. [HC96, BdRV01]) are

normal Λ�-logics based on classical propositional logic.

For more details on classical, intuitionistic of minimal propositional logic see e.g. [TS00]. In

order to make the roles of certain structural rules precise we will follow the standard procedure

[NvP01, TS00] and treat sequents over a set F of formulae in terms of finite multisets.

Definition 2.1.7. Formally, for a set F a finite multiset over F is a function Γ : F → N
with finite support. If Γ is a multiset over F , then for elements A of F we say that A is an

element of Γ and write A ∈ Γ, if Γ(A) > 0. Similarly, we extend the set theoretic notion of

union to multisets: if Γ and ∆ are multisets over F , then Γ ∪∆ is the multiset defined by

(Γ ∪∆)(A) := Γ(A) + ∆(A) for all A ∈ F . We also often write Γ,∆ for the union Γ ∪∆. If

Γ is a multiset, then the support of Γ is the multiset Supp (Γ) defined by Supp (Γ) (A) = 0

if Γ(A) = 0 and Supp (Γ) (A) = 1 otherwise. We sometimes write A ∈ Γ ∩∆ for A ∈ Γ and

A ∈ ∆. For a multiset Γ the size of Γ is defined as |Γ| :=
∑

A∈Γ Γ(A). Since every finite set

can be viewed as the support of a finite multiset we also identify finite sets with multisets

where every element occurs with multiplicity one. For a finite multiset Γ = A1, . . . , An we also

write
∧

Γ for A1 ∧ . . . ∧An and
∨

Γ for A1 ∨ · · · ∨An. If Γ is empty as usual we set
∧

Γ := >
and

∨
Γ := ⊥.

Definition 2.1.8. Let F be a set of formulae. A symmetric sequent over F is a tuple Γ⇒ ∆

of finite multisets of formulae in F . The set of all symmetric sequents over F is denoted

by S(F ). An asymmetric sequent over F is a symmetric sequent Γ ⇒ δ over F , where δ

is subject to the cardinality restriction |δ| ≤ 1. The size of a sequent Γ ⇒ ∆ is defined

as |Γ ⇒ ∆| := |Γ| + |∆|. Occasionally we slightly abuse notation and given two sequents

Γ1 ⇒ Γ2 and Σ1 ⇒ Σ2 write Γ1 ⇒ Γ2 ⊆ Σ1 ⇒ Σ2 if for i = 1, 2 and every formula A we have

Γi(A) ≤ Σi(A).
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p1, . . . , pn ⇒ q

�p1, . . . ,�pn ⇒ �q
(⇒ �)1

Γ, p⇒ ∆

Γ,�p⇒ ∆
(�⇒)0

�Γ⇒ p

�Γ⇒ �p (⇒ �)0

Table 2.1: Some standard sequent rules for modal logics taken from [Wan02]. The notation is
slightly adapted.

Example 2.1.9. We consider sequents over the set F(Λ�) of formulae.

1. For the two symmetric sequents Γ⇒ ∆ := �(p ∧ q), q ∨ r ⇒ s, s, r → ⊥ and Σ⇒ Π :=

�(p ∧ q) ⇒ we have |Γ ⇒ ∆| = 5 and |Σ ⇒ Π| = 1. Furthermore since the formula

�(p ∧ q) occurs on the left hand side of Γ⇒ ∆ we have Σ⇒ Π ⊆ Γ⇒ ∆.

2. For the two asymmetric sequents Γ ⇒ δ := �(p ∧ q), q ∨ r, q ∨ r ⇒ s and Σ ⇒ π :=

�(p∧ q),�(p∧ q), q∨ r ⇒ s we have |Γ⇒ δ| = |Σ⇒ π| = 4, but neither Γ⇒ δ ⊆ Σ⇒ π

nor Σ⇒ π ⊆ Γ⇒ δ.

Symmetric and asymmetric sequents are also known in the literature as multi- and single-

succedent sequents respectively. In the following we will develop our theory for the symmetric

and asymmetric frameworks in parallel. Thus unless otherwise stated all definitions and results

apply to both frameworks, where in the asymmetric case we silently impose the cardinality

restriction on every sequent. Later we will use the symmetric framework for modal logics based

on classical propositional logic and the asymmetric framework for those based on minimal or

intuitionistic propositional logic.

2.2 Intuitions

Before futher developing our general framework for sequent calculi and cut elimination we

briefly pause and consider some concrete examples which showcase the intuitions behind the

technical definitions. More precisely we are going to look at the modal rules for the well-known

modal logics K, KT and S4, which already introduce the concepts fundamental for the general

framework. Since this section is concerned only with the intuitions we do not concern ourselves

with precise definitions – these are given in the subsequent sections. The standard sequent

rules governing the behaviour of the modality � in these modal logics as found in the literature

[Wan02] are given with slightly adapted notation in Table 2.1. Precise definitions of these

rules and the notion of a sequent rule itself will be given in Section 2.3. To construct a sequent

calculus for modal logic K we need to add the rule (⇒ �)1 to a standard sequent calculus for

classical propositional logic. For now we do not consider the propositional rules, again they

will be examined in the following section. For the modal logic KT we need to add both the

rule (⇒ �)1 and the rule (� ⇒)0, and finally for the logic S4 we add all three of the rules

(⇒ �)1, (�⇒)0 and (⇒ �)0. While in the last case it would also suffice to add only (�⇒)0

and (⇒ �)0 for illustrative purposes we consider the calculus with all three rules.
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If we take a closer look at these three rules we see the common characteristic that when

passing from the premiss (at the top) to the conclusion (at the bottom) they introduce a

single layer of modalities but otherwise keep all involved formulae intact and on the same

side of the sequent. On the other hand they differ in the way they deal with the context,

i.e., those formulae which occur unchanged both in the premiss and the conclusion. The rule

(⇒ �)1 is very simple in this respect since it does not involve any context at all. This rule

is an example of what we will later call one-step rules. The rule (�⇒)0 on the other hand

allows for a context, but without restricting it at all and is an example of a shallow rule. It

should be noted that the structure of this rule is the same as that of the propositional rules,

so the following remarks about this rule carry over to the propositional rules as well. Finally,

the context in rule (⇒ �)0 is restricted to boxed formulae on the left hand side of the sequent.

To handle this kind of rules we will introduce the notion of a context restriction. These three

kinds of sequent rules will be defined precisely in Definitions 2.3.3 and 2.3.6 and will form the

fundamental notions for the rest of our investigations.

Since logics in the sense of Definition 2.1.5 are closed under modus ponens, one way of

constructing a complete sequent calculus for such a logic is to initially consider the sequent

calculus with an additional rule called the cut rule. This rule has the form

Γ⇒ A,∆ Σ, A⇒ Π

Γ,Σ⇒ ∆,Π
Cut

and, while allowing us to simulate modus ponens, is rather unpleasant in that it involves a

formula, called the cut formula, which occurs in its premisses but not in its conclusion. This

makes the uncontrolled use of the cut rule unsuitable for the purpose of a decision procedure

for the logic under consideration since in derivations using this rule the occurring formulae

may not be part of the conclusion. Thus the next and very important step is to show that the

cut rule can be eliminated from the calculus, i.e., that every sequent which is derivable using

the cut rule is also derivable without using this rule.

The main intuition behind this procedure of cut elimination is that applications of the cut

rule are permuted upwards in a derivation until they arrive at the leaves, where they usually

are easily replaced by a different rule. Wherever it is not possible to permute the application

of the cut rule upwards it is replaced by an application of the cut rule where the cut formula

is of lower complexity than the cut formula of the original cut. Then by induction on the

complexity of the cut formula we eliminate all such cuts. Thus for example in the calculus for

modal logic K the situation

....
A1, . . . , An ⇒ B

�A1, . . . ,�An ⇒ �B
(⇒ �)1

....
B,C1, . . . , Cm ⇒ D

�B,�C1, . . . ,�Cm ⇒ �D
(⇒ �)1

�A1, . . . ,�An,�C1, . . . ,�Cm ⇒ �D Cut
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is transformed into

....
A1, . . . , An ⇒ B

....
B,C1, . . . , Cm ⇒ D

A1, . . . , An, C1, . . . , Cm ⇒ D
Cut

�A1, . . . ,�An,�C1, . . . ,�Cm ⇒ �D
(⇒ �)1

Here the original application of the cut rule with cut formula �B is replaced by an application

of the cut rule with cut formula B. This new cut is both further up in the derivation and on a

formula with lower complexity than the original cut formula. Note that in order to be able

to perform this transformation we need to be able to apply the rule (⇒ �)1 to the sequent

A1, . . . , An, C1, . . . , Cm ⇒ D. In general this is a property of the set of sequent rules and not

always possible. We will investigate this further in Section 2.4.

For rules such as the rule (� ⇒)0 in the sequent calculus for modal logic KT or the

propositional rules which involve a context we might encounter the new situation that the cut

formula is part of the context. In this case the cut is pushed upwards into the premisses of

the corresponding rule. Thus e.g. the situation:

....
Γ, A⇒ ∆,�B

Γ,�A⇒ ∆,�B
(�⇒)0

....
B,C1, . . . , Cn ⇒ D

�B,�C1, . . . ,�Cn ⇒ �D
(⇒ �)1

Γ,�A,�C1, . . . ,�Cn ⇒ ∆,�D Cut

where the cut formula �B is part of the context of the rule (�⇒)0 is transformed into

....
Γ, A⇒ ∆,�B

....
B,C1, . . . , Cn ⇒ D

�B,�C1, . . . ,�Cn ⇒ �D
(⇒ �)1

Γ, A,�C1, . . . ,�Cn ⇒ ∆,�D Cut

Γ,�A,�C1, . . . ,�Cn ⇒ ∆,�D
(�⇒)0

Here the new application of the cut rule is one step closer to the leaves of the derivation. The

situation that the cut formula is part of the context in both of the last applied rules is similar.

Note that since arbitrary formulae are allowed to occur in the context of rules like (�⇒)0 we

can always perform such a transformation if the cut formula is part of the context of at least

one of the last applied rules. This changes if we consider rules with restricted context such as

the rule (⇒ �)0 for modal logic S4. In this case we might encounter the following situation:

....
A1, . . . , An ⇒ B

�A1, . . . ,�An ⇒ �B
(⇒ �)1

....
�B,�Γ⇒ C

�B,�Γ⇒ �C (⇒ �)0

�Γ,�A1, . . . ,�An ⇒ �C Cut
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This is transformed into

....
A1, . . . , An ⇒ B

�A1, . . . , An ⇒ �B
(⇒ �)1

....
�B,�Γ⇒ C

�Γ,�A1, . . . ,�An ⇒ C
Cut

�Γ,�A1,�An ⇒ �C
(⇒ �)0

where again the newly introduced cut is one step closer to the leaves of the derivation. In this

case we can apply the rule (⇒ �)0 below the cut only because the formulae �A1, . . . ,�An
introduced by the rule (⇒ �)1 are boxed and therefore satisfy the restriction imposed on the

context in rule (⇒ �)0. For arbitrary rule sets this can not always be done. Again a similar

situation arises if the cut formula is part of the context in both last applied rules above the

cut. We will see a formalisation of these intuitions in Section 2.4.

One important application of cut-free sequent calculi is their use in decision procedures

for the corresponding logics. The main intuition here is that if all of the logical rules of the

sequent calculus have the subformula property, i.e., if the premisses of applications of these

rules only contain subformulae of their conclusions, then the number of different formulae

possibly relevant for a derivation of a given sequent is bounded. Of course the cut rule does

not satisfy this property, but often the rules of a cut-free calculus do. In particular we will

only consider logical rules which satisfy the subformula property. Under some additional

assumptions this means that also the number of different sequents possibly relevant for such a

derivation is bounded. In many cases this is enough to obtain a decision procedure for the

logic, either by enumerating all the derivable sequents possibly occurring in a derivation of

a given sequent or by employing the method of backwards proof search. While in our case

the first method in general necessitates the enumeration of exponentially many sequents and

thus typically results in a decision procedure of exponential time complexity, backwards proof

search often can be done depth first and thus due to the specific format of the rules often

results in a procedure of polynomial space complexity. We will consider a detailed treatment

of these issues in Section 2.7. But let us first turn to the precise definitions of sequent rules.

2.3 Rules with Context Restrictions

As mentioned in the previous section when looking at standard sequent systems for most

modal logics such as K,KT,KD or S4 as given e.g. in [Wan02] we notice two main features of

the logical rules (again consider Table 2.1 on p. 28 for examples). First, we have a number

of principal formulae in the conclusion, which are stripped of one layer of modalities when

passing over to the premisses. The latter point is particularly interesting from the perspective

of backwards proof search, since it can be used to ensure termination of the procedure. Second,

we might have a context, that is a number of formulae which are not changed when passing
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from conclusion to premisses. These context formulae can be arbitrary, as in rule (� ⇒)0,

or they can be restricted to a certain component of the sequent or a certain format, e.g. to

boxed formulae in the left component as in rule (⇒ �)0. In order to make these distinctions

precise, we introduce the notion of context restrictions:

Definition 2.3.1. Let F be a set of formulae. A context restriction over F is a tuple 〈F1, F2〉
of sets of formulae in F . The set F1 is called the left component of the restriction. Analogously,

F2 is called the right component . For a (symmetric or asymmetric) sequent Γ ⇒ ∆ and

a context restriction C = 〈F1, F2〉 the restriction of Γ ⇒ ∆ according to C is the sequent

(Γ ⇒ ∆) �C := Γ �F1⇒ ∆ �F2 , where Γ �F1 is the multiset Γ restricted to substitution

instances of formulae in F1. We say that a sequent Γ ⇒ ∆ satisfies the restriction C if

(Γ⇒ ∆) �C= Γ⇒ ∆ and write C(F ) for the set of context restrictions over F . If C1 and C2

are context restrictions we say that the restriction C1 satisfies the restriction C2 if for every

sequent Γ⇒ ∆ we have (Γ⇒ ∆) �C1�C2= (Γ⇒ ∆) �C1 .

Example 2.3.2. The following are some often encountered context restrictions which we will

also use later on.

1. The trivial restriction Cid := 〈{p}, {p}〉 poses no restriction at all to the sequents since

every formula is a substitution instance of the formula p. Thus for every sequent we

have (Γ⇒ ∆) �Cid= Γ⇒ ∆. Every context restriction satisfies the trivial restriction.

2. The empty restriction C∅ := 〈∅, ∅〉 deletes every formula in a sequent since no formula is

a substitution instance of a formula in ∅. For every sequent we have (Γ⇒ ∆) �C∅= ⇒ .

The empty restriction satisfies every context restriction.

3. The restriction C4 := 〈{�p}, ∅〉 restricts the left hand side of a sequent to boxed formulae

and deletes the every formula on the right hand side. E.g we have (q, C ∧D,�(A∨B)⇒
�D, p) �C4= �(A ∨B)⇒ .

4. The restriction C45 := 〈{�p}, {�p}〉 restricts both left and right hand side of a sequent

to boxed formulae: we have (q, C ∧D,�(A ∨B)⇒ �D, p) �C45= �(A ∨B)⇒ �D. The

restriction C4 satisfies the restriction C45 but not vice versa since for the sequent ⇒ �p
we have (⇒ �p) �C45�C4= ⇒ 6= ⇒ �p = (⇒ �p) �C45 .

Using the notion of a context restriction we generalise the above given examples of modal

sequent rules to the format of rules with context restrictions.

Definition 2.3.3. A rule with context restrictions or simply a rule is a tuple (P/Σ ⇒ Π)

where P ⊆ S(Var) × C(F) is the set of premisses with associated context restrictions and

Σ ⇒ Π ∈ S(Λ(Var)) are the principal formulae. We furthermore stipulate that every rule

with context restrictions is subject to the variable condition, which states that no variable

occurs more than once in the principal formulae and that every variable occurring in the
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premisses also occurs in the principal formulae. In the asymmetric case moreover we assume

that for every premiss (Γ ⇒ δ; C) with δ 6= ∅ the right component of C is empty. For a

rule R we sometimes write PF (R) for the principal formulae of R. An application of a rule

R = (P/Σ ⇒ Π) is given by a substitution σ : Var → F and a context Θ ⇒ Ξ ∈ S(F) and

written as
{ Θ �C ,Γσ ⇒ ∆σ,Ξ �C | (Γ⇒ ∆; C) ∈ P }

Θ,Σσ ⇒ Πσ,Ξ
R

We call the sequent Θ,Σσ ⇒ Πσ,Ξ the conclusion and the sequents Θ �C ,Γσ ⇒ ∆σ,Ξ �C the

premisses of the application of R. Thus the variables in the principal formulae and the active

part of the premisses are substituted by formulae, and each premiss carries over the context

restricted according to its associated context restriction.

Example 2.3.4. Consider the set Λ = {♥} of connectives. We take as an example the rule

R = {(⇒ q; 〈{♥p}, ∅〉), (p⇒ ; C∅)}/♥p⇒ ♥q .

The context restriction 〈{♥p}, ∅〉 copies over all formulae of the form ♥A from the context.

Thus an application of this rule is given e.g. by the substitution σ with σ(p) = B and σ(q) = C

and the context Γ,♥A1, . . . ,♥An ⇒ ∆, where no formula in Γ has the form ♥A and is written

as
♥A1, . . . ,♥An ⇒ C B ⇒
Γ,♥A1, . . . ,♥An,♥B ⇒ ♥C,∆

If the boolean operators are in the set of connectives it will be convenient to distinguish

purely modal from mixed rules.

Definition 2.3.5. A rule with context restrictions R = P/Σ ⇒ Π is a modal rule if no

boolean connectives occur in its principal formulae Σ⇒ Π.

In the following we will also consider two slightly smaller classes of sequent rules. These are

the result of limiting the context restrictions occurring in the premisses in different ways. The

first format, that of one-step rules stems from [PS08] and does not allow the propagation of

any context formulae, while the format of shallow rules is a natural extension which already

captures the standard propositional rules.

Definition 2.3.6. A rule with restrictions is called a one-step rule if the only restriction

occurring in it is C∅ and a shallow rule if all its restrictions are either C∅ or Cid. In the

asymmetric case for shallow rules we also allow the restriction 〈{p}, ∅〉 for premisses (Γ⇒ δ; C)
with δ 6= ∅.

Example 2.3.7. 1. The set Gc of rules of classical propositional logic as given in Table

2.2 as well as the sets Gi and Gm of rules for intuitionistic resp. minimal logic as given in

Table 2.3 can be seen as sets of rules with restrictions. Since the only context restriction
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Γ,⊥ ⇒ ∆
⊥L

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧B,∆ ∧R
Γ⇒ A,B,∆

Γ⇒ A ∨B,∆ ∨R
Γ, A⇒ B,∆

Γ⇒ A→ B,∆
→R

Γ, A,B ⇒ ∆

Γ, A ∧B ⇒ ∆
∧L

Γ, A⇒ ∆ Γ, B ⇒ ∆

Γ, A ∨B ⇒ ∆
∨L

Γ,⇒ A,∆ Γ, B ⇒ ∆

Γ, A→ B ⇒ ∆
→L

Table 2.2: The rules in Gc.

Γ,⊥ ⇒ δ
⊥L

Γ⇒ A Γ⇒ B
Γ⇒ A ∧B ∧R

Γ⇒ Ai
Γ⇒ A1 ∨A2

∨R
(i = 1, 2)

Γ, A⇒ B

Γ⇒ A→ B
→R

Γ, A,B ⇒ δ

Γ, A ∧B ⇒ δ
∧L

Γ, A⇒ δ Γ, B ⇒ δ

Γ, A ∨B ⇒ δ
∨L

Γ,⇒ A Γ, B ⇒ δ

Γ, A→ B ⇒ δ
→L

Table 2.3: The rules in Gi. For Gm we drop the rule ⊥L from Gi.

occurring in the rules is Cid they are in particular shallow rules. Table 2.4 gives the rules

in our notation for a few examples.

2. For every n-ary modality ♥ ∈ Λ the congruence rule for ♥ given by Cong♥ = {(pi ⇒
qi; C∅) | 1 ≤ i ≤ n} ∪ {(qi ⇒ pi; C∅) | 1 ≤ i ≤ n}/♥(p1, . . . , pn)⇒ ♥(q1, . . . , qn) and the

monotonicity rule for ♥ given by Mon♥ = {(pi ⇒ qi; C∅) | 1 ≤ i ≤ n}/♥(p1, . . . , pn)⇒
♥(q1, . . . , qn) are rules with restrictions. Since the restriction C∅ is the only restriction

occurring in these rules they are also one-step rules (and shallow rules).

3. The modal rules Kn, RT, 4n and R45 given in Table 2.4 are rules with restrictions. Rules

Kn and RT are shallow rules, while Kn also is a one-step rule. (A brief note on notation:

we use subscripts for variable numbers of principal formulae. For rules which are the

result of translating an axiom (A) into a rule we write RA.)

4. The modal rule
�Γ,�B ⇒ B

�Γ⇒ �B
from [Lei81], which is used in sequent style presentations of Gödel-Löb logic, cannot be

seen as a rule with context restrictions, since the formula �B occurs in its premiss and

thus cannot be principal in its conclusion, but on the other hand it changes the side of

the sequent and thus is not a context formula.

5. The modal rule
A1, . . . , An ⇒ B,�C1, . . . ,�Cm
�A1, . . . ,�An ⇒ �B,C1, . . . , Cm
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Γ,⊥ ⇒ ∆
⊥L ∅/⊥ ⇒

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧B,∆ ∧R {(⇒ p; Cid), (⇒ q; Cid)}/ ⇒ p ∧ q

A1, . . . , An ⇒ B

Γ,�A1, . . . ,�An ⇒ �B,∆
Kn {(p1, . . . , pn ⇒ q; C∅)}/�p1, . . . ,�pn ⇒ �q

Γ, A⇒ ∆

Γ,�A⇒ ∆
RT {(p⇒ ; Cid)}/�p⇒

�Γ, A1, . . . , An ⇒ B

Σ,�Γ,�A1, . . . ,�An ⇒ �B,∆
4n {(p1, . . . , pn ⇒ q; C4)}/�p1, . . . ,�pn ⇒ �q

�Γ⇒ A,�∆

Σ,�Γ⇒ �A,�∆,Π
R45 {(⇒ p; C45)}/ ⇒ �p

Table 2.4: Some standard modal rules in the notation as rules with context restrictions

Γ⇒ ∆
Γ, A⇒ ∆

WL
Γ⇒ ∆

Γ⇒ A,∆
WR

Γ, A,A⇒ ∆

Γ, A⇒ ∆
ConL

Γ⇒ B,B,∆

Γ⇒ B,∆
ConR

Γ⇒ A,∆ Σ, A⇒ Π

Γ,Σ⇒ ∆,Π
Cut

Γ,Γ,Σ⇒ ∆,∆,Π

Γ,Σ⇒ ∆,Π
Mcon

Table 2.5: The structural rules.

which is often used to capture modal logic B (see e.g. [Tak92, Wan02]) also cannot be

seen as a rule with context restrictions, since this format does not allow the modal rank

to decrease when passing from the premisses to the conclusion of a rule.

Notation 2.3.8. If a result holds for the rule set Gc in the symmetric framework as well

as for the rule sets Gi and Gm in the asymmetric framework, then we also write G[cim] and

similarly for G[ci]. Furthermore, if a lemma or theorem presupposes the propositional rules

we mark it with the corresponding letter c, i,m or a combination of these if it holds for the

corresponding rule sets.

We also consider the standard structural rules.

Definition 2.3.9. The structural rules of right- (resp. left-) Weakening and right-(resp. left-)

Contraction as well as Cut and multi-Contraction Mcon are given in Table 2.5. We also write

W for {WL,WR} and Con for {ConL,ConR}. The notion of application of a rule is extended

to the structural rules in the obvious way. For the contraction rules we also call the formula

on which the contraction is performed the contraction formula and its occurrence in the

conclusion the principal formula of the rule.
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The structural rules are not rules with context restrictions in our sense since they do not

introduce a layer of connectives in the principal formulae. The notions of a derivation and a

derivable sequent are now defined in the standard way.

Definition 2.3.10. Let R be a set of structural rules and / or rules with context restrictions

including the axiom rules

Γ, A⇒ A,∆
A

with principal formulae A⇒ A where A is an arbitrary formula and context formulae Γ⇒ ∆.

A derivation in R is a finite tree where each node is labelled with a sequent such that for

every node its sequent is the conclusion of an application of a rule in R and the sequents of

the predecessors of this node are the premisses of this application. The depth of a derivation

is the height of the underlying tree, that is the maximal length of a path from the root to a

leaf. A sequent Γ⇒ ∆ is derivable in R if there is a derivation in R whose root is labelled

with Γ⇒ ∆. If Γ⇒ ∆ is derivable in R we also write `R Γ⇒ ∆. If R is a rule set and R a

rule, then we often slightly abuse notation and write `RR instead of `R∪{R}. Furthermore,

we write e.g. `R[ConCutW] if the statement holds for the rule set R extended with an arbitrary

subset of ConCutW and similarly for other sets of structural rules. If S is a set of sequents we

say that a sequent Γ⇒ ∆ is derivable from S in R[ConCutW] and write S `R[ConCutW] Γ⇒ ∆

if there is a derivation of Γ⇒ ∆ where the leafs are labelled with conclusions of applications

of the axiom rule or sequents in S. A rule is derivable in a rule set R[ConCutW] if for all

its applications the conclusion is derivable from the set of its premisses in R[ConCutW] and

admissible in R[ConCutW] if every sequent is derivable in RR[ConConW] if and only if it is

derivable in R[ConCutW].

Convention: From now on unless stated otherwise whenever we talk about

a set R of rules with restrictions we assume that R is closed under injective

renamings of the variables and contains the axiom rules A, the identity rule Rid

and the congruence rules Cong♥ for every modality ♥ ∈ Λ.

As usual when presenting derivations we will sometimes abbreviate multiple applications of

the same rule using double lines instead of single lines. Thus e.g. the derivation below left is

abbreviated as shown below right.

....
Γ, A,B,C,D ⇒ ∆

Γ, A,B,C ∧D ⇒ ∆
∧L

Γ, A ∧B,C ∧D ⇒ ∆
∧L

....
Γ, A,B,C,D ⇒ ∆

Γ, A ∧B,C ∧D ⇒ ∆
∧L

The connection between logics and sequent calculi is given by the standard notions of soundness

and completeness.
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Definition 2.3.11. Let Λ be a set of connectives including the boolean connectives. Fur-

thermore, let R be a set of rules with context restrictions and let L be a logic based on

classical, intuitionistic or minimal propositional logic. We say that the sequent calculus given

by R[CutConW] is sound for L if for all sequents Γ⇒ ∆ we have

`R[CutConW] Γ⇒ ∆ implies
∧

Γ→
∨

∆ ∈ L .

Similarly, we say that the sequent calculus given by R[CutConW] is complete for L if for every

sequent Γ⇒ ∆ we have∧
Γ→

∨
∆ ∈ L implies `R[CutConW] Γ⇒ ∆ .

Note that in the asymmetric framework the right hand side of the sequent and thus also the

succedent of the implication contains at most one formula. If R[ConW] is complete for L, then

we also explicitly mention the absence of the cut rule and say that the calculus is cut free

complete for L.

By virtue of the format of rules with restrictions we now immediately obtain our first result.

Lemma 2.3.12 (Admissibility of Weakening). Let R be a set of rules with restrictions and

let Γ⇒ ∆ be a sequent. Then we have

`RW[CutCon] Γ⇒ ∆ iff `R[CutCon] Γ⇒ ∆

and the depth of the derivations is preserved.

Proof. Standard by induction on the depth of the derivation, using the fact that in applications

of rules with restrictions the weakening can be pushed into all those premisses whose restrictions

are satisfied by the weakening formula.

Thus we may simply drop the rule of Weakening from our rule set without changing the

set of derivable sequents. Nevertheless, for convenience we will sometimes make use of the

weakening rule.

2.4 Cut Elimination

Arguably one of the most important properties of a sequent system is admissibility of the cut

rule. While this can be shown by semantically driven arguments such as proving completeness

of the system without the cut rule, often we are interested in a constructive method for

transforming a derivation with the cut rule into one without it, the standard reference for this

of course being Gentzen’s original proof of Cut Elimination for first-order logic in [Gen34].

The idea here is to permute applications of the cut rule upwards in the derivation until only
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cuts involving conclusions of the axiom rule or the rule ⊥L remain. These cuts can then easily

be eliminated. For the permutation steps, depending on whether the cut formula was principal

in the last applied rules of both premisses of the application of cut or not, the cut is either

replaced by cuts on proper subformulae of the original cut formula or permuted upwards into

the premisses of a rule where the cut formula was contextual.

We are now going to see some criteria on sets of rules which ensure that a modal analogue

of this proof goes through. The main idea is that applications of cut where the cut formula is

principal in the last applied rules of both premisses of the cut can be absorbed into the rule

set. This way such an application of cut can be replaced by a number of cuts on formulae of

lower complexity and an application of a rule from the rule set. In order to state this formally

we are going to construct this latter rule in a uniform way. To get an idea of how this works

assume we have the rules

R1 = P1/Σ1 ⇒ Π1,♥p and R2 = P2/♥p,Σ2 ⇒ Π2 .

Applying cut to the conclusions of these two rules yields the sequent Σ1,Σ2 ⇒ Π1,Π2, which

we will take to be the conclusion of the new rule. The easiest option for the premisses of the

new rule would be to simply take P1∪P2, but unfortunately in this case we might end up with

the variable p occurring in the premisses but not in the conclusion, a situation which is not

allowed by the rule format. Fortunately this can be easily changed by intuitively performing

all the possible cuts between the premisses on the variable p. This process is captured in the

following definition.

Definition 2.4.1. If P ⊆ S(Var)× C(F) is a set of premisses with context restrictions, then

for p ∈ Var the p-elimination of P is the set

P 	 p := { (Supp (Γ,Σ)⇒ Supp (∆,Π) ; C1 ∪ C2) | (Γ⇒ ∆, p; C1) ∈ P, (p,Σ⇒ Π; C2) ∈ P }

∪ { (Γ⇒ ∆; C) | (Γ⇒ ∆; C) ∈ P, p /∈ Γ,∆ } ,

where for restrictions C1 = 〈F1, F2〉 and C2 = 〈G1, G2〉 we write C1 ∪ C2 for 〈F1 ∪G1, F2 ∪G2〉.
Iterated elimination of variables ~p = p1, . . . , pn is denoted by P 	 ~p. For rules R = (PR; Γ⇒
∆,♥~p) and Q = (PQ;♥~p,Σ⇒ Π) the cut between R and Q on ♥~p is the rule

cut(R,Q,♥~p) := ((PR ∪ PQ)	 ~p; Γ,Σ⇒ ∆,Π) .

If for two context restrictions C1 = 〈F1, F2〉 and C2 = 〈G1, G2〉 for i = 1, 2 every formula

which is a substitution instance of a formula in Gi is also a substitution instance of a formula

in Fi, we also abbreviate the restriction C1 ∪ C2 to C1.

Example 2.4.2. Let P := {(p, q ⇒ r; C∅), (⇒ p; C4), (p ⇒ q; Cid)}. Then the variable

eliminations for the variables p, q, r are as follows.
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1. The p-elimination of P is P 	 p = {(q ⇒ r; C4), (⇒ q; Cid)}.

2. The q-elimination of P is P 	 q = {(p⇒ r; Cid), (⇒ p; C4)}.

3. The r-elimination of P is P 	 r = {(⇒ p; C4), (⇒ q; Cid)}.

Thus for a set P of premisses and a variable p the p-elimination of P is obtained by

“performing all possible cuts on p”. The concept of a cut between rules is illustrated by the

following example.

Example 2.4.3. 1. For P = {(⇒ p; Cid), (⇒ q; Cid), (p, q ⇒ ; Cid)} we have P 	 (p, q) =

{ ⇒ ; Cid)} and thus cut(∧R,∧L, p ∧ q) is the identity rule Rid = { ⇒ ; Cid)}/ ⇒ .

2. For P = {(p1, p2 ⇒ q1; C∅), (q1, q2 ⇒ r; , C∅)} we have P 	 q = {(p1, p2, q2 ⇒ r; C∅)}
and thus cut(K2,K2,�q1) is the rule K3 = {(p1, p2, q2 ⇒ r; C∅)}/�p1,�p2,�q2 ⇒ �r.

3. For P = {(p1, p2 ⇒ q; C∅), ( ⇒ p1; C4)} we have P 	 p1 = {(p2 ⇒ q; C4)} and thus

cut(40,K2,�p1) is the rule 41 = {(p2 ⇒ q; C4)}/�p2 ⇒ �q.

As a convenient fact about variable elimination and cuts between rules we note that modulo

Weakening and Contraction the order in which we eliminate the variables in the premisses is

not important.

Lemma 2.4.4. For a set P of premisses and a sequent Θ⇒ Ξ write P(Θ⇒ Ξ) for the set

{Θ �F1 ,Γ⇒ ∆,Ξ �F2 | (Γ⇒ ∆; 〈F1, F2〉) ∈ P} .

Let P be a set of premisses, let p, q be variables and let Θ ⇒ Ξ be a sequent. Then every

sequent in (P 	 p, q)(Θ⇒ Ξ) is derivable from the sequents in (P 	 q, p)(Θ⇒ Ξ) using only

Weakening and Contraction.

Proof. Let Σ ⇒ Π be a sequent in (P 	 p, q)(Θ ⇒ Ξ). We show that there is a sequent in

(P 	 q, p)(Θ ⇒ Ξ) such that Σ ⇒ Π is derivable from this sequent using Contraction and

Weakening. We consider all possible cases for the construction of the sequent Σ⇒ Π.

1. Σ⇒ Π ∈ (P 	 p)(Θ⇒ Ξ). Then q does not occur in Σ⇒ Π.

a) Σ ⇒ Π ∈ P(Θ ⇒ Ξ). Then p does not occur in Σ ⇒ Π either, and thus

Σ⇒ Π ∈ (P 	 q, p)(Θ⇒ Ξ).

b) Σ ⇒ Π = Σ1,Σ2 ⇒ Π1,Π2 where Σ1 ⇒ Π1, p ∈ (P 	 q)(Θ ⇒ Ξ) and p,Σ2 ⇒
Π2 ∈ (P 	 q)(Θ ⇒ Ξ). Since q does not occur in Σi ⇒ Πi for i = 1, 2 we have

Σi ⇒ Πi ∈ (P 	 q)(Θ⇒ Ξ) and thus Σ⇒ Π ∈ (P 	 q, p)(Θ⇒ Ξ).

2. Σ ⇒ Π = Σ1,Σ2 ⇒ Π1,Π2 where Σ1 ⇒ Π1, q ∈ (P 	 p)(Θ ⇒ Ξ) and q,Σ2 ⇒ Π2 ∈
(P 	 p)(Θ⇒ Ξ).
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a) Σ1 ⇒ Π1, q ∈ P(Θ⇒ Ξ) and q,Σ2 ⇒ Π2 ∈ P(Θ⇒ Ξ). Then p does not occur in

these sequents and we have Σ⇒ Π ∈ (P 	 q, p)(Θ⇒ Ξ).

b) Σ1 ⇒ Π1, q ∈ P(Θ ⇒ Ξ) and q,Σ2,⇒ Π2 = Γ1,Γ2 ⇒ ∆1,∆2 for Γ1 ⇒ ∆1, p ∈
P(Θ⇒ Ξ) and p,Γ2 ⇒ ∆2 ∈ P(Θ⇒ Ξ). Then first cutting on q, then cutting on p

yields a sequent in (P 	 q, p)(Θ⇒ Ξ). Now applying Contraction gives the original

sequent.

c) q,Σ2 ⇒ Π2 ∈ P(Θ ⇒ Ξ) and Σ1 ⇒ Π1, q = Γ1,Γ2 ⇒ ∆1,∆2 for Γ1 ⇒ ∆1, p ∈
P(Θ⇒ Ξ) and p,Γ2 ⇒ ∆2 ∈ P(Θ⇒ Ξ). Similar to the previous case.

d) Σ1 ⇒ Π1, q = Γ1,1,Γ1,2 ⇒ ∆1,1,∆1,2 and q,Σ2 ⇒ Π2 = Γ2,1,Γ2,2 ⇒ ∆2,1,∆2,2

where all of the sequents

Γ1,1 ⇒ ∆1,1, p p,Γ1,2 ⇒ ∆1,2 Γ2,1 ⇒ ∆2,1, p p,Γ2,2 ⇒ ∆2,2

are in P(Θ⇒ Ξ). Then we have q ∈ ∆1,1 ∪∆1,2 and q ∈ Γ2,1 ∪ Γ2,2.

i. q /∈ ∆1,1 and q /∈ Γ2,2. Then Γ1,1,Γ2,1 ⇒ ∆1,1,∆2,2 ∈ (P 	 q, p)(Θ ⇒ Ξ) and

the original sequent follows using Weakening.

ii. q /∈ ∆1,2 and q /∈ Γ2,1. As in the last case.

iii. q /∈ ∆1,2 and q /∈ Γ2,2. Then Γ1,1,Γ2,1 ⇒ ∆1,1,∆2,1, p ∈ (P 	 q)(Θ ⇒ Ξ)

and thus Γ1,1,Γ2,1,Γ2,2 ⇒ ∆1,2,∆2,1,∆2,2 ∈ (P 	 q, p)(Θ⇒ Ξ). The original

sequent follows using Weakening.

iv. q /∈ ∆1,1 and q /∈ Γ2,1. As in the last case.

v. q /∈ Ω for Ω exactly one of the multisets ∆1,1, ∆1,2, Γ2,1, Γ2,2. We consider the

case q /∈ ∆1,1 and q ∈ ∆1,2 ∩Γ2,1 ∩Γ2,2. Then Γ1,1 ⇒ ∆1,1, p ∈ (P 	 q)(Θ⇒ Ξ)

and p,Γ1,2,Γ2,2 ⇒ ∆1,2,∆2,2 ∈ (P 	 q)(Θ ⇒ Ξ). Thus Γ1,1,Γ1,2,Γ2,2 ⇒
∆1,1,∆1,2,∆2,2 ∈ (P 	 q, p)(Θ ⇒ Ξ) and the original sequent follows using

Weakening. The other cases are similar.

vi. q ∈ ∆1,1 ∩∆1,2 ∩ Γ2,1 ∩ Γ2,2. Then Γ1,1,Γ2,1 ⇒ ∆1,1,∆2,1, p ∈ (P 	 q)(Θ⇒ Ξ)

and p,Γ1,2,Γ2,2 ⇒ ∆1,2,∆2,2 ∈ (P 	 q)(Θ⇒ Ξ) and thus the original sequent

is in (P 	 q, p)(Θ⇒ Ξ).

Cuts between rules will also play a major role later when we consider the construction of

rule sets satisfying the criteria for Cut Elimination. For this reason we notice another very

convenient property of cuts between modal rules in a rule set which also includes the standard

propositional rules.
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Lemma 2.4.5 (Soundness of Cuts). Let R be a set of rules with restrictions such that

G[cim] ⊆ R, and let R1, R2 ∈ R. Then every cut between R1 and R2 is a derivable rule in

RCutConW.

Proof. For the asymmetric case consider a unary modality ♥ and the cut cut(R1, R2,♥p)
between two rules R1 = (P1; Γ⇒ ♥p) and R2 = (P2;♥p,∆⇒ α). By definition we have

cut(R1, R2,♥p) = ((P1 ∪ P2)	 p; Γ,∆⇒ α). Our goal is to replace an arbitrary application

of cut(R1, R2,♥p) in a derivation by applications of R1 and R2 and an application of the cut

rule. Suppose the combined premisses of the two rules are

P1 ∪ P2 = {(Θi ⇒ p; Cri ) | i ∈ I} ∪ {(p,Υj ⇒ βj ; C`j) | j ∈ J} ∪ {(Ξk ⇒ γk; Cnk ) | k ∈ K} ,

where p /∈ Ξk, γk for all k ∈ K. Now consider an application

{Σ �C`i∪Crj , (Θi,Υj)σ ⇒ βjσ | i ∈ I, j ∈ J} ∪ {Σ �Cnk ,Ξkσ ⇒ γkσ | k ∈ K}

Σ, (Γ,∆)σ ⇒ ασ

of the rule cut(R1, R2, p) in a derivation. We construct a substitution instance of p by setting

P :=
∨
i∈I

(∧
Σ �Cri ∧

∧
Θiσ

)
.

Note that in case I = ∅ we have P = ⊥. If the base logic is minimal propositional logic in this

case we set P :=
∧
j∈J βj . Then for every i ∈ I we can derive Σ �Cri ,Θiσ ⇒ P from axioms

using the right conjunction and disjunction rules. Furthermore for every i ∈ I and j ∈ J we

get Σ �C`j ,Σ �C
r
i
,Θiσ,Υjσ ⇒ βjσ from the premisses of the application using Weakening. Thus

for every j ∈ J we have Σ �C`j , P,Υjσ ⇒ βjσ by left conjunction and disjunction. If I = ∅ in

the intuitionistic case we use the rule ⊥L and in the minimal case the rules A,∧L. Now we can

apply the rules R1 and R2 to these premisses, apply cut to the conclusions with cut formula

♥P and contract duplicate context formulae to arrive at the conclusion of the application of

the cut. If the modality has arity greater than 1 we iterate the process.

The symmetric case is treated similarly. Remember that for a formula A we write ¬A as an

abbreviation for the formula A→ ⊥. Now again we take I to be the set of indices for which

(Θi ⇒ p,Ωi; Cri ) occurs in the combined premisses of the two rules and set

P :=
∨
i∈I

(∧
Σ �Cri ∧¬

∨
Π �Cri ∧

∧
Θiσ ∧ ¬

∨
Ωiσ

)
where Π is the right hand part of the context of the rule application. Then again we can derive

Σ �Cri ,Θiσ ⇒ P,Ωiσ,Π �Cri from axioms and for every j ∈ J the sequent Σ �C`j ,Υjσ, P ⇒
Ξσ,Π �C`j from the premisses of cut(R1, R2, p) using propositional logic. Now applications of

R1 and R2, a cut and contractions yield the conclusion of cut(R1, R2, p).
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Using the notion of a cut between two rules of the rule set we can now state the first of our

conditions on the rule set.

Definition 2.4.6. A rule R = PR/ΣR ⇒ ΠR subsumes a rule Q = PQ/ΣQ ⇒ ΠQ if

ΣR ⇒ ΠR = ΣQ ⇒ ΠQ and the premisses of Q follow by WCon from the premisses of R, i.e.,

for every sequent Γ ⇒ ∆ the sequents in PQ(Γ ⇒ ∆) are derivable from PR(Γ ⇒ ∆) using

only ConW.

Example 2.4.7. 1. Every rule trivially subsumes itself.

2. The rule 4n subsumes the rule Kn, since if we have an application of Kn with premiss

A1, . . . , An ⇒ B and conclusion Γ,�A1, . . . ,�An ⇒ �B,∆, then from the premiss using

only Weakening we can derive the premiss Γ �C4 , A1, . . . , An ⇒ B,∆ �C4 of an application

of the rule 4n with the same conclusion.

Definition 2.4.8. A rule set R is called principal-cut closed if for every two rules R1, R2 from

R and every formula ♥~p: whenever the rule cut(R1, R2,♥~p) is defined, then it is subsumed by

a rule from R.

Example 2.4.9. 1. The sets G[cim] of propositional rules are principal-cut closed since all

possible principal cuts are subsumed by the identity rule.

2. The rule set RK = {Kn | n ≥ 0} is principal cut closed since for rules

Kn = {(p1, . . . , pn ⇒ q; C∅)}/�p1, . . . ,�pn ⇒ �q

Km+1 = {(q, q1, . . . , qm ⇒ r; C∅)}/�q,�q1, . . . ,�qm ⇒ �r

the rule cut(Kn,Km+1,�q) is subsumed by the rule Kn+m.

3. Similarly, the rule set RK4 := RK ∪ {4n | n ≥ 0} is principal-cut closed, since in addition

for m,n ≥ 0 the rule cut(4m,Kn,�p) is subsumed by the rule 4m+n and similarly for

cuts between rules 4m and 4n.

4. The rule set RK ∪{40} is not principal-cut closed, since e.g. the rule cut(K2, 40,�p) = 41

is not subsumed by any rule in the rule set.

5. Finally, the rule sets RKT := RK ∪ {Tn | n ≥ 1} and RS4 := RK4 ∪ {Tn | n ≥ 1} with

Tn := {(p1, . . . , pn ⇒ ; Cid)}/�p1, . . . ,�pn ⇒

are principal-cut closed, but the rule sets RK ∪ {T1} and RK ∪ {T1, 40} are not.

Remark 2.4.10. Under this definition of principal-cut closure e.g. the standard rule sets

RK ∪ {T1} for modal logic KT and RK ∪ {T1, 40} for modal logic S4 are as we have seen not
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principal-cut closed. The condition can be weakened to include these rule sets by demanding

that the cut between two rules be only derivable instead of subsumed by a rule from the

rule set (more details will be mentioned in Remark 2.4.18). For a better integration with the

remaining conditions we keep to the present condition.

The criterion of principal-cut closure enables us to permute applications of the cut rule

above applications of rules with restrictions whenever the cut formula was principal in the

two last applied rules. If the cut formula was contextual in at least one of the two last applied

rules we would like to be able to permute the application of cut into the premisses of one of

the rules. Unfortunately, this might not always be possible, since the context restrictions of

this rule might prevent its application below the cut. The following criteria ensure that this is

not the case.

Definition 2.4.11. Two restrictions C1 = 〈F1, F2〉, C2 = 〈G1, G2〉 overlap if there are formulae

A1 ∈ F2, A2 ∈ G1 and substitutions σ1, σ2 with A1σ1 = A2σ2. A rule set R is

1. context-cut closed if whenever R0, R1 ∈ R and there are context restrictions C0 of R0

and C1 of R1 which overlap, then there is i ∈ {0, 1} such that all context restrictions of

Ri which overlap C1−i and the principal formulae of Ri satisfy C1−i.

2. mixed-cut closed if whenever R,Q ∈ R and a principal formula A of R satisfies a context

restriction of Q, then all context restrictions of R and all principal formulae of R except

for possibly A satisfy all those context restrictions of Q satisfied by A.

Example 2.4.12. 1. Rule sets containing only shallow or one-step rules are trivially

context- and mixed-cut closed. Thus all of G[cim],GcRK,GcRKT are context- and

mixed-cut closed.

2. The rule set RS4 = RKT ∪ {4n | n ≥ 0} is context-cut closed, since for every non-

propositional R0, R1 with overlapping context restrictions we must have R0 = Tm for

some m and every formula satisfies the context restriction of Tm.

3. The rule set RS4 is also mixed-cut closed, since (for the only non-trivial case) the left

part of the principal formulae of the rule Kn or 4n consists only of boxed formulae and

thus satisfies the restriction C4 of rule 4m.

4. Similarly, the rule set RK4 is context-cut and mixed-cut closed.

5. Every rule set containing the two rules with context restrictions 〈∅, {p}〉 and 〈{p}, ∅〉
respectively is not context-cut closed, since these two context relations overlap, but

neither satisfies the other. Thus e.g. the system SKL1 from [Cro01] is not context-cut

closed.
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6. The well-known rule set RS5 := {R45,T1} is not mixed-cut closed, since the context

restriction C45 of the rule R45 is satisfied by the principal formula of T1, but the context

restriction Cid of T1 does not satisfy the restriction C45.

While these criteria might on the surface seem sufficient to ensure Cut Elimination, we

need another condition on the rule set, which enables us to permute certain applications of

the contraction rule above applications of rules with restrictions. This is necessary to deal

with the problematic case that the cut formula is the principal formula in applications of the

contraction rule in both premisses of the cut, and that on each side at least two instances of

the cut formula have been introduced by a rule from the rule set. On the other hand, this is

not too much of a restriction, since we will also need it later on in Section 2.6 to show that

Contraction is admissible in the system with slightly modified rules. Similarly to the case of

cut we first lift the notion of contraction from sequents to sequent rules.

Definition 2.4.13. If P is a set of premisses with restrictions and ~p = (p1, . . . , pn) and

~q = (q1, . . . , qn) are n-tuples of variables, then P[~q ← ~p] is the result of replacing every

occurrence of qi in a sequent occurring in a premiss in P by pi for all i = 1, . . . , n and

contracting duplicate instances of p1, . . . , pn. Let R = P/Σ,♥~p,♥~q ⇒ Π be a rule. The

left contraction of R on ♥~p and ♥~q is the rule ConL(R,♥~p,♥~q) = P[~q ← ~p]/Σ,♥~p ⇒ Π.

The right contraction ConR(R,♥~p,♥~q) is defined dually. A rule set R is left-contraction

closed (resp. right-contraction closed), if for every rule R from R applications of the rules

ConL(R,♥~p,♥~q) (resp. ConR(R,♥~p,♥~q)) can be simulated by applications of Weakening and

Contraction followed by at most one application of a rule R′ from R and Weakening. A

rule set is contraction closed if it is left- and right-contraction closed and saturated if it is

contraction, principal-cut, context-cut, and mixed-cut closed.

Example 2.4.14. 1. Every rule set R in which the principal formulae of every rule have

the form Γ⇒ δ (resp. γ ⇒ ∆) is trivially right- (resp. left-)contraction closed. Thus in

the asymmetric framework every rule set is trivially right-contraction closed (but not

necessarily contraction closed).

2. For P = {(q1, . . . , qn, qn+1 ⇒ r; C∅)} we have P[qn+1 ← qn] = {(q1, . . . , qn ⇒ r; C∅)}.
Thus for the rule Kn+1 = {(q1, . . . , qn, qn+1 ⇒ r; C∅)}/�q1, . . . ,�qn,�qn+1 ⇒ �r we

have ConL(Kn,�qn,�qn+1) = {(q1, . . . , qn ⇒ r; C∅)}/�q1, . . . ,�qn ⇒ �r. Thus the

set RK is left-contraction closed. It is also trivially right-contraction closed and thus

contraction closed. Together with Examples 2.4.9 and 2.4.12 this shows that RK is

saturated.

3. Similarly, the rule sets RKT,RK4 and RS4 are contraction closed and thus with Exam-

ples 2.4.9 and 2.4.12 saturated.

4. The rule set {RK2} is trivially right-contraction closed, but not left-contraction closed.
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5. Since the principal formulae of the propositional rules contain at most one formula on

the left resp. right hand side, the rule sets G[cim] are trivially left- and right-contraction

closed and thus contraction closed and with Examples 2.4.9 and 2.4.12 saturated.

The benefit of demanding that the rule sets are left- or right-contraction closed lies in the

fact that if a rule set is right-contraction closed, then we can permute contractions on the

right hand side of the principal formulae of a rule into the premisses of this rule (and dually

for left-contraction closed rule sets). This gives us the following lemma.

Lemma 2.4.15. Let R be a left-contraction closed (resp. right-contraction closed) set of rules.

If a sequent is derivable in RCon[CutW], then there is a derivation of it in RCon[CutW], in

which in every application of a rule from R every formula occurs at most once on the left

(resp. right) hand side of the principal formulae of this application.

Proof. We show the statement for left-contraction closed rule sets. The proof for right-

contraction closed rule sets is analogous.

We first show that whenever we have a derivation of a sequent Γ, Ak ⇒ ∆ which ends

in an application of a rule R from R and in which in every application of a rule from R
above this application of R every formula occurs at most once on the left hand side of the

principal formulae, we can transform this into a derivation where in every application of a

rule from R every formula occurs at most once on the left hand side of the principal formulae.

The statement of the Lemma then follows by repeatedly eliminating topmost applications of

contraction in the principal formulae. The proof is by induction on rk (A).

If rk (A) = 0, then due to the format of rules with restrictions the formula A cannot occur

on the left hand side of the principal formulae of an application of a rule from R and thus the

derivation already has the desired form.

So suppose that rk (A) = n+ 1. Then the derivation ends as follows:

D1....
Γ1 ⇒ ∆1 . . .

Dn....
Γn ⇒ ∆n

Σ, Ak ⇒ Π
R

where all k displayed instances of the formula A are principal in the application of the rule R.

Possible additional instances of A in the context are not problematic. Since the rule set is

left-contraction closed we can turn this into

D1....
Γ1 ⇒ ∆1

Γ′1 ⇒ ∆′1
ConW

. . .

D1....
Γ1 ⇒ ∆1

Γ′1 ⇒ ∆′1
ConW

Σ′, Ak−i ⇒ Π′
Q

Σ, Ak ⇒ Π
W
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where Q is a rule in R and where again all k − i displayed instances of A in the conclusion

of the application of Q are principal. Moreover, it can be seen that the contractions in the

premisses must be on proper subformulae of A, and thus are on formulae of rank at most n.

Any newly introduced contractions of formulae occurring on the left hand side of the principal

formulae of an application of a rule in this derivation therefore must be on formulae of rank at

most n and are eliminated using the induction hypothesis. Repeating this proces we eliminate

the remaining duplicates of the formula A in the conclusion of the application of Q. Finally,

if Weakening is not in the rule set, we use admissibility of Weakening (Lemma 2.3.12) to

eliminate applications of W. Note that this introduces additional instances of formulae only in

the context and not in the principal formulae of applications of rules.

Using this lemma if we have a right-contraction closed rule set, then we may assume w.l.o.g.

that in a derivation the right hand sides of the principal formulae of applications of rules

contain at most one instance of every formula. Thus the above mentioned problematic case in

the proof of cut elimination does not occur and we can build on the techniques of [vP01] and

[PS08] to show cut elimination.

Theorem 2.4.16 (Cut Elimination). Let R be a cut closed set of rules with restrictions. If

R is left-contraction closed or right-contraction closed, then the cut rule can be eliminated, i.e.

for every sequent Γ⇒ ∆ we have `RCut[Con] Γ⇒ ∆ if and only if `R[Con] Γ⇒ ∆.

Proof. We show the theorem for right-contraction closed rule sets. The proof for left-contraction

closed rule sets is similar. For an application

D1....
Γ⇒ ∆, A

D2....
A,Σ⇒ Π

Γ,Σ⇒ ∆,Π
Cut

of the cut rule we call Γ ⇒ ∆, A the left premiss and A,Σ ⇒ Π the right premiss of this

application. Furthermore, we say that the rank of this application is the rank of the cut

formula A, and its height is the sum of the depths of the two derivations D1 and D2 of its left

resp. right premisses. In the context of this proof we say that a derivation D has property

(P) if in every application of a rule from R every formula occurs at most once on the right

hand side of the principal formulae of this application. Given a derivation D with property

(P) as usual we transform topmost applications of Cut in it into (possibly several) applications

of Cut with lower rank or equal rank and lower height. Then by a double induction on the

rank and the height of the applications of Cut we eliminate all applications of Cut in D, where

after eliminating each application we appeal to Lemma 2.4.15 to ensure that the resulting

derivation again has property (P). While Lemma 2.4.15 does not guarantee that the depth

of the derivation is preserved, this is not a problem, since cuts with lower height than the

original cut will only be followed by cuts with lower rank.
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So suppose we have a topmost application of Cut. Then this has the form

E1....
Γ1 ⇒ ∆1 . . .

Ei....
Γi ⇒ ∆i

Γ′ ⇒ ∆′, An
R

Γ⇒ ∆, A
Con

F1....
Σ1 ⇒ Π1 . . .

Fj....
Σj ⇒ Πj

Ak,Σ′ ⇒ Π′
Q

A,Σ⇒ Π
Con

Γ,Σ⇒ ∆,Π
Cut

where R and Q are rules in R or applications of the axiom rule. In the latter case we take the

number of premisses to be 0. In a first step we permute contractions so that all contractions

of the cut formula occur just below the applications of R and Q. This gives

E1....
Γ1 ⇒ ∆1 . . .

Ei....
Γi ⇒ ∆i

Γ′ ⇒ ∆′, An
R

Γ′ ⇒ ∆′, A
ConR

Γ⇒ ∆, A
Con

F1....
Σ1 ⇒ Π1 . . .

Fj....
Σj ⇒ Πj

Ak,Σ′ ⇒ Π′
Q

A,Σ′ ⇒ Π′
ConL

A,Σ⇒ Π
Con

Γ,Σ⇒ ∆,Π
Cut

Note that this does not change the height or the rank of the cut.

Now suppose that the last applied rule in at least one of the two premisses of the cut was a

contraction rule where the cut formula is not principal. We show the transformation for the

rule ConL, the case of ConR is analogous. We have one of the two following situations:

D′1....
Γ, B,B ⇒ ∆, A

Γ, B ⇒ ∆, A
ConL

D2....
A,Σ⇒ Π

Γ, B,Σ⇒ ∆,Π
Cut

D′1....
Γ⇒ ∆, A

D′2....
A,B,B,Σ⇒ Π

A,B,Σ⇒ Π
ConL

Γ,Σ, B ⇒ ∆,Π
Cut

By permuting the application of Cut above the applications of ConL these are transformed

into the derivations

D′1....
Γ, B,B ⇒ ∆, A

D2....
A,Σ⇒ Π

Γ, B,B,Σ⇒ ∆,Π
Cut

Γ, B,Σ⇒ ∆,Π
ConL

D1....
Γ⇒ ∆, A

D′2....
A,Σ, B,B ⇒ Π

Γ,Σ, B,B ⇒ ∆,Π
Cut

Γ,Σ, B ⇒ ∆,Π
ConL

where the application of Cut has the same rank and lower height than the original cut.
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Otherwise all contractions were on the cut formula and we have the situation

E1....
Γ1 ⇒ ∆1 . . .

Ei....
Γi ⇒ ∆i

Γ⇒ ∆, An
R

Γ⇒ ∆, A
ConR

F1....
Σ1 ⇒ Π1 . . .

Fj....
Σj ⇒ Πj

Ak,Σ⇒ Π
Q

A,Σ⇒ Π
ConL

Γ,Σ⇒ ∆,Π
Cut

where again R and Q are rules from R or the axiom rule.

If at least one of R and Q was the axiom rule, we have the following cases.

1. R = A and A is contextual in R. Then we have (abbreviating the derivation of the right

premiss A,Σ⇒ Π with F):

Γ′, B ⇒ ∆′, B,Am
A

Γ′, B ⇒ ∆′, B,A
ConR

F....
A,Σ⇒ Π

Γ′, B,Σ⇒ ∆′, B,Π
Cut

which is transformed into the cut-free derivation

Γ′, B,Σ⇒ ∆′, B,Π
A

2. R = A and A is principal in R. Then we have (again abbreviating the derivation of the

right premiss of the cut):

Γ′, A⇒ ∆, Am
A

Γ′, A⇒ ∆, A
ConR

F....
A,Σ⇒ Π

Γ′, A,Σ⇒ ∆,Π
Cut

and the application of Cut can be omitted using admissibility of Weakening.

3. R 6= A and Q = A and A is contextual in Q. Dual to Case 1.

4. R 6= A and Q = A and A is principal in Q. Dual to Case 2.

Now suppose that neither of R,Q is the axiom rule. Then instances of the cut formula A

might be introduced by the applications of R resp. Q or be part of the context. For the sake

of presentation we assume that every premiss of R and Q carries over formulae of the form A.

The treatment of rules involving premisses not carrying over formulae of this form is similar.
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Thus for some n,m, k, ` ≥ 0 we have:

E1....
Γ1 ⇒ ∆1, A

m . . .

Ei....
Γi ⇒ ∆i, A

m

Γ⇒ ∆, An, Am
R

Γ⇒ ∆, A
ConR

F1....
Ak,Σ1 ⇒ Π1 . . .

Fj....
Ak,Σj ⇒ Πj

Ak, A`,Σ⇒ Π
Q

A,Σ⇒ Π
ConL

Γ,Σ⇒ ∆,Π
Cut

Note that since the derivation has property (P), the formula A occurs at most once in the

principal formulae of the application of R, and thus we have n ∈ {0, 1}. This derivation is

now transformed into a derivation of Γ,Σ ⇒ ∆,Π using several cuts of the same rank and

lower height or of lower rank as follows.

Consider the case that n+ ` > 0, that is that not all instances of A are contextual. First if

m > 0, then we eliminate the instances of the cut formula A in the premisses of the application

of R using the derivation

E1....
Γ1 ⇒ ∆1, A

m

Γ1 ⇒ ∆1, A
Con

F1....
Ak,Σ1 ⇒ Π1 . . .

Fj....
Ak,Σj ⇒ Πj

Ak, A`,Σ⇒ Π
Q

A,Σ⇒ Π
Con

Γ1,Σ⇒ ∆1,Π
Cut

. . .
. . . . . .
Γi,Σ⇒ ∆i,Π

Cut

Γ,Σ⇒ ∆, An,Π
R

The cut can be permuted into the premisses of R since the rule set is mixed-cut closed and

thus the additional formulae Σ⇒ Π in the premisses satisfy all context restrictions occurring

in R. All the newly introduced cuts have the same rank and lower height than the original

cut. If n = 0, that is if all instances of A in the application of R were contextual, we are

done. Otherwise we have n = 1. For s ∈ {1, . . . , i} let us write Gs for the subderivation of

the premiss Γs,Σ⇒ ∆s,Π of R. In case m = 0 we set Gs = Es. Similar to above, if k > 0 we

eliminate the instances of the cut formula in the premisses of the application of Q using

E1....
Γ1 ⇒ ∆1, A

m . . .

En....
Γn ⇒ ∆n, A

m

Γ⇒ ∆, Am
R

Γ⇒ ∆, A
Con

F1....
Ak,Σ1 ⇒ Π1

A,Σ1 ⇒ Π1
Con

Γ,Σ1 ⇒ ∆,Π1
Cut

. . .
. . . . . .

Γ,Σj ⇒ ∆,Πj
Cut

Γ, A`,Σ⇒ ∆,Π
Q

Again the cuts can be permuted into the premisses of the application of Q since the rule set

is mixed-cut closed, and all the newly introduced cuts have the same rank and lower height
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than the original cut. If ` = 0, then we are done. Otherwise for t ∈ {1, . . . , j} we write Ht for

the derivation of the premiss Γ,Σt ⇒ ∆,Πt of this application of Q. If k = 0 we set Ht = Ft.
Now we piece these derivations together using cuts to get

G1.... . . .

Gn....
Γ,Σ⇒ ∆, A,Π

R

G1.... . . .

Gn....
Γ,Σ⇒ ∆, A,Π

R

H1.... . . .

Hj....
Γ, A`,Σ⇒ ∆,Π

Q

Γ2, A`−1,Σ2 ⇒ ∆2,Π2 Cut
....

Γ`, A,Σ` ⇒ ∆`,Π`

Γ`+1,Σ`+1 ⇒ ∆`+1,Π`+1 Cut

Γ,Σ⇒ ∆,Π
Con

The newly introduced cuts still have the same rank but possibly greater height than the

original cut. But since the cut formula A is principal in the topmost application of R and

the application of Q, and since the rule set is principal-cut closed, the rule cut(R,Q,A) is

subsumed by a rule Scut(R,Q,A) in R and we can replace the topmost cut by cuts on proper

subformulae of A followed by Weakenings and Contractions and an application of the rule

Scut(R,Q,A). This gives

G1.... . . .

Gn....
Γ,Σ⇒ ∆, A,Π

R

G1.... . . .

Gn....
H1.... . . .

Hj....
Θ1 ⇒ Ξ1

Cut

Θ′1 ⇒ Ξ′1
ConW

. . .

G1.... . . .

Gn....
H1.... . . .

Hj....
Θr ⇒ Ξr

Cut

Θ′r ⇒ Ξ′r
ConW

Γ2, A`−1,Σ2 ⇒ ∆2,Π2
Scut(R,Q,A)

....
Γ`, A,Σ` ⇒ ∆`,Π`

Γ`+1,Σ`+1 ⇒ ∆`+1,Π`+1 Cut

Γ,Σ⇒ ∆,Π
Con

Note that since the remaining ` − 1 occurrences of A in the conclusion of Scut(R,Q,A) were

principal in Q, they are principal in cut(R,Q,A), and thus also principal in Scut(R,Q,A).

Moreover, if Scut(R,Q,A) was the identity rule Rid, then we must have ` = 1 and this was the

only remaining cut on A. Otherwise, continuing like this we replace all the remaining cuts on

A by cuts on proper subformulae of A and applications of rules from the rule set. Since this

does not change the cuts in the derivations Gs and Ht, all the cuts in the resulting derivation

of Γ,Σ⇒ ∆,Π thus have either the same rank as the original cut and lower height or lower

rank.

In the remaining case we have n = ` = 0, and in the original derivation all instances

of A are contextual in the applications of R and Q. Then if m = 0 or k = 0 we get the

sequent Γ,Σ⇒ ∆,Π from one of the conclusions of R,Q by admissibility of weakening, thus
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eliminating the application of Cut. On the other hand, if m 6= 0 and k 6= 0, then since the

rule set is context-cut closed we know that we can permute the application of Cut into the

premisses of the application of R or the application of Q. The derivation then is transformed

as in the first steps of the previous case.

As we have seen in Example 2.4.14 the standard systems G[cim] of propositional rules and

the systems GcRK,GcRK4,GcRKT and GcRS4 are saturated sets of rules with restrictions in

the sense of Definition 2.4.13. Thus we obtain cut elimination for these systems as a corollary

from the previous theorem.

Corollary 2.4.17. The sequent calculi given by the rules G[cim] as well as GcRK,GcRK4,GcRKT

and GcRS4 have cut elimination. �

Remark 2.4.18. It is also possible to show a slightly different version of the generic cut

elimination theorem based on a more lenient definition of principal-cut closed rule sets.

Let us call a rule set R principal-cut deriving if for every two rules R1, R2 from R the

rule cut(R1, R2,♥~p) is derivable in RConW. Then we can show the following analogue of

Theorem 2.4.16, where we strengthen the condition of left- or right-contraction closure of the

rule set R in to full contraction closure:

Let R be a principal-cut deriving, mixed-cut closed, context-cut closed and contraction

closed set of rules with restrictions. Then RCon has cut elimination, i.e. for every sequent

Γ⇒ ∆ we have `RConCut Γ⇒ ∆ iff `RCon Γ⇒ ∆.

The proof uses Lemma 2.4.15 to ensure that no formula occurs more than once in the

principal formulae of each application of a rule in a derivation of Γ⇒ ∆, and then proceeds

in the spirit of [Gen34] to eliminate applications of the multicut rule

Γ⇒ ∆, Am An,Σ⇒ Π

Γ,Σ⇒ ∆,Π
Mcut

via double induction on the rank of the cut formula and the sum of the depths of the derivations

of the two premisses of the multicut. The remainder of the proof is essentially the same as

that given for Theorem 2.4.16, with the difference that contractions of the cut formula are

absorbed into the application of multicut. In case the last applied rules in the derivations

of both premisses of the multicut were rules from R we again use mixed-cut closure and

context-cut closure of the rule set and the same technique to first eliminate all duplicates of

the cut formula in the contexts. Then since by the lemma the cut formula occurs only once

in the principal formulae of both rules we now only need to eliminate one more cut. We do

this by first replacing it with the cut between the two rules, and then replacing this rule by a

derivation in RConW using the fact that by principal-cut derivability it is derivable in this

rule set. The newly introduced cuts now have smaller rank and are eliminated as above.

Obviously the condition of being principal-cut deriving is weaker than that of being principal-

cut closed. In particular the standard rule sets RK ∪ {T1} and RK ∪ {T1, 40} for modal logics
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KT and S4 are principal-cut deriving but not principal-cut closed. But on the other hand

for these rule sets we can also show cut elimination by taking a derivation in e.g. RK ∪ {T1}
to be a derivation in RKT, eliminating the cuts using Theorem 2.4.16, and replacing in the

resulting cut free derivation all the rules Tn by their derivations in RK ∪ {T1}. For this reason

and since it better integrates with the rest of the conditions we use the condition of being

principal-cut closed in the following.

2.5 Cut Elimination and Invertibility

While the proof of cut elimination via saturation of the rule set has the advantage of being

very general and in particular of applying to the propositional rules themselves as well there

is another possibility for showing cut elimination. Instead of using mixed-cut closure to push

cuts on a propositional formula which is principal in one rule and contextual in the other

into the premisses of the second rule, we might use invertibility of the propositional rules to

replace this cut by cuts of lower rank. Let us make this precise. Since in general in asymmetric

sequent systems not all the propositional rules are invertible in this section we consider only

the symmetric framework.

Definition 2.5.1. Let R be a set of rules with context restrictions. A rule R = P/Σ⇒ Π is

called invertible in R[Con] if for every context Θ⇒ Ξ and substitution σ we have: whenever

`R[Con] Θ,Σσ ⇒ Πσ,Ξ, then for every premiss (Γ⇒ ∆; C) from P we have `R[Con] Θ �C ,Γσ ⇒
∆σ,Ξ �C .

Example 2.5.2. Let R be the rule set Gc. Then as is well-known e.g. the rule →L= {(p⇒
; Cid), ( ⇒ q; Cid)}/p → q ⇒ is invertible in Gc, since whenever for a context Θ ⇒ Ξ and

a substitution σ the sequent Θ, pσ → qσ ⇒ Ξ is derivable in Gc, then so are the sequents

Θ, pσ ⇒ Ξ and Θ⇒ qσ,Ξ.

The standard way to show that the propositional rules are invertible in Gc is to use a

permutation of rules argument similar to the condition of mixed-cut closure, but permuting

applications of the propositional rules below applications of the rules in R. Similarly to the

case for cut elimination we can generalise this method and distill the following sufficient

criterion for invertibility of the propositional rules from it.

Definition 2.5.3 (c). A rule set R is Gc-inverting if for every restriction 〈F0;F1〉 of a rule

in R and i ∈ {0, 1} we have: whenever A ◦B ∈ Fi with ◦ ∈ {∧,∨}, then also A,B ∈ Fi and

whenever A→ B ∈ Fi, then also A ∈ F1−i and B ∈ Fi.

Example 2.5.4 (c). 1. Since the context restrictions Cid and C∅ satisfy the requirements

given in Definition 2.5.3 it is clear that every set of shallow rules is Gc-inverting.
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2. Since the propositional connectives do not occur in the context restriction C4 = 〈{�p}, ∅〉,
this restriction also satisfies the requirements from Definition 2.5.3 and together with

the above argument for the rules Kn and Tn we have that the rule sets RK4 and RS4 are

Gc-inverting.

And indeed, if a rule set R is Gc-inverting we can show invertibility of the rules in Gc via a

permutation-of-rules argument.

Lemma 2.5.5 (Inversion Lemma)(c). Let R be a Gc-inverting set of rules. Then the proposi-

tional rules are invertible in GcR[Con].

Proof. Since our rule set might include the rule Con we need to adapt the standard proof

a bit. Similar to Gentzen’s original proof of cut elimination [Gen34] instead of showing the

result for the set GcR[Con] we show it for the system G′cR[Mcon]. Here Mcon is the rule

Γ,Γ,Σ⇒ ∆,∆,Π

Γ,Σ⇒ ∆,Π
Mcon

which allows to contract several different formulae at the same time, and G′c has axioms

Γ, p⇒ p,∆ which allow only propositional variables as the principal formulae instead of

the general axioms Γ, A⇒ A,∆. Obviously the rule Mcon can be simulated by multiple

applications of the rules ConL and ConR and vice versa. Moreover, since R contains the

congruence rules, applications of the general axioms can be derived in G′cR[Mcon], as is seen

by an easy induction on the complexity of the principal formula of the generalised axiom.

Thus a sequent is derivable in GcR[Con] iff it is derivable in G′cR[Mcon]. Hence invertibility

of the propositional rules in G′cR[Mcon] yields the result for GcR[Con] as well (but without

necessarily preserving the depth of the derivations).

So consider e.g. the rule →R. We show by induction on the depth of the derivation that →R

is depth-preserving invertible in G′cR[Mcon], i.e. that if a sequent Γ⇒ ∆, A→ B is derivable

in G′cR[Mcon] with a derivation of depth n, then so is the sequent Γ, A ⇒ ∆, B. If n = 0,

then the last applied rule was the axiom rule and we have a derivation

Γ′, p⇒ p,∆′, A→ B
A

and thus the formula A→ B cannot have been principal. Thus the sequent Γ′, p, A⇒ p,∆′, B

is derivable using the axiom rule as well. The case of the last applied rule being ⊥L is similar.

If n = m + 1, then if the last applied rule was Mcon and the formula A → B was not part

of the contracted sequent, then an application of the induction hypothesis to the premiss

followed by an application of Mcon gives the sequent Γ, A⇒ ∆, B. If A→ B was part of the
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contracted sequent we have the situation

D....
Γ′,Γ′,Σ⇒ ∆′, A→ B,∆′, A→ B,Π

Γ′,Σ⇒ ∆′, A→ B,Π
Mcon

which using the induction hypothesis this is easily turned into

D′....
Γ′, A,Γ′, A,Σ⇒ ∆′, B,∆′, B,Π

Γ′, A,Σ⇒ ∆′, B,Π
Mcon

.

If the last applied rule was the rule →R with principal formulae ⇒ A→ B, then its premiss

Γ, A⇒ ∆, B is obviously derivable in depth m. Otherwise the last applied rule was a rule in

R or a propositional rule. Since we can view the propositional rules as rules with restrictions

as well and since it is easy to see that the rule set G′c is Gc-inverting, it suffices to consider

the case of a rule R ∈ R. Since R is Gc-inverting we know that for every restriction C from

R with ( ⇒ A → B) �C= ⇒ A → B we also have (A ⇒ B) �C= A ⇒ B. Thus applying

the induction hypothesis to the premisses of the application of R, then applying the rule R

(possibly together with depth preserving admissibility of weakening) yields a derivation of

Γ, A⇒ ∆, B of depth n.

The proofs for the other propositional rules are similar.

Thus instead of showing mixed-cut closure for the whole set GcR of rules we might be

tempted to only show mixed-cut closure and Gc-invertibility for R and use the latter in the

proof of cut elimination whenever the cut formula is principal in a propositional rule and

contextual in a rule from R. But interestingly it turns out that if we can prove cut elimination

for a sequent system which is sound and complete for a modal logic with non-trivial modalities

at all, then invertibility of the propositional rules and mixed-cut closure are equivalent in the

sense that we can convert a rule set satisfying one condition into one satisfying the other.

Theorem 2.5.6 (c). Let L be a logic based on classical propositional logic such that

• the modalities of L satisfy congruence, i.e. for every n ∈ N and n-ary modality ♥ from

Λ we have: whenever |=L pi ↔ qi for i ≤ n, then |=L ♥(p1, . . . , pn)↔ ♥(q1, . . . , qn)

• the modalities of L are non-trivial, i.e. for every n ∈ N and n-ary modality ♥ from Λ

we have 6|=L ♥(p1, . . . , pn) and 6|=L ♥(p1, . . . , pn)→ ⊥.

Then there is a set R1 of modal rules such that GcR1Con[W] is sound and complete for L and

GcR1 is mixed-cut closed if and only if there is a mixed-cut closed set R2 of modal rules such

that GcR2Con[W] is sound and complete for L and R2 is Gc-inverting.
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Proof. The first observation is that whenever GcR is mixed-cut closed or R is Gc-inverting,

then whenever a rule has a restriction 〈F1, F2〉 with p ∈ F1 (resp. p ∈ F2), then also p ∈ F2

(resp. p ∈ F1). This is seen by either applying the criterion of mixed-cut closure to this rule

and the propositional rule ∨R (resp. ∧L), or the invertibility criterion on this rule and the rule

→L (resp. →R).

Now we show that for every n-ary modality ♥ such a set of rules must contain either a rule

R whose principal formulae contain the sequent ♥(p1, . . . , p2)⇒ ♥(q1, . . . , qn), or two rules

R1, R2 such that

• ⇒ ♥(q1, . . . , qn) ⊆ PF (R1) and ♥(p1, . . . , pn)⇒ satisfies a restriction of R1

• ♥(p1, . . . , pn)⇒ ⊆ PF (R2) and ⇒ ♥(q1, . . . , qn) satisfies a restriction of R2.

To see this consider that since the formula ♥(p1, . . . , pn)→ ♥(p1∨p1, p2, . . . , pn) is L-valid the

sequent ♥(p1, . . . , pn)⇒ ♥(p1 ∨ p1, p2, . . . , pn) must be GcRCon-derivable. Now suppose that

in this derivation there is no application of a rule Q with ⇒ ♥(p1 ∨ p1, p2, . . . , pn) ⊆ PF (Q).

Then, since no rule decreases the complexity of a formula when passing from the premisses

to the conclusion, all the sequents at the leafs of the derivation have the form Γ⇒ ∆ with

Supp (Γ) ⊆ {p1, . . . , pn,♥(p1, . . . , pn)} and Supp (∆) ⊆ {p1, . . . , pn,♥(p1 ∨ p1, p2, . . . , pn)}.
Thus the formula ♥(p1 ∨ p1, p2, . . . , pn) cannot have been principal in any of the applications

of the axiom rule, and by omitting every occurrence of this formula we obtain a derivation

of the sequent ♥(p1, . . . , pn) ⇒ . But this contradicts non-triviality of the modalities of L.

Thus there must be an application of such a rule Q with ⇒ ♥(p1 ∨ p1, p2, . . . , pn) ⊆ PF (Q).

If we take the lowermost of such applications, then its conclusion is of the form Σ⇒ Π with

Supp (Σ) ⊆ {p1, . . . , pn,♥(p1, . . . , pn)} and Supp (Π) ⊆ {p1, . . . , pn,♥(p1 ∨ p1, p2, . . . , pn)}.
If ♥(p1, . . . , pn) ⇒ ⊆ PF (Q) then we have found the desired rule R. Otherwise one of

♥(p1, . . . , pn) ⇒ , p ⇒ or ⇒ p must satisfy a restriction of Q, since otherwise ⇒ ♥(p1 ∨
p1, p2, . . . , pn) would be derivable, in contradiction to non-triviality of the modalities of L. In

the first two cases we have found our rule R1, and in the third case we use the fact shown

above that if ⇒ p satisfies a restriction, then so does p ⇒ . In the same way we show the

existence of a rule R2, starting with the formula ♥(p1∧p1, p2, . . . , pn)→ ♥(p1, . . . , pn) instead.

Now assume that GcR1 is mixed-cut closed and take a rule Q ∈ R1 with restriction 〈F1, F2〉.
If ♥(A1, . . . , An) ∈ F1 for any formulae A1, . . . , An we may apply the condition of mixed-cut

closure on this rule and rule R or R1 from above to get that also ♥(p1, . . . , pn) ∈ F1, and

analogously for ♥(A1, . . . , An) ∈ F2 with R or R2. In the same way using the propositional

rules instead of R1, R2 we show that if a formula B whose top-level connective is propositional

is in F1 (resp. F2), then so is p. Thus w.l.o.g. for all restrictions 〈F1, F2〉 of rules in R1

we have Fi ⊆ {p} ∪ {♥(p1, . . . , pn) | ♥ ∈ Λ r {¬,∨,∧,→,↔}}. But since the propositional

connectives are not in Λ it is not hard to see that such a rule set is Gc-inverting.

If on the other hand R2 is Gc-inverting, then again we get an equivalent rule set with the

restriction on the context restrictions of rules in this set, although this case is slightly more
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involved. The first step is that since R2 is Gc-inverting, we may permute all applications

of propositional rules in a derivation below the applications of modal rules. But then all

context formulae in the applications of modal rules are variables or modal formulae, so we

may equivalently replace the rule set R2 with a rule set R′2 where the context restrictions only

contain variables or modalised formulae. Since the set R2 is mixed-cut closed and contains only

modal rules the set R′2 is mixed-cut closed as well. Now as above using mixed-cut closure and

the existence of the rules R resp. R1 and R2 from above we get that w.l.o.g. the restrictions

contain only variables or modalised variables. Again since the rules in R′2 are modal rules we

obtain that GcR′2 is mixed-cut closed.

The preceding proof moreover shows that the rules in such a rule set have a very specific

form, a very interesting result which is worth stating in its own right, and which we will

use extensively when investigating the limits of expressibility of systems given by rules with

restrictions in the next chapter.

Corollary 2.5.7 (c). Let L be a logic with congruence and non-trivial modalities and let R
be a mixed-cut closed set of modal rules such that GcRCon[W] is sound and complete for L
and such that GcR is mixed-cut closed or R is Gc-inverting. Then w.l.o.g. every restriction of

a rule in R contains only variables or modalised variables. �

2.6 Dealing with Contraction

In the proof of cut elimination for saturated rule sets we already made use of the property of a

rule set being contraction-closed. Intuitively, this allows to permute applications of Con above

applications of rules from the rule set whenever the two contracted instances of a formula

both were principal in the last applied rule. For admissibility of contraction this is not quite

enough: we also need to consider the cases where both instances were contextual or where one

instance was contextual and one instance was principal in the last applied rule. While the

first of these cases can be dealt with in the standard fashion, for the second case we need to

slightly modify our sequent calculi. For this we follow Kleene’s method for the G3-systems of

propositional logic from [Kle52] and not only copy the context, but also the relevant parts of

the principal formulae into the premisses. This might be considered a very coarse method,

and indeed for classical or intuitionistic propositional logic there are other methods available

[TS00]. Unfortunately these methods heavily rely on invertibility of the logical rules, a feature

which logical rules for modalities in general do not possess.

Definition 2.6.1. For a rule R = (P; Σ⇒ Π) a modified application

{(Γ,Σσ) �F1 ,Θσ ⇒ (∆,Πσ) �F2 ,Υσ | (Θ⇒ Υ; 〈F1, F2〉) ∈ P}
Γ,Σσ ⇒ ∆,Πσ
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of R is given by a substitution σ : Var→ F and a context Γ⇒ ∆ ∈ S(F). We write `R∗ for

derivability using modified applications instead of applications of rules in R.

Example 2.6.2. 1. A modified application of the propositional rule →L has the form

Γ, A→ B,B ⇒ ∆ Γ, A→ B ⇒ ∆, A

Γ, A→ B ⇒ ∆

2. Modified applications of the rules 4n have the form

�Σ,�A1, . . . ,�An, A1, . . . , An ⇒ B

Γ,�Σ,�A1, . . . ,�An ⇒ �B,∆

where none of the formulae in Γ has � as its main connective.

3. A modified application of the rule {(p1, p2 ⇒ q; C∅), (⇒ q; C4)}/�p1,♥p2 ⇒ �q has the

form
A1, A2 ⇒ B Γ �{�p},�A1 ⇒ B

Γ,�A1,♥A2 ⇒ �B,∆
Thus if Γ = Σ,�Θ where no formula in Σ is of the form �A this modified application

takes the form
A1, A2 ⇒ B �Θ,�A1 ⇒ B

Σ,�Θ,�A1,♥A2 ⇒ �B,∆

It is not hard to see that the weakening rule is still admissible.

Lemma 2.6.3 (Admissibility of Weakening). Let R be a set of rules with restrictions and let

Γ⇒ ∆ be a sequent. Then we have

`R∗W[Con] Γ⇒ ∆ iff `R∗[Con] Γ⇒ ∆

and the depth of the derivations is preserved.

Proof. Analogous to the proof of Lemma 2.3.12

Since Weakening is admissible it follows that in the presence of Contraction a sequent is

derivable using applications of rules if and only if it is derivable using modified applications of

rules.

Proposition 2.6.4. Let R be a set of rules with restrictions. Then for every sequent Γ⇒ ∆

we have `RCon Γ⇒ ∆ iff `R∗Con Γ⇒ ∆.

Proof. By admissibility of Weakening it is clear that we can derive the premisses of a modified

application of a rule from the premisses of the corresponding application. On the other hand

given the premisses of a modified application of a rule we simply use a standard application of

this rule followed by a number of contractions of the principal formulae.
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The move to modified applications instead of applications of rules allows us to permute

contractions between principal and context formulae into the premisses of a rule, thus yielding

admissibility of contraction in cut-free sequent systems given by contraction-closed rule sets.

Theorem 2.6.5 (Admissibility of Contraction). For every contraction-closed set R of rules

and sequent Γ⇒ ∆ we have `R∗Con Γ⇒ ∆ iff `R∗ Γ⇒ ∆.

Proof. The “if” direction is immediate. For the “only if” direction we employ a double

induction on the modal nesting depth of the contracted formula and on the depth of the

derivation. If the Contraction is applied to an axiom or the conclusion of an application of

the left introduction rule for ⊥ we eliminate it the standard way. So suppose the premiss of

the application of the Contraction rule is the conclusion of a rule in R. If the Contraction

is between two context formulae or between a context formula and a principal formula, we

permute the application of Contraction into the premisses of this rule and eliminate it using

the inner induction hypothesis. If Contraction is applied to two principal formulae of a rule

R we use contraction closure of the rule set to replace the application of the rule and the

Contraction by a number of Contractions and Weakenings on the premisses of that rule and

a rule application Q from the rule set. W.l.o.g. all of the newly introduced Contractions

are above the newly introduced Weakenings and none of the Contractions is on a context

formula of Q. Since the rules add one layer of modalities in the principal formulae, the newly

introduced Contractions must be on formulae of lower modal nesting depth and we may

eliminate them using the outer induction hypothesis. Finally the applications of Weakening

are eliminated using admissibility of Weakening. It is clear from the proof of the latter that

this does not introduce any new Contractions.

Remark 2.6.6. The results of this section show that we can view many sequent calculi which

copy the principal formulae into the premisses to ensure admissibility of contraction basically

as calculi given by rules with context restrictions if by deleting the copies of the principal

formulae from the premisses we obtain rules with context restrictions. This applies e.g. to the

sequent calculus G3s for S4 given in [TS00, p.287].

2.7 Generic Decision Procedures and Complexity

Ultimately, we are interested in deciding for a given formula whether it is a theorem of a

particular logic. We call this problem the validity problem for a logic.

Validity in L
Input: A formula A

Question: Is |=L A?

From the point of view of the sequent calculi considered here this problem takes the form of

deciding whether a given sequent is derivable in a sequent system given by a set of rules with
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context restrictions. That is, for a given set R of rules with context restrictions we consider

the following decision problem:

Derivability in R
Input: A sequent Γ⇒ ∆

Question: Is Γ⇒ ∆ derivable in RCutConW?

Provided we know that the sequent calculus under consideration is saturated, by the generic

cut elimination theorem, admissibility of Weakening and the results of the previous section it

is clear that we might also equivalently consider the problem of cut-free derivability in the

modified rule set R∗:

Cut-free Derivability in R∗

Input: A sequent Γ⇒ ∆

Question: Is Γ⇒ ∆ derivable in R∗?

Before taking a closer look at generic decidability and complexity results for these problems we

briefly recapitulate different representations and measures of size of formulae. The standard

representation of formulae is as a string of symbols.

Definition 2.7.1. Let Λ be a finite set of connectives with associated arities and let F be a

formula with connectives in Λ. The formula size of F is the number ||F || of symbols in F .

We will also consider the more succinct circuit (or DAG-) representation of formulae. This

representation allows us to identify different occurrences of the same subformula.

Definition 2.7.2. Let Λ be a finite set of connectives with associated arities. A Λ-circuit is

a directed acyclic graph whose nodes are labelled in the following way:

1. Nodes without any predecessors are called input nodes and are labelled with a proposi-

tional variable or a 0-ary connective from Λ.

2. Nodes with k > 0 predecessors are labelled with a k-ary connective from Λ.

We assume that the predecessors of every node are ordered. Nodes without any successors are

called output nodes. The size of a Λ-circuit C is the number s(C) of nodes in C. A Λ-circuit

with one output node corresponds in the obvious way to a formula with connectives in Λ.

For such a formula F the circuit size of F is the minimal size of a Λ-circuit representing F .

The circuit size of the formula F is denoted by ||F ||c. For a sequent Γ⇒ ∆ the circuit size of

Γ⇒ ∆ is defined as ||Γ⇒ ∆||c :=
∑

F∈Supp(Γ,∆) ||F ||c.

Thus the circuit size of a formula is the number of different subformulae occurring in it.

Using e.g. the formulae from the family of formulae {An | n ∈ N} defined by A0 := p and

An+1 := An∧An for n ∈ N it can be seen that the circuit presentation of formulae is potentially

59



CHAPTER 2. SEQUENT SYSTEMS AND CUT ELIMINATION

exponentially more succinct than the standard representation. The general idea for our generic

decision procedure now is the following: Given a saturated set of rules with restrictions we

know by Theorem 2.4.16 that the cut rule is admissible and thus safely can be dropped. Then

we modify the sequent system as described in the previous section, yielding admissibility of

contraction. Furthermore, by admissibility of Weakening the Weakening rule can be dropped

as well. Now we would like to either use the subformula property of the resulting sequent

system to enumerate all sequents possibly occurring in the derivation of a given sequent, or

we would like to try backwards proof search to find a derivation for it. In general our rule sets

will comprise infinitely many rules, though, so we will need to impose another condition on

the rule sets which ensures that the necessary rules can be computed fast enough.

Definition 2.7.3. We write A∗ for the set of finite strings of symbols from a set A. For finite

sets A,B a relation R ⊆ A∗ ×B∗ is called Pspace-tractable if given a tuple (a, b) ∈ A∗ ×B∗

it is decidable in space polynomial in the length of a whether (a, b) ∈ R. A set R of rules

is tractable if there exists an encoding of the applications of rules in R such that both the

relation holding between sequents and codes of applications of rules with this sequent as

conclusion and the relation holding between codes of applications of rules and their premisses

are Pspace-tractable.

Example 2.7.4. The rule sets G[cim] as well as RK,RKT,RK4 and RS4 are tractable.

Indeed, if a saturated rule set is tractable, then we can use a generic algorithm to decide

whether a sequent is derivable using modified applications.

Theorem 2.7.5. Let R be a saturated and tractable set of rules with restrictions. Then the

cut-free derivability problem for R∗ is in Exptime. More precisely, it is decidable in time

exponential in the circuit size of the input.

Proof. The idea is to work on fully contracted sequents and make use of the subformula

property of the system to compute all the derivable sequents built from subformulae of the

original sequent. Since all formulae occurring in the premisses of modified applications of

rules in R are subformulae of the formulae occurring in the conclusion of this application, it is

clear that if a sequent is derivable, then it has a derivation in which only such sequents occur

(although not necessarily fully contracted).

Recall that for a multiset Γ of formulae we write Supp (Γ) for the support of Γ, that is the

multiset of formulae in Γ disregarding their multiplicities. Furthermore, for a sequent Γ⇒ ∆

let Sf(Γ⇒ ∆) denote the set of subformulae of Γ⇒ ∆, where as usual we identify different

occurrences of the same formula. Then obviously we have |Sf(Γ⇒ ∆)| ≤ ||Γ ⇒ ∆||c. Since

the rule set is contraction closed, by Theorem 2.6.5 the contraction rule is admissible, and by

Lemma 2.6.3 the weakening rule is admissible as well. Thus it is clear that a sequent Γ⇒ ∆

is derivable in R∗ if and only if the sequent Supp (Γ) ⇒ Supp (∆) is derivable in R∗. Let
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S(Γ⇒ ∆) denote the set of sequents Supp (Σ)⇒ Supp (Π) with Σ⇒ Π ∈ S(Sf(Γ⇒ ∆)). The

procedure given as Algorithm 1 checks derivability in R∗ on input Γ⇒ ∆ by first iteratively

constructing all relevant derivable sequents and then checking whether Γ⇒ ∆ is in this set.

Algorithm 1: Decision procedure for derivability in R∗
Input: a sequent Γ⇒ ∆
set D,D′ := ∅;
repeat

set D := D′;
foreach Σ⇒ Π ∈ S(Γ⇒ ∆) do

if exists application of R ∈ R∗ with conclusion Σ⇒ Π s.t. for all premisses
Θ⇒ Ξ of this application of R: Supp (Θ)⇒ Supp (Ξ) ∈ D then

add Σ⇒ Π to D′

until D = D′ ;
Γ⇒ ∆ is derivable iff Γ⇒ ∆ ∈ D

Since D ⊆ D′ ⊆ S(Γ⇒ ∆) and since the number of sequents in S(Γ⇒ ∆) is only exponential

in |Sf(Γ⇒ ∆)| =: s, the repeat-loop in the procedure is executed at most exponentially often

(in s). Furthermore, in each execution of the loop the procedure checks at most exponentially

many sequents, and since the rule set is tractable, checking each sequent can be done in time

exponential in s. Thus the overall runtime of the procedure is exponential in the number of

subformulae of the input sequent. Since |Sf(Γ⇒ ∆)| ≤ ||Γ⇒ ∆||c this yields the result.

Corollary 2.7.6. Let R be a saturated and tractable set of rules with restrictions. Then the

derivability problem for R is in Exptime.

Proof. We have for every sequent Γ⇒ ∆:

`RCutConW Γ⇒ ∆
Lem. 2.3.12⇐⇒ `RCutCon Γ⇒ ∆

Thm. 2.4.16⇐⇒ `RCon Γ⇒ ∆

Prop. 2.6.4⇐⇒ `R∗Con Γ⇒ ∆
Thm. 2.6.5⇐⇒ `R∗ Γ⇒ ∆ .

Together with Theorem 2.7.5 this yields the result.

Corollary 2.7.7. Since the rule sets RK4 and RS4 are as we have seen saturated and tractable,

their derivability problems are in Exptime.

Of course it is well-known that the logics K4 and S4 are decidable in Pspace [Lad77], and

so the complexity bounds obtained in the previous corollary are not optimal. This raises the

question whether we can do better in general. Since the rules for modal logic K are rules with

restrictions, and since the problem of deciding whether a formula is valid in K is known to be

Pspace-complete [Lad77], it is clear that the complexity of a generic decision procedure will

not be below Pspace. It is not known whether in general the Exptime complexity is optimal.
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On the other hand, if we restrict the rule format to shallow rules it is possible to bring the

generic bound down to the optimal complexity.

Theorem 2.7.8. Let R be a saturated and tractable set of shallow rules. Then the cut-free

derivability problem for R∗ is in Pspace. More precisely, it can be solved in space polynomial

in the circuit size of the input.

Proof. In a first step we note that since Weakening and Contraction are admissible we might

equivalently work with sequents based on sets instead of multisets and restrict modified

applications of rules in such a way that all the principal formulae are distinct. Then it can be

easily seen that for every set-sequent derivable in this system there is a derivation in which

on every branch every set-sequent occurs at most once. Furthermore, since every formula

occurring in the premisses of a rule is a subformula of a formula occurring in its conclusion,

only set-sequents built from subformulae of a set-sequent can occur in its derivation. Now

backwards proof search for this system is implemented on an alternating Turing machine as

follows: the machine existentially guesses the last applied rule, then universally guesses its

premisses (both of which only take polynomial space since the rule set is tractable) and checks

that the premisses have not been encountered before and are derivable. Due to the format

of the rules when passing from conclusion to premisses either the set-sequent is extended by

at least one formula or the maximal complexity of formulae is diminished by at least one.

Since both the number of formulae in the set-sequents and their maximal complexity are

bounded by the number of subformulae of the end-sequent and thus the circuit-size of the

input sequent, the branches in the computation tree have length polynomial in the latter value.

Thus the procedure runs in alternating polynomial time, which is equivalent to polynomial

space [CKS81].

Then as above we have:

Corollary 2.7.9. Let R be a saturated and tractable set of shallow rules. Then the derivability

problem for R is in Pspace. �

In particular, this yields uniform decision procedures of optimal complexity for a wide

variety of standard modal logics and intuitionistic propositional logic.

Example 2.7.10. 1. As we have seen above the rule sets G[cim] are saturated and tractable.

Thus the derivability problems for these rule sets are in Pspace.

2. Similarly, the rule sets RK and RKT are saturated and tractable. Thus the derivability

problems for GcRK and GcRKT are in Pspace.

Example 2.7.11. We can use this generic decision procedure to solve the derivability problem

for a number of extensions of constructive modal logic CMK (see e.g. [Wij90, BdPR01]). The

rules and rule sets for the logics CMK and CMKT are given in Table 2.6. While these are not
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K�n :={(p1, . . . , pn ⇒ q; C∅)}/�p1, . . . ,�pn ⇒ �q
K♦n :={(p1, . . . , pn, q ⇒ r; C∅)}/�p1, . . . ,�pn,♦q ⇒ ♦r
RT� :={(p⇒ ; Cid)/�p⇒
RT♦ :={(⇒ p; Cid)/ ⇒ ♦p

RCMK := {K�n | n ≥ 0} ∪ {K♦n | n ≥ 0}
RCMKT :=RCMK ∪ {RT�, RT♦}

Table 2.6: The rule sets for some constructive modal logics

yet principal-cut closed (albeit principal-cut deriving, see Remark 2.4.18), by Lemma 2.4.5 we

may simply add the missing cuts between rules K�n and RT� resp. RT♦ and K♦n to the rule

set. This gives the additional rules

T�n := {(p1, . . . , pn ⇒ ; Cid)}/�p1, . . . ,�pn ⇒

T♦n := {(p1, . . . , pn ⇒ q; Cid)}/�p1, . . . ,�pn ⇒ ♦q

and the rule set R′CMKT := RCMK ∪ {T�n | n ≥ 1} ∪ {T♦n | n ≥ 0}. It is clear that a

sequent is derivable in GiRCMKT[CutCon] iff it is derivable in GiR′CMKT[CutCon]. Furthermore,

it can be seen that the rule sets RCMK and R′CMKT are saturated and tractable, and thus by

Corollary 2.7.9 derivability in each of the systems GiRCMKCutConW and GiRCMKTCutConW

is decidable in Pspace.

We will make extensive use of the generic decidability results when we construct complexity

optimal sequent calculi for a number of conditional logics in Chapters 4 and 5.

2.8 Notes

The Rule Format. The format of rules with context restrictions is an extension of the format

of one-step rules considered e.g. in [PS08, PS10]. The additional feature of rules with context

restrictions, the ability to copy the whole or part of the context into the premisses, allows to

capture not only standard propositional rules but also rules for modal logics axiomatised by

axioms of modal rank greater than one, as we will see in the next chapter. The intermediate

format of shallow rules was introduced in [LP11] and the present format has been published

in [LP13a].

The notion of a context restriction is inspired by the more general notion of a context relation

introduced in [AL11]. In contrast to context restrictions, which only restrict the context

but do not change it, context relations are arbitrary (finite) binary relations between signed
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formulae, interpreted by allowing the context formulae to change from premiss to conclusion

according to the relation. This not only allows adding modalities to context formulae in the

conclusion, thus e.g. interpreting the boxed formulae on the left hand side of the conclusion

of the Kn-rules as context formulae, or stripping the context formulae of modalities, thus

capturing e.g. the rule for symmetry given in Example 2.3.7 (5), but also moving context

formulae from one side of the sequent to the other. While obviously context restrictions can

be seen as severely restricted context relations, the additional expressive power of the latter

would be counterbalanced by the need for increasingly complex extensions of the syntactic

criteria for cut elimination given in Section 2.4. Moreover, the rule format considered in

[AL11], that of basic rules allows arbitrary sequents as the principal formulae. While this

has the advantage of capturing the structural rules as well, it has the disadvantage that it

also allows trivially cut-free sequent calculi where for each theorem of a logic there is a rule

whose principal formulae simply state this theorem on the right hand side. While this is not

a problem for the construction of semantics from a rule set as introduced in [AL11], for our

syntactical investigations into cut elimination and also for the questions considered in the

next chapter this is clearly not desirable. Of course again every rule with context restrictions

can be seen to be a rule with context relations, which makes all the rule sets considered here

amenable to the semantic methods based on basic rules. It would be very interesting to see

whether the semantic criteria for cut admissibility given in [AL11] and our syntactic criteria

for cut elimination are related in some way. Also of course we would like to extend the notion

of context restriction towards the notion of context relation in order to be able to capture

more logics.

The main difference to the other rule formats studied in the literature is that our rule format

allows for several principal formulae, while usually only one principal formula is introduced.

However, if we want to stay in the classical sequent framework and not introduce new structural

connectives, and if we take the context to be unchanging, then introducing several principal

formulae is essential for capturing modal logics, since otherwise already modal logic K would

be problematic. One line of research in this direction is based on the notion of a canonical

rule, which in its basic form [AL01] in our terminology essentially is a shallow rule with

restrictions Cid whose principal formulae contain exactly one formula (the rules in the original

form are context-independent while our rules are context-sharing in the sense of [TS00]).

Extensions of this format to quantifiers and labelled calculi have subsequently been considered

in [ZA06, AZ08, ZA12]. The (asymmetric) simple calculi investigated in [CT06b] and the

(symmetric) standard calculi from [CT06a] also only allow one principal formula per rule,

but allow for more differentiations in the context. This is necessary since, in contrast to the

calculi considered here, the calculi investigated in these works do not need to contain all the

structural rules. The rules for cut suitable calculi considered in [Ras07] are slightly more

general in that they also allow restrictions of (parts of) the context to formulae with a specific
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main connective and cardinality restrictions, thus rendering the format suitable for capturing

e.g. intuitionistic S4. But even here we only have one principal formula. The rule formats in

[CT06a] and [Ras07] also allow for the treatment of quantifiers.

Criteria for Cut Elimination. Our notion of a principal-cut closed rule set is based on

the notion of a resolution closed rule set in [SP09] and the notion of a cut absorbing rule set

in [PS10]. The technique of variable elimination given in Definition 2.4.1 and the method

of proving that cuts between rules are sound (Lemma 2.4.5) are similar to the method of

cutting applied to quasiequations in the construction of completed structural rules given

in [CGT08, CST09, CGT12]. The operations of cut between rules and (right- resp. left-)

contraction of a rule can be seen as admissible rules in a calculus for admissible rules in the

spirit of [IM09].

Our proof for cut elimination (Theorem 2.4.16) is based on the proof in [SP09, PS08, PS10]

for sequent systems based on one-step rules. A first extension to shallow rules using the

multicut rule was stated in [LP11], where unfortunately the necessary condition of contraction-

closure was omitted. The generalisation to right- or left-contraction closed rule sets is based

on the proof in [vP01]. Where the latter proof relied on invertibility of the propositional rules

we make use of context-cut closure and mixed-cut closure of the rule set.

In the literature there exist a number of results stating sufficient and in some cases also

necessary conditions for different variants of cut elimination or cut admissibility. In contrast

to semantically motivated criteria which are based on providing a generic semantics for logics

given by sequent calculi of a specific format [AL09, AL11, BLZ12] we are mainly interested in

syntactical criteria. The prime example for this kind of criteria are Belnap’s conditions C1 to

C8 ensuring cut elimination for display logic [Bel82]. Condition C8 roughly corresponds to our

condition of principal-cut closure. Similar criteria for consecution calculi are given in [Res00].

The calculi considered in these works introduce additional structural connectives. Considering

the standard sequent format without any additional structure the criterion of principal-cut

closure for calculi allowing more than one principal formula was formulated in [PS08, PS10].

But since in contrast to the one-step rules considered there our rules might copy the whole or

parts of the context, we need the criteria of context-cut closure and mixed-cut closure as well.

The criteria in [PS09, PS11] also demand that the logical rules absorb the structural rules

and inversions of the propositional rules. This way the structural rules are admissible and the

propositional rules invertible, a fact which the proof of cut elimination presented there relies

on. Since the rule format in [Ras07] allows for context-independent rules and since the calculi

considered there might not contain all the structural rules, the criteria for cut elimination in

this work are considerably more fine grained and involved. Condition C9 roughly corresponds

to our condition of principal-cut closure (for rules with one principal formula). The conditions

of mixed-cut closure and context-cut closure are split into several cases. This work also

includes an analysis of the complexity of cut elimination. A sufficient and necessary condition
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for cut admissibility for canonical calculi was considered in [AL01, ZA06] under the name of

coherence. This demands that whenever cut can be applied to the conclusions of two canonical

rules, then their premisses must be propositionally inconsistent, and in this setting amounts

to principal-cut closure of the rule set.

Stronger notions of cut elimination such as reductive cut elimination [CT06b], modular cut

elimination [CT06a] or strong cut elimination [AZ08] are based on the idea that whenever a

sequent is derivable from a set S of sequents, in the case of [CT06a] with particular properties,

then it must be cut-free derivable from the S [CT06a] or derivable using cuts only on formulae

from S. Necessary and sufficient conditions for these notions of cut elimination in the

frameworks of canonical rules, simple rules or standard calculi have been established in the

above cited works and are all similar to the coherence condition of [AL01]. In [CT06b, CT06a]

the corresponding condition, reducibility, also takes into account different format of the

context in the rules considered there. Furthermore, this format also dictates the condition of

(weak) substitutivity, which ensures that cuts with context formulae can be permuted into the

premisses of a rule.

Contraction. The method of copying the (relevant) principal formulae into the conclusions

of a rule to ensure admissibility of Contraction seems to have been introduced by Kleene for

the construction of the G3-systems for propositional logic [Kle52]. As a general method in the

construction of cut-free sequent calculi it has been used e.g. in [NvP01, Neg05], where also the

idea of a contraction-closed rule set seems to have been explicitly formulated for the first time

as the closure condition. Our notion of contraction-closed rule sets is based on [SP09, PS10].

Decidability. Our condition on tractability of the rule sets is an extension of the notion of a

pspace-tractable rule set in [SP09], where a generic Pspace-decision procedure for modal logics

given by one-step rules based on backwards proof search was given. This generic procedure

also has been implemented [CMPS09]. Theorem 2.7.8 on decidability for shallow rule sets in

Pspace was originally published in [LP11] with a slightly different proof using histories in the

spirit of [HSZ96] to prevent multiple applications of the same rule with restriction Cid in the

backwards proof search algorithm. We will see in the next chapter that logics axiomatised

by non-iterative axioms are closely connected to shallow rules. A generic semantic method

along with semantic criteria ensuring decidability in Pspace for such non-iterative modal

logics has been given in [SP08]. Decidability for every logic axiomatised by finitely many

non-iterative axioms has also been shown in [Lew74] using semantical methods. While not

explicitly stated this proof seems to suggest a 3Exptime upper bound for such logics. For

normal modal logics this result was strengthened in [tC05] to a NExptime upper bound for

logics defined by shallow formulae, where in such a formula every occurrence of a propositional

variable is in the scope of at most one modality. It is not clear whether either of these bounds

is tight. In particular, the author is not aware of any finitely axiomatised non-iterative logics
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with complexity above Pspace. Since moreover standard proofs for Exptime-hardness e.g.

via reductions from some form of tiling problem [BdRV01] or acceptance problem for Turing

machines seem to rely on nested modalities, this raises the question whether nested axioms

are essential for Exptime-hardness.

Problem 2.8.1. Is there an Exptime-hard finitely axiomatised non-iterative logic?
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In the preceding chapter we have defined a fairly general format of sequent rules and seen

criteria on sets of rules of this format which are sufficient to ensure that the sequent calculus

given by the set of rules allows for a syntactic proof of cut elimination or can be used in a

generic decision procedure. Now we take a closer look at Question 1.1.4 from the Introduction,

that is we would like to know for which kinds of modal logics there can be a sound and

complete sequent system consisting of rules with context restrictions. For this purpose as

mentioned we will take the modal logics to be given by a set of axioms for a Hilbert system.

Thus we would like to know which axioms can be captured by our rule format, i.e. have

corresponding rules with restrictions, and moreover which axioms can not be captured.

For this purpose in Section 3.2 we will first syntactically characterise the class of translatable

axioms and give a purely syntactic and automatic translation of axioms of this class into

so-called proto rules, that is rules with restrictions where the number of context formulae is

fixed. This is then used to show that ω-sets for translatable axioms, i.e., sets of axioms which

are generated in a particular way by a single translatable axiom, are equivalent to a single

rule with restrictions. Furthermore, under certain additional restrictions, namely normality

of the context formulae this generated set of axioms is equivalent to the single generating

axiom, and thus the latter can be translated into a rule with restrictions instead of a proto

rule. Since the translation is automatic we can take it as a convenient starting point if we try

to construct a cut-free sequent system for a modal logic given by a set of axioms in the spirit

of Question 1.1.3.

Of course the translation from axioms to rules gives only sufficient conditions for an axiom

to be equivalent to a rule with restrictions. Naturally, we would like to know whether these

criteria are necessary as well. To address this point we will consider in Section 3.3 a translation

from rules with restrictions back to axioms (or sets of axioms) of our format. This will establish

necessity of the criteria and thus the following strict correspondence: an axiom for a Hilbert

system can be captured by rules with restrictions if and only if it is axiomatically equivalent to

a set of ω-sets for translatable axioms. Restrictions of the rule format to one-step or shallow

rules yield suitably restricted classes of axioms. As a graphical guide to the translations, the

main results are given schematically in Figure 3.1, where arrows indicate translations and are

annotated with the corresponding theorems. Dashed arrows indicate that the translations

presuppose normal context formulae resp. restrictions. For both directions the main work lies

in the translation between translatable clauses and proto rules.
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translatable
clauses

proto rules

ω-sets of
translatable

clauses
rules

Theorem 3.2.14

Theorem 3.3.16

Theorem 3.2.24

Theorem 3.3.16

Theorem 3.3.14

Theorem 3.2.30

Figure 3.1: The main translations schematically. Dashed lines presuppose normality of the
context formulae / restrictions.

In Section 3.4 finally we will make use of this correspondence to show limitative results

concerning the expressivity of the different rule formats under consideration. Apart from

formally establishing that the three formats of rules have different expressive power this will

also show that certain standard modal logics cannot be captured by one-step or shallow rules.

It should be noted, however, that the translations make use of the cut rule, and therefore

might be a bit blunt if we are interested in limitative results for cut-free sequent systems.

In particular, for logics such as S5, for which there are complete (with Cut) calculi given by

rules with restrictions, we will not be able to use the translation to show that they cannot be

captured by a cut-free system given by rules with restrictions. Nonetheless, we will see that if

we consider sequent calculi given by a mixed-cut closed set of rules with restrictions, then we

can use the translation to show limitative results regarding S5 and a number of other standard

modal logics. The assumption of mixed-cut closure seems to be reasonably mild. In particular,

if we are interested in rule sets for which cut elimination can be shown in the standard way,

mixed-cut closure, i.e. the ability to permute cuts where the cut formula is contextual in one

rule into the premisses of this rule, seems to be fundamental. Of course the limitative results

themselves are independent of a specific technique for proving cut elimination and thus also

preclude e.g. semantic proofs of cut admissibility in such systems.

3.1 Hilbert Axioms and Sequent Rules

Let us first recall the definition and some basic properties of Hilbert systems.

Definition 3.1.1. For a set A ⊆ F(Λ) of formulae we take the (classical resp. intuitionistic

resp. minimal ) Hilbert system H[cim]A to include the formulae in A and axioms for the

propositional base logic and to be closed under the rule of uniform substitution US, modus

ponens MP and the congruence rules Cong♥ for all modalities ♥ ∈ Λ as given in Table 3.1, see
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`H[cim]A A1 ↔ B1 . . . `H[cim]A An ↔ Bn

`H[cim]A ♥(A1, . . . , An)↔ ♥(B1, . . . , Bn)
Cong♥

`H[cim]A A `H[cim]A A→ B

`H[cim]A B
MP

`H[cim]A A1 → B1 . . . `H[cim]A An → Bn

`H[cim]A ♥(A1, . . . , An)→ ♥(B1, . . . , Bn)
Mon♥

`H[cim]A A

`H[cim]A Aσ
US

Table 3.1: The derivation rules for Hilbert systems

also [HC96, p.222]. For axiomatisations of the propositional base logics see e.g. [TS00, p.51].

We write `H[cim]A A if the formula A is in H[cim]A and say that A is derivable in the Hilbert

system H[cim]A.

It is clear that Hilbert systems are logics in the sense of Definition 2.1.5. The main difference

is that Hilbert systems also are closed under the congruence rules and explicitly mention an

axiomatisation. Instead of working directly with Hilbert systems we will work with sequent

systems for propositional logic with the rules of congruence and additional “axioms” given by

a sequent consisting of only one formula:

Definition 3.1.2. For a set R of sequent rules and a set A ⊆ F(Λ) of formulae we write

R+A for the sequent system consisting of the rules in R together with the ground sequents

⇒ A for every A ∈ A. Ground sequents are treated as zero-premiss rules. In particular all

their substitution instances are derivable.

Proposition 3.1.3 (cim). Let A ⊆ F(Λ) be a set of axioms. Then for every sequent Γ⇒ ∆

we have `G[cim]CongWCutCon+A Γ⇒ ∆ iff `H[cim]A
∧

Γ→
∨

∆.

Proof. The proof is a simple extension of the standard proof for equivalence of sequent systems

and Hilbert system for propositional logic [Gen35, Joh37, TS00, NvP01]. For the congruence

rules in the Hilbert system we have counterparts in the sequent system, and since an axiom

A ∈ A for the Hilbert system corresponds directly to a sequent ⇒ A the additional axioms

do not create any problems.

In view of the previous Proposition in the following we will concentrate on sequent systems

with ground sequents consisting of a single formula on the right hand side instead of axioms

for a Hilbert system. The following definition allows us to compare rules and axioms. In order

to allow for a background theory we consider the notion of equivalence over a set of rules,

where the latter of course might be empty.

Definition 3.1.4. Let R be a set of rules with context restrictions and assume we have

fixed a propositional base logic. A set RA of rules is equivalent over R to a set A of axioms

if every rule in RA is a derivable rule in G[cim]RCutConW + A and every axiom in A is

derivable in G[cim]RCutConWRA. In case RA = {R} and A = {A} we also say that the rule
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R is equivalent to the axiom A. Similarly, two sets R1,R2 of rules are equivalent over R, if

every rule in R1 is a derivable rule in G[cim]RCutConWR2 and vice versa. Finally, two sets

A1,A2 of axioms are (axiomatically) equivalent over R if every axiom in A1 is derivable in

G[cim]RCutConW +A2 and vice versa.

This allows us to phrase the main question for this chapter more formally:

Question 3.1.5. Sets of axioms of which syntactical form are equivalent to sets of rules with

context restrictions?

In order to have some tools at our disposal we make the following assumption.

Assumption 3.1.6. For the rest of this chapter we assume that the logics are extensions of

intuitionistic or classical propositional logic.

3.2 From Axioms to Rules

Before stating the formal definition of the class of translatable axioms let us have a brief

look at the general idea for the translation from axioms to rules with restrictions. The main

idea here is to consider axioms which are particular substitution instances of axioms without

iterated modalities. In a first step then the underlying non-iterative axiom is translated into a

rule. Then both in the premisses and the conclusion the variables of the non-iterative axiom

are substituted according to the original axiom. Under certain circumstances these formulae

behave as context formulae for the resulting sequent rule. Let us have a look at an example.

Example 3.2.1. We take ♥ and s to be unary modalities for a modal logic based on

intuitionistic propositional logic and we stipulate that the rule set R describing the background

theory includes rules ensuring normality of s and monotony and “seriality” of ♥:

R = { {(p, q ⇒ r; C∅)}/ s p, s q ⇒ s r, {(⇒ p; C∅)}/ ⇒ s p, {(p⇒ ; C∅)}/♥p⇒ , Mon♥ } .

In the classical notation these rules are given by:

r, q ⇒ r

Γ, s p, s q ⇒ s r,∆
⇒ p

Γ⇒ s p,∆
p⇒

Γ,♥p⇒ ∆

p⇒ q

Γ,♥p⇒ ♥q,∆ Mon♥

Suppose we would like to translate the axiom ♥(s p→ ♥q)→ (s p→ ♥q) into a rule equivalent

to it over R. The axiom can be seen as a substitution instance of the non-iterative axiom

♥(r → s)→ (r → s) under the substitution σ with σ(r) = s p and σ(s) = ♥p. Translating the

latter we first get the ground sequent ⇒ ♥(r → s)→ (r → s), and resolving propositional

logic on the top level of the formula then yields ♥(r → s), r ⇒ s. Since our rule format does

not allow nested connectives in the conclusion we now introduce a fresh variable t for the

formula r → s and premisses t⇒ (r → s) and (r → s)⇒ t which ensure that t and r → s are
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equivalent. As we will see due to the monotonicity of ♥ we actually only need the premiss

t⇒ (r → s), which gives us
t⇒ r → s
♥t, r ⇒ s .

Now resolving the propositional connective in the premiss and substituting the original formulae

s p for r and ♥q for s gives us
t, s p⇒ ♥q
♥t, s p⇒ ♥q .

Finally, using the facts that the modality s is normal and that the modality ♥ is serial we

may turn the variables p and q above into the context restriction C := 〈{s p}, {♥q}〉, giving

the rule {(s⇒ ; C)}/♥s⇒ .

There are some peculiarities to the procedure described above. The first is that all the

propositional logic occurring on the top level of the formula or under the modalities must be

resolvable, that is the respective rules for the propositional connectives must be invertible.

While for classical propositional logic as the underlying propositional logic this is always the

case, for intuitionistic propositional logic we need to be more careful. The second is that

we can only turn the formulae s p and ♥q above into context restrictions, because all their

occurrences are on the same side of the sequents in the premisses and the conclusion, and

because they occur exactly once in the conclusion and at least once in the premisses. In order

to express these requirements formally we introduce the notion of a resolvable formula, where

we furthermore make the subformulae occurring only negatively or positively explicit in the

sets C` resp. Cr:

Definition 3.2.2 (ci). Let C`, C and Cr be sets of formulae. We simultaneously define the

sets Frc(C`, C, Cr) of classically right resolvable formulae and F`c(C`, C, Cr) of classically left

resolvable formulae for the triple (C`, C, Cr) as well as their intuitionistic versions Fr i(C`, C, Cr)
and F`i(C`, C, Cr) by the following grammar, where for Fr [ci](C`, C, Cr) the starting variable

is P
[ci]
r and for F`[ci](C`, C, Cr) it is P

[ci]
` .

P [ci]
r ::= P [c]

r ∨ P [c]
r | P [ci]

r ∧ P [ci]
r | P [ci]

` → P [ci]
r | Ar | B | ⊥ | > where Ar ∈ Cr, B ∈ C

P
[ci]
` ::= P

[ci]
` ∨ P

[ci]
` | P [ci]

` ∧ P
[ci]
` | P [c]

r → P
[c]
` | A` | B | ⊥ | > where A` ∈ C`, B ∈ C .

Remark 3.2.3. It is obvious from the definition that if a formula is left (or right) resolvable for

(C` ∪ {A}, C, Cr ∪ {B}), then it is also left (resp. right) resolvable for (C`, C ∪ {A}, Cr ∪ {B})
and for (C` ∪ {A}, C ∪ {B}, Cr).

Example 3.2.4. 1. The formula ♥p ∧ ((♥p ∨ q)→ r) is intuitionistically and classically

right resolvable for ({q}, {♥p}, {r}). Furthermore, it is classically left resolvable for

({r}, {♥p}, {q}) but it is not intuitionistically left resolvable for any triple.
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2. Both p ∨ q and (p → q) → ⊥ are classically right resolvable for (∅, ∅, {p, q}) resp.

({q}, ∅, {p}). Both formulae are not intuitionistically right resolvable for any triple.

Intuitively for a formula A in Fr [ci](C`, C, Cr) the sequent ⇒ A can be broken up or resolved

using invertibility of the propositional rules in such a way that in the resulting set of sequents

formulae in C` (resp. Cr) occur only on the left hand side (resp. right hand side), whereas

formulae in C might occur on both sides. We capture this in the following lemma.

Lemma 3.2.5 (ci). Let C`, C and Cr be sets of formulae and let Γ ⇒ ∆ be a sequent such

that every formula in Γ is in F`[ci](C`, C, Cr) and every formula in ∆ is in Fr [ci](C`, C, Cr).

Then there is a set S = {Γi ⇒ ∆i | i ∈ I} of sequents such that

1. S `G[ci]CutConW Γ⇒ ∆

2. Γ⇒ ∆ `G[ci]CutConW Γi ⇒ ∆i for every i ∈ I

3. for every i ∈ I: every formula in Γi is in C` ∪ C

4. for every i ∈ I: every formula in ∆i is in Cr ∪ C.

Proof. The proof is by simultaneous induction on the structure of the formulae in F`[ci](C`, C, Cr)
and Fr [ci](C`, C, Cr) and essentially works by inverting the propositional rules using the rules

in G[ci]CutCon until we arrive at a set of sequents with the properties stated above.

As an example for the induction step in the classical case, suppose we have a sequent

Γ, A ⇒ ∆ such that A ∈ F`c(C`, C, Cr) with A = A1 → A2 for A1 ∈ Frc(C`, C, Cr) and

A2 ∈ F`c(C`, C, Cr), and such that Supp (Γ) ⊆ F`c(C`, C, Cr) and Supp (∆) ⊆ Frc(C`, C, Cr).
Then Γ, A ⇒ ∆ is equivalent to the two sequents Γ ⇒ A1,∆ and Γ, A2 ⇒ ∆ as seen by an

application of →L in the one direction and the derivations

A1 ⇒ A1, A2
A

⇒ A1, A1 → A2

→R
Γ, A1 → A2 ⇒ ∆

Γ⇒ A1,∆
Cut

A1, A2 ⇒ A2
A

A2 ⇒ A1 → A2

→R
Γ, A1 → A2 ⇒ ∆

Γ, A2 ⇒ ∆
Cut

in the other direction. The cases for the other binary boolean connectives are analogous. In

case A is ⊥ we use the rule ⊥L and Weakening.

In the intuitionistic case the definition of right resp. left resolvable formulae ensures that we

do not need to invert the problematic rules ∨R or →L. The remaining cases are analogous

to the classical situation. The only slightly interesting case is that of a sequent Γ⇒ A with

Supp (Γ) ⊆ F`i(C`, C, Cr) and A = A1 → A2. In this case we have

Γ⇒ A→ B

B,A⇒ B
A

A⇒ A
A

A→ B,A⇒ B
→L

Γ, A⇒ B
Cut
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and on the other hand the sequent Γ⇒ A→ B follows directly from Γ, A⇒ B using →R.

The set of sequents guaranteed by the previous lemma need not be unique. E.g., if for a

formula A we have ⊥ → A ∈ Cr and A ∈ Cr, then the sequent ⇒ ⊥ → A already is in the

form stated in the lemma, but it is also equivalent to the sequent ⊥ ⇒ A. However, this will

not be problematic. Using the previous Lemma it is then possible to break up formulae in

Fr [ci](C`, C, Cr) and to turn them into a normal form:

Definition 3.2.6 (ci). For a sequent Γ⇒ ∆ with Supp (Γ) ⊆ F`[ci](C`, C, Cr) and Supp (∆) ⊆
Fr [ci](C`, C, Cr) a set of sequents resulting from its deconstruction according to Lemma 3.2.5

is called a (C`, C, Cr)-normal form of Γ ⇒ ∆. A (C`, C, Cr)-normal form of a formula

A ∈ Fr [ci](C`, C, Cr) is a (C`, C, Cr)-normal form of the sequent ⇒ A.

To compute a (C`, C, Cr)-normal form of a formula A from Fr [ci](C`, C, Cr) it is thus enough

to attempt backwards proof search using the propositional rules for the sequent ⇒ A until

the sequents at the leafs of the derivation have only formulae from C` ∪ C on their left hand

side and only formulae from Cr ∪ C on their right hand side, and then take the set of the

sequents at the leafs of the derivation.

Example 3.2.7. 1. If we attempt backwards proof search using the rules in G[cim] for the

formula ♥p ∧ ((♥p ∨ q)→ r) from Example 3.2.4,1 we get the following:

⇒ ♥p

♥p⇒ r q ⇒ r

♥p ∨ q ⇒ r
∨L

⇒ (♥p ∨ q)→ r
→R

⇒ ♥p ∧ ((♥p ∨ q)→ r)
∧R

The formula ♥p occurs both on the left and on the right hand side of the sequents ⇒ ♥p
and ♥p, q ⇒ r at the leafs of the attempted derivation, whereas q and r occur only on

the left (resp. right) hand side. This gives a classical and intuitionistic ({q}, {♥p}, {r})-
normal form { ⇒ ♥p, ♥p⇒ r, q ⇒ r} for the formula ♥p ∧ ((♥p ∨ q)→ r).

2. For the formula (p→ q)→ ⊥ we get the classical derivation

q ⇒ ⊥ ⇒ p,⊥
p→ q ⇒ ⊥

→L

⇒ (p→ q)→ ⊥
→R

and thus a classical ({q}, ∅, {p})-normal form {q ⇒ ⊥, ⇒ p,⊥} for (p→ q)→ ⊥.

Remark 3.2.8. If A is a (classically or intuitionistically) right resolvable propositional formula

for (∅,Var, ∅), then by permutability of the propositional rules its (∅,Var, ∅)-normal form

is unique. Moreover, Definition 3.2.6 yields the regular normal form of A in the sense of

[NvP01, p.128] if we consider the conjunction of the trace formulae of the sequents in its

(∅,Var, ∅)-normal form.
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The notion of right or left resolvable formulae now enables us to formally define a class of

translatable formulae. For the sake of readability we restrict ourselves to unary and monotone

modalities, i.e., we assume presence of the rules in Mon := {Mon♥ | ♥ ∈ Λ}.

Definition 3.2.9 (ci). Suppose that Λ is a set of monotone and unary modalities. Let C` and

Cr be sets of formulae with variables in W` and Wr respectively, and let V be a set of variables

such that for all formulae A,B ∈ C` ∪ Cr we have var (A) ∩ var (B) = ∅ and var (A) ∩ V = ∅.
The set of intuitionistically (resp. classically) translatable clauses with context formulae in

(C`, Cr) and variables in V is given by the following grammar (with initial variable S[ci])

S[ci] ::= L[ci] → R[ci]

L[ci] ::= L[ci] ∧ L[ci] | ♥Pr | A` | p | ⊥ | > where ♥ ∈ Λ, Pr ∈ Fr [ci](C`, V, Cr), A` ∈ C`, p ∈ V

R[ci] ::= R[c] ∨R[c] | ♥P` | Ar | p | ⊥ | > where ♥ ∈ Λ, P` ∈ F`[ci](C`, V, Cr), Ar ∈ Cr, p ∈ V

together with the global restriction that every formula in C` ∪ Cr occurs at most once on the

top level of the clause (i.e. not in the scope of a modality), and occurs on the top level if and

only if it occurs under a modality. We also call the formulae in C` ∪ Cr the context formulae

of such a clause. A clause is intuitionistically (resp. classically) translatable if there is a triple

(C`, V, Cr) such that the clause is intuitionistically (resp. classically) translatable with context

formulae in (C`, Cr) and variables in V .

In other words, a classically translatable clause with context formulae in (C`, Cr) and

variables in V is simply a clause
∧n
i=1Ai →

∨m
j=1Bj where for i ≤ n we have Ai ∈

Λ(Fr [c](C`, V, Cr)) ∪ C` ∪ V ∪ {⊥,>} and for j ≤ m we have Bj ∈ Λ(F`[c](C`, V, Cr)) ∪
Cr ∪ V ∪ {⊥,>} satisfying the conditions on occurrences of formulae in C` ∪ Cr. In the

intuitionistic case the situation is similar with m ∈ {0, 1}. Thus a translatable clause is

essentially a non-iterative formula where some of the variables have been substituted with

arbitrary modal formulae which appear positively (resp. negatively) on the top level of the

formula if and only if they appear in the same polarity under a modality.

Example 3.2.10. 1. The axiom (4�) = �s→ ��s is an intuitionistically and classically

translatable clause with context formulae in ({�s}, ∅).

2. The axiom (5) = ♦s→ �♦s is an intuitionistically and classically translatable clause

with context formulae in ({♦s}, ∅). The version (5�) = ¬�s → �¬�s is a classically

translatable clause where the context formulae can be taken to be in ({¬�s}, ∅) or in

(∅, {�s}).

3. The axiom (T�) = �s → s is an intuitionistically and classically translatable clause

where the context formulae can be taken to be either in (∅, ∅) or in (∅, {s}).
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4. The axiom (IK2) = �(s→ t)∧♦s→ ♦t is an intuitionistically and classically translatable

clause with context formulae in (∅, ∅).

5. The axiom (IK4) = ♦(p ∨ q)→ ♦p ∨ ♦q is a classically translatable clause with context

formulae (∅, ∅). It is not an intuitionistically translatable clause.

6. The axiom (B) = p→ �¬�¬p is neither a classically nor an intuitionistically translatable

clause, since the variable p occurs both on the top level of the formula (and thus would

need to be a context formula or a variable in V ) and under two modalities (and thus

would need to be a proper subformula of a context formula).

7. The axiom (L) = �(�p → p) → �p is neither a classically nor an intuitionistically

translatable clause, since the variable p occurs under two modalities and thus cannot be

a variable in V , and moreover the formulae �p→ p and p do not occur on the top level

of the formula and thus cannot be context formulae.

Remark 3.2.11. For the sake of readability we only considered unary and monotone modalities.

It is not too difficult to generalise Definition 3.2.9 to n-ary and not necessarily monotone

modalities, though. Let us say that for a rule set R and i ≤ n an n-ary modality ♥ is monotone

in the i-th argument for R if the rule

Mon♥,i := {(pi ⇒ qi; C∅)} ∪ {(pj ⇒ qj ; C∅), (qj ⇒ pj ; C∅) | j ≤ n, j 6= i} /

♥(p1, . . . , pn)⇒ ♥(q1, . . . , qn)

is derivable in R. Similarly, we say that ♥ is antitone in the i-th argument for R if the rule

Ant♥,i := {(qi ⇒ pi; C∅)} ∪ {(pj ⇒ qj ; C∅), (qj ⇒ pj ; C∅) | j ≤ n, j 6= i} /

♥(p1, . . . , pn)⇒ ♥(q1, . . . , qn)

is derivable in R. Then in the definition of a translatable clause for the variable L[ci] we simply

replace the entry ♥Pr by ♥(P1, . . . , Pn) where ♥ is an n-ary modality from Λ and for 1 ≤ i ≤ n
we have: Pi ∈ Fr [ci](C`, V, Cr) if ♥ is monotone in the i-th argument forR; Pi ∈ F`[ci](C`, V, Cr)
if ♥ is antitone in the i-th argument forR; and Pi ∈ Fr [ci](C`, V, Cr)∩F`[ci](C`, V, Cr) otherwise.

For R[ci] the entry ♥P` is modified similarly.

The context formulae of a translatable clause will of course correspond to the context

formulae in the resulting rule. But since the number of context formulae in a translatable

clause is fixed, in the result of the translation we have a fixed number of context formulae as

well. We capture this in the notion of a proto rule for a rule with restrictions.

Definition 3.2.12. Given a rule with restrictions R = P/Σ⇒ Π a proto rule for R is a tuple

(R; Γ⇒ ∆) given by a context Γ⇒ ∆ ∈ S(F) such that
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1. no propositional variable occurs more than once in Γ⇒ ∆

2. no propositional variable occurs both in Γ⇒ ∆ and R

3. if Γ⇒ ∆ 6= ⇒ , then (Γ⇒ ∆) �C 6= ⇒ for every restriction C of R.

We often leave the context implicit and write R̂ for a proto rule for R. An application of a

proto rule R̂ = (R; Γ⇒ ∆) is given by a substitution σ : Var→ F and a context Θ⇒ Ξ where

(Θ⇒ Ξ) �C= ⇒ for every restriction C of R, and is the same as the application of R with

substitution σ and context Γσ,Θ⇒ ∆σ,Ξ according to Definition 2.3.3. Derivability using

proto rules and notions of equivalence are defined as expected.

Informally, the difference between rules and proto rules is that in proto rules the premisses

including the context are fixed up to substitution, while in rules also the number of the context

formulae in the premisses may vary. Clause 3 in the above definition ensures that the context

Γ ⇒ ∆ only contains context formulae which are copied into at least one of the premisses.

Together with the condition that none of the formulae in a context Θ⇒ Ξ for an application

of the proto rule are copied into the premiss this means that a proto rule for a rule really

specifies exactly the number of context formulae which are copied into the premisses. In the

notation of Lemma 2.4.4 a proto rule R̂ for a rule R = P/Σ⇒ Π given by a context Γ⇒ ∆

has premisses P(Γ⇒ ∆) and conclusion Γ,Σ⇒ Π,∆.

Example 3.2.13. 1. Consider the rule Kn = {(p1, . . . , pn ⇒ q; C∅)}/�p1, . . . ,�pn ⇒ �q.
Since the only restriction occurring in it is C∅ = 〈∅, ∅〉, the only proto rule for Kn is given

by the empty context ⇒ . An application of this proto rule is given by a substitution

and an arbitrary context.

2. For the rule RT = {(p⇒ ; Cid)}/�p⇒ proto rules are given by arbitrary contexts (sat-

isfying the conditions on the variables), since every such sequent satisfies the restriction

Cid. Applications for these proto rules are given by a substitution and the empty context.

Thus e.g. the proto rule given by the sequent q1, q2 ⇒ r has applications

A1, A2, B ⇒ C

A1, A2,�B ⇒ C

for arbitrary formulae A1, A2, B,C.

3. Proto rules for the rule 40 = {(⇒ q; C4)}/ ⇒ �q are given by sequents�A1, . . . ,�An ⇒
for a fixed n ∈ N (satisfying the conditions on the variables). Applications of these

proto rules are given by a substitution and a context consisting on the left only of

formulae whose main connective is not �. Thus e.g. the proto rules given by the contexts

�p1,�p2 ⇒ and ⇒ respectively have applications

�A1,�A2 ⇒ B

Γ,�A1,�A2 ⇒ �B,∆
and

⇒ B
Γ⇒ �B,∆
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respectively, where no formula in Γ has � as its main connective (and in the intuitionistic

case ∆ is empty).

Now the procedure sketched in the beginning of this section gives us a translation.

Theorem 3.2.14 (ci). Let Λ be a set of unary modalities. Every intuitionistically resp.

classically translatable clause A is equivalent over Mon to a proto rule. Moreover, there is an

automatic procedure that given an axiom produces such an equivalent proto rule.

For the sake of presentation in the context of the proof of this statement we will take a

more relaxed attitude concerning the notion of sequent rules and will take the premisses of

a rule to be sets of arbitrary sequents and the conclusion to be an arbitrary sequent. This

allows us e.g. as an intermediate step to move complex formulae from the conclusion into the

premisses, the result of which is not a rule with context restrictions. Of course the final result

will be a rule with context restrictions again. Connected notions such as applications of rules

or derivations are adjusted as expected. We will make use of the following two easy lemmata,

the first of which is also called the Ackermann Lemma in [CGT08] and allows us to move

propositional variables from the conclusion into the premisses.

Lemma 3.2.15 (Folklore)(ci). For n,m ≥ 0 and formulae A1, . . . , An, B1, . . . , Bm the follow-

ing two rules are equivalent:

P
A1, . . . , An,Γ⇒ ∆, B1, . . . , Bm

P ∪ {Σ⇒ Ai,Π | i ≤ n} ∪ {Σ, Bj ⇒ Π | j ≤ m}
Γ,Σ⇒ ∆,Π

In the asymmetric setting for n > 0 we have Π = ∅ and for m > 0 we have ∆ = ∅.

Proof. Using Cut and the fact that sequents A1, . . . , An ⇒ B1, . . . Bm, Ai and A1, . . . , An, Bj ⇒
B1, . . . , Bm are derivable using the axiom rule for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The second lemma we will use states that we can modify the rules so that the principal

formulae consist only of modalised variables.

Lemma 3.2.16 (ci). For every unary monotone modality ♥ and formula D the rules

P
Γ,♥D ⇒ ∆

resp.
P

Γ⇒ ♥D,∆

are equivalent over Mon♥ to the rules

P ∪ {sD ⇒ D}
Γ,♥sD ⇒ ∆

resp.
P ∪ {D ⇒ sD}

Γ⇒ ♥sD,∆

respectively, where sD is a fresh propositional variable.

Proof. Using the monotonicity rule Mon♥ and Cut and the fact that the sequent D ⇒ D is

derivable using the axiom rule.
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Proof of Theorem 3.2.14. Suppose that A is a translatable clause with context formulae in

(C`, Cr) and variables in V . We assume that the variables in V are ordered in some way.

W.l.o.g. we furthermore assume that C` and Cr do not contain single variables (this can always

be achieved by transferring them into V , see Remark 3.2.3), and that every formula in C` and

Cr occurs in A. Then A is of the form∧
♥P`

P`∈F`

♥P`
P` ∧

∧
C∈C`

C ∧
∧
q∈Q`

q →
∨

♥PrPr∈Fr

♥PrPr ∨
∨
D∈Cr

D ∨
∨
r∈Qr

r

where the formulae P` are in Fr [ci](C`, V, Cr), the formulae Pr are in F`[ci](C`, V, Cr), and we

have Q` ⊆ V and Qr ⊆ V . The first step is to turn this into a ground sequent ⇒ A, which by

Lemma 3.2.5 is equivalent to the following (where we slightly abuse notation and write e.g. F`

for the multiset consisting of all the formulae in the set F`)

F`, C`, Q` ⇒ Fr, Cr, Qr .

Now using Lemma 3.2.16 we introduce fresh variables for the formulae P` resp. Pr occurring

under the modalities and premisses ensuring that the variables are equivalent to the original

formulae. This yields

{sP`
⇒ P` | ♥P`

P` ∈ Q`} ∪ {Pr ⇒ sPr | ♥PrPr ∈ Qr}
{♥P`

sP`
| P` ∈ F`}, C`, Q` ⇒ {♥PrsPr | Pr ∈ Fr}, Cr, Qr .

Since the formulae P` (resp. Pr) are in Fr [ci](C`, V, Cr) (resp. F`[ci](C`, V, Cr)) we may now

equivalently replace these new premisses by (C`, V, Cr)-normal forms using Lemma 3.2.5. In

particular formulae in C` (resp. Cr) only occur on the left (resp. right) hand side of the

resulting premisses. Moreover, since by Definition 3.2.9 every formula in C` ∪ Cr occurs on

the top level of the axiom if and only if it occurs under a modality we get that every of these

formulae occurs in the conclusion of the rule if and only if it occurs in at least one premiss.

Let us call this set of premisses P. The next step is to use Lemma 3.2.15 to move all the

variables in Q` ∪Qr from the conclusion into the premisses. This yields

P ∪ {t` ⇒ q, tr | q ∈ Q`} ∪ {t`, r ⇒ tr | r ∈ Qr}
{♥P`

sP`
| P` ∈ F`}, C`, t` ⇒ {♥PrsPr | Pr ∈ Fr}, Cr, tr

where the new context is replaced with fresh propositional variables t` and tr. The final step

is to apply the obvious adaption of the process of variable elimination (Definition 2.4.1) to

the premisses to eliminate all variables in V from the premisses by performing all possible

cuts between premisses on these variables. We assume that this is done in the order given

by the ordering on V . This ensures that a variable occurs in the premisses only if it occurs

in the conclusion. The resulting rule is seen to be equivalent over Mon to the rule given
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above using the methods of the proof of Lemma 2.4.5. Moreover, using Weakening and the

rules in G[ci]CutCon, it is equivalent to a proto rule for the rule with restrictions where we

replace in every premiss all occurring context formulae, say C1, . . . , Cn ⇒ D1, . . . , Dm, by the

corresponding context restriction 〈{C1, . . . , Cn}, {D1, . . . , Dm}〉, and similarly the variables

t`, tr by the restriction 〈{t`}, {tr}〉.

Example 3.2.17. Continuing Example 3.2.10 above we have

1. The intuitionistically and classically translatable clause �p ∧ �q → �(p ∧ q) with

context formulae in (∅, ∅) and variables in {p, q} is transformed in a first step into

�p,�q ⇒ �(p ∧ q). In the next step the formulae p, q and p ∧ q under the modalities

are replaced by fresh variables sp, sq and sp∧q and we introduce new premisses to obtain

sp ⇒ p sq ⇒ q p, q ⇒ sp∧q
�sp,�sq ⇒ �sp∧q .

Since there are no variables in the conclusion, the next step can be omitted, leaving the

final step of variable elimination on the variables p and q. This gives the well-known rule

sp, sq ⇒ sp∧q
�sp,�sq ⇒ �sp∧q

K2 .

2. Similarly, the intuitionistically and classically translatable clause (IK2) = �(p→ q) ∧
♦p→ ♦q is translated into the rule

sp→q, sp ⇒ sq
�sp→q,♦sp ⇒ ♦sq .

3. The intuitionistically and classically translatable clause (4�) = �s→ ��s with context

formulae in ({�s}, ∅) is first transformed into �s⇒ ��s. Then the formula �s under

the modality is replaced by a fresh variable s�s to give

�s⇒ s�s
�s⇒ �s�s

,

which as seen in Example 3.2.13 is a proto rule for the rule 40.

4. The classically translatable clause (5�) = ¬�s → �¬�s with context formulae in

(∅, {�s}) is similarly transformed into the proto rule

⇒ p,�s
⇒ �p,�s

for the rule R45.

5. The intuitionistically and classically translatable clause (T�) = �s→ s with context

formulae in (∅, ∅) is first transformed into �s⇒ s. Then the variable s on the right
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hand side is moved into the premisses using Lemma 3.2.15, which gives the proto rule

p`, s⇒ pr
p`,�s⇒ pr

for the rule RT. If the context formulae are taken to be in (∅, {s}), then we obtain the

proto rule
p⇒ s

�p⇒ s
.

Remark 3.2.18. While we stated Theorem 3.2.14 only for unary and monotone modalities, it is

straightforwardly adapted to modalities of higher arities as follows. If a formula ♥(P1, . . . , Pn)

occurs on the left side of the implication in a clause A which is translatable according to

Remark 3.2.11, then we introduce fresh variables sP1 , . . . , sPn and for 1 ≤ i ≤ n premisses

sPi ⇒ Pi if ♥ is monotone in the ith argument

Pi ⇒ sPi if ♥ is antitone in the ith argument

sPi ⇒ Pi and Pi ⇒ sPi otherwise.

The modified definition of a translated clause then ensures that when we replace these new

premisses by (C`, V, Cr)-normal forms the context formulae behave in the correct way. In

particular, instead of the rule Mon we use the derivation of the rule Mon♥,i resp. Ant♥,i to

show that in case the modality is monotone resp. antitone in the i-th argument it is enough to

include only the sequent sPi ⇒ Pi resp. Pi ⇒ sPi in the premisses. Note that in order to do

this we need that the rule Mon♥,i resp. Ant♥,i is derivable and not just admissible in the rule

set. On the other hand this means that we do not need to explicitly assume that these rules

are in the base rule set.

Unfortunately, Theorem 3.2.14 only tells us which axioms we can translate into proto rules

for rules with restrictions. But of course we would like to know which axioms we can translate

into rules with restrictions themselves. The main idea here is that if the context formulae of a

rule with restrictions absorb conjunctions (resp. disjunctions) in the right way, then we can

restrict ourselves to proto rules where every context formula occurs exactly once.

Definition 3.2.19 (ci). A formula A with free variables p1, . . . , pn = ~p is intuitionistically

(resp. classically) left normal for a set R of rules if for every k ≥ 0 there are formulae

B1, . . . , Bn = ~B such that `G[ci]CutConR ⇒
∧k
i=1A

i ↔ Aσ
~B
~p where Ai is the result of injectively

renaming the propositional variables p1, . . . , pn in A to fresh variables pi1, . . . , p
i
n and σ

~B
~p is

the substitution given by σ(pj) = Bj for 1 ≤ j ≤ n and σ(x) = x for x /∈ ~p. A formula A

is classically right normal for R if for every k ≥ 0 there are formulae B1, . . . , Bn such that

`GcCutConR
∨k
i=1A

i ↔ Aσ
~B
~p with Ai and σ

~B
~p as above (or equivalently if A→ ⊥ is left normal).

It is intuitionistically right normal for R if the above holds for k ∈ {0, 1} and Gi instead of

Gc. A context restriction 〈F1, F2〉 is (intuitionistically or classically) normal for R if every
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formula in F1 (resp. F2) is (intuitionistically or classically) left (resp. right) normal for R.

Example 3.2.20. The formula p is intuitionistically and classically left and right normal for

the set G[ci] of propositional rules and thus for every extension of G[ci]. The formula �p is

intuitionistically and classically left normal for the rule set RK (and thus for all its extensions),

since `G[ci]RKCutCon

∧k
i=1�pi ↔ �

∧k
i=1 pi for every k ≥ 0. It is not right normal for RK. In

the classical case furthermore the formula ¬�p is right normal for RK.

If we have a rule where all the restrictions are normal and contain only finitely many

formulae, then intuitively we can absorb multiple instances of the same context formula into

one proto rule. This is made precise in the following definition and lemma.

Definition 3.2.21. A context restriction 〈F1, F2〉 is finite if both sets F1 and F2 are finite.

A rule with finite context restrictions is a rule in which every context restriction is finite.

Lemma and Definition 3.2.22 (ci). If R is a set of rules with context restrictions and R

is a rule whose context restrictions {C1, . . . , Cn} are all finite and normal for R, then the

set of proto rules for R is equivalent over G[ci]RCutCon to the canonical proto rule R̂ for R

given by the sequent Γ1 ⇒ Γ2 where for i ∈ {1, 2} we set Γi := {C | C ∈ Fi where 〈F1, F2〉 =

Cj for some j ≤ n}. Thus R itself is equivalent over R to R̂.

Proof. The proof of the first claim is straightforward using the definition of a normal restriction

and the rules in G[ci]RCutCon. The second statement follows easily from the definitions and

the first claim.

Example 3.2.23. 1. Since the only restriction occurring in the rule Kn is C∅, the canonical

proto rule for Kn is given by the empty context ⇒ .

2. The canonical proto rule for the rule RT is given by the context r ⇒ s and has the form

r, p⇒ s

r,�p⇒ s .

3. The canonical proto rule for the rule R4 is given by the context �r ⇒ and has the form

�r ⇒ p

�r ⇒ �p .

Since the context formulae for a translatable clause directly correspond to the context

formulae of the corresponding proto rule, this gives us sufficient criteria for translatability of

an axiom into a rule with restrictions.

Theorem 3.2.24 (ci). Let R be a rule set and let A be a (intuitionistically or classically)

translatable clause with context formulae in (C`, Cr). If every formula in C` is left normal for
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R and every formula in Cr is right normal for R, then A is equivalent over R to a rule with

(finite) context restrictions.

Proof. Immediate from Theorem 3.2.14 and the preceding Lemma using the fact that the

formulae on the left (resp. right) hand side of the context of the proto rule from the translation

are in C` (resp. Cr).

Example 3.2.25. 1. The context formula �q is (intuitionistically and classically) left

normal for RK and thus translating the axiom (4) �q → ��q using Theorem 3.2.24

yields the well-known rule R4 = {(⇒ p; 〈{�p}, ∅〉)}/ ⇒ �p. This rule is thus equivalent

to the axiom (4) over RK.

2. Similarly, since variables are both left and right normal for RK translating the axiom (T)

yields the standard rule RT = {(p⇒ ; Cid)}/�p⇒ , which is equivalent to (T) over RK.

In view of the fact that propositional variables are both left and right normal for every rule

set including the propositional rules this immediately yields translation results for non-iterative

and rank-1 axioms.

Corollary 3.2.26 (ci). In the intuitionistic case every translatable clause with context formulae

in (∅, ∅) is equivalent over Mon to a shallow rule. If the clause is rank-1, then it is equivalent to

a one-step rule. In the classical case every non-iterative (resp. rank-1) clause is equivalent over

Mon to a shallow (resp. one-step) rule, and thus every non-iterative (resp. rank-1) formula is

equivalent to a finite set of shallow (resp. one-step) rules. �

Remark 3.2.27. Since in the case that there are no context formulae we do not need to control

which sides of the premisses the context formulae end up, the classical part of Corollary 3.2.26

stating that every non-iterative (resp. rank-1) formula whatsoever is translatable into an

equivalent finite set of shallow (resp. one-step) rules holds for non-monotone modalities as

well. In the intuitionistic case we still need to make sure that all the propositional connectives

are invertible.

While Theorem 3.2.24 gives us sufficient criteria for when a clause is translatable into a

single rule, the condition that all context formulae be normal is relatively strict. In particular

it precludes the treatment of examples such as the (classical) axiom (5�) ¬�p → �¬�p.
Moreover, if we only allow normal context formulae in the clauses we cannot construct rules

with non-normal context restrictions by translation. On the other hand this can be done if

instead of single translatable clauses we consider sets of formulae which are generated by a

single translatable clause in a particular way.

Definition 3.2.28 (ci). Let A be a classically translatable clause with context formulae in

(C`, Cr) for C` = {C1, . . . , Cn} and Cr = {D1, . . . , Dm} and variables in V . The classical ω-set

for A is the set

{As1,...,sn,t1,...,tm | si ≥ 0, tj ≥ 0 for i ≤ n, j ≤ m} ,
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where the formulae As1,...,sn,t1,...,tm are constructed from A as follows: for k ≤ n every

occurrence of the context formula Ck in A is replaced by the formula
∧sk
i=1C

i
k, where again

Cik is constructed from Ck by renaming the variables ~p of Ck to fresh variables ~pi; and for

k ≤ m every occurrence of the context formula Dk is replaced by the formula
∨tk
i=1D

i
k, where

again Di
k is the result of substituting fresh variables for the variables in Dk. If A is an

intuitionistically translatable clause, then the intuitionistic ω-set for A is the set

{As1,...,sn,t1,...,tm | si ≥ 0, tj ∈ {0, 1} for i ≤ n, j ≤ m} ,

where the formulae As1,...,sn,t1,...,tm are constructed as in the classical case.

Note that in the intuitionistic case a translatable clause has at most one context formula

in Cr, and thus at most one formula different from ⊥ occurs in the disjunction on the right

hand side of the top-level implication in the formulae As1,...,sn,t1,...,tm . Moreover, since no two

formulae in C` ∪Cr share any variables with each other or with V , the ω-set for a translatable

clause is in fact unique. Thus once the context formulae are specified it makes sense to speak

of the ω-set for a translatable clause.

Example 3.2.29. 1. The (classical or intuitionistic) ω-set for the clause (4) �s→ ��s
with context formulae in ({�s}, ∅) is the set {

∧n
i=1�s

i → �
∧n
i=1�s

i | n ≥ 0}.

2. The classical ω-set for the clause (5�) ¬�q → �¬�q with context formulae in (∅, {�q})
is the set {¬

∨m
i=1�q

i → �¬
∨m
i=1�q

i | m ≥ 0}. If the context formulae are taken to be

({¬�q}, ∅), then the ω-set is {
∧n
i=1 ¬�qi → �

∧n
i=1 ¬�qi | n ≥ 0}.

Intuitively every conjunction resp. disjunction for a context formula in a formula of an ω-set

corresponds to a fixed number of context formulae in a proto rule, and all the proto rules

corresponding to formulae in the ω-set together are equivalent to a rule with restrictions.

Theorem 3.2.30 (ci). Every ω-set for a translatable clause is equivalent over Mon to a rule

with (finite) context restrictions.

Proof. By Theorem 3.2.24 every formula As1,...,sn,t1,...,tm in the ω-set for a translatable clause

A with context formulae in ({C1, . . . , Cn}, {D1, . . . , Dm}) and variables in V is equivalent to

a proto rule given by the context
∧s1
i=1C

i
1, . . . ,

∧sn
i=1C

i
n ⇒

∨t1
i=1D

i
1, . . . ,

∨tm
i=1D

i
m. Using the

rules in G[ci]CutCon this is equivalent to the proto rule given by the context with C1
k , . . . , C

sk
k

instead of
∧sk
i=1C

i
k resp. D1

k, . . . , D
tk
k instead of

∨tk
i=1D

i
k. Note that for the latter case in the

intuitionistic setting we only need to deal with at most one formula Dj
k, where we use the

fact that empty disjunctions are defined as ⊥. Since all the proto rules come from axioms

which are generated by the same translatable clause they are proto rules for the same rule

with restrictions. Now the result follows immediately.
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The technique of translating ω-sets of axioms instead of single axioms now allows us to treat

examples like the axiom (5) as well.

Example 3.2.31. 1. Translating the ω-set {¬
∨n
i=1�q

i → �¬
∨n
i=1�q

i | n ≥ 0} for the

axiom (5�) ¬�q → �¬�q using Theorem 3.2.30 yields first the set of proto rules for the

rule R = {(⇒ p; 〈∅, {�p}〉)}/ ⇒ �p given by the sequents ⇒ �q1, . . . ,�qn for n ≥ 0.

Together, all these proto rules are are equivalent to the rule R itself.

2. By classical propositional reasoning and the axioms of K adding both axioms (4) �q` →
��q` and (5�) ¬�qr → �¬�qr is equivalent to adding the set

n∧
i=1

�qi` ∧ ¬
m∨
j=1

�qjr → �(
n∧
i=1

�qi` ∧ ¬
m∨
j=1

�qjr) | m,n ≥ 0


of axioms, which is an ω-set for the classically translatable clause �q` ∧ ¬�qr →
�(�q` ∧ ¬�qr). Using the method of Theorem 3.2.30 this set translates into the

standard rule R45 = {( ⇒ p; C45)}/ ⇒ �p with restriction C45 = 〈{�p}, {�p}〉 from

Table 2.4. Thus the two axioms (4) and (5�) together are equivalent over RK to the

rule R45.

Corollary 3.2.32 (ci). Let R be a set of rules with restrictions and let A be an axiom. If A

is equivalent over R to an ω-set for a translatable clause, then A is equivalent over R to a

rule with (finite) restrictions. �

Remark 3.2.33. We may also use the previous corollary to give a slightly different proof of

Theorem 3.2.24: Whenever the context formulae for a translatable clause are normal, then the

clause is equivalent to its ω-set. Now the corollary yields equivalence of the clause to a rule.

3.3 From Rules to Axioms

The results of the previous section raise the question whether the format of ω-sets for axioms

is really necessary. It turns out that for monotone modalities the format is both necessary and

sufficient in the sense that an axiom can be translated into a rule with finite restrictions if and

only if adding the axiom is equivalent to adding an ω-set. The restriction to rules with finite

context restrictions here is necessary if we aim for a single ω-set. On the other hand, using

the following lemma it is clear that an axiom is equivalent to a set of rules with restrictions if

and only if it is axiomatically equivalent to the union of a set of ω-sets.

Lemma 3.3.1 (ci). Every rule with restrictions is equivalent to a set of rules with finite

restrictions.
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Proof. Let R be a rule with restrictions {〈F i1, F i2〉 | 1 ≤ i ≤ n}. The rules in the rule set RR
are then constructed by replacing for each restriction the components F i1 and F i2 by finite

subsets Gi1 ⊆ F i1 and Gi2 ⊆ F i2. Then for every application of the rule R there is a rule in

RR whose context restrictions include all the relevant formulae, and for the other direction

every application of a rule in RR is simulated by Weakening of some of the premisses and an

application of the rule R.

Thus in the following we will concentrate on rules with finite restrictions. We show the

correspondence to ω-sets for such rules by translating them back into ω-sets of axioms.

The main idea for this is to turn the premisses and the conclusion of a proto rule into

formulae, and then construct the axiom out of the formula corresponding to the conclusion by

suitably incorporating the premisses. The latter step is accomplished following [Sch07] using a

suitably adjusted notion of a projective formula [Ghi99] and making use of a carefully chosen

substitution witnessing the projectivity of the formula corresponding to the premisses of the

proto rule. For the purpose of constructing this substitution we would like the premisses of

the original rule to be of a specific form.

Definition 3.3.2 (ci). A rule P/Σ⇒ Π is in standard form if

1. no variable occurs both on the left hand side of a premiss and on the right hand side of

a (possibly different) premiss

2. whenever ( ⇒ p; C∅) ∈ P then there is no premiss (Γ ⇒ p,∆; C) ∈ P with C 6= C∅ or

Γ ∪∆ 6= ∅

3. there is no premiss (⇒ ; C) ∈ P for any restriction C

4. in the intuitionistic case, there is a formula D such that the right component of every

restriction occurring in P is ∅ or {D}.

Fortunately, for monotone modalities every rule with finite restrictions can be manipulated

in such a way that it becomes a rule in standard form (or a finite set of such rules in the

intuitionistic case). This is shown in the following lemmata. We first consider Property 4 for

the intuitionistic setting.

Lemma 3.3.3 (i). Every rule with finite restrictions is equivalent over Mon to a finite set of

rules with restrictions satisfying Property 4 of Definition 3.3.2 above.

Proof. Suppose R = P/Σ⇒ π. If π 6= ∅, then no application of R has context formulae on the

right hand side of its conclusion, and w.l.o.g. the right component of every restriction occurring

in P is empty. So suppose that π = ∅ and we have premisses P = {Γi ⇒ δi; 〈Fi, Gi〉 | 1 ≤ i ≤ n}.
Since the Gi are finite, the set

⋃n
i=1Gi is finite as well. W.l.o.g. we assume that for all

A,B ∈
⋃n
i=1Gi with A 6= B we have var (A) ∩ var (B) = ∅. This can always be achieved using
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injective renamings. We would like to construct formulae C1, . . . , Cm from the formulae in⋃n
i=1Gi such that we can replace the rule R by m rules R1, . . . , Rm where the right components

of restrictions of rule Rj are either ∅ or {Cj}. The idea is to construct all possible “minimal”

formulae satisfying a given subset of the restrictions. For this we make use of (syntactic)

unification [EFT94, EFT96]. Remember that a unifier for a set {B1, . . . , Bk} of formulae is a

substitution σ such that B1σ = · · · = Bkσ. If a unifier for a set of formulae exists, then we

call the set unifiable. A most general unifier for a set S of formulae is a unifier mguS such

that for every other unifier σ of S there is a substitution τ with σ = τ ◦mguS . If such a most

general unifier exists, then in fact it is unique, so we also speak of the most general unifier. A

straightforward application of the standard algorithm for syntactic unification as given e.g.

in [EFT94, EFT96] shows that whenever a set of formulae is unifiable, then there is a most

general unifier. Now for every non-empty unifiable set S ⊆
⋃n
i=1Gi define CS := BmguS

where B ∈ S arbitrary. Furthermore for such an S define the premisses PS by

PS :=
{(Γi ⇒ δi; 〈Fi, {CS}〉) | 1 ≤ i ≤ n, S ∩Gi 6= ∅}
∪ {(Γi ⇒ δi; 〈Fi, ∅〉) | 1 ≤ i ≤ n, S ∩Gi = ∅}

and define the rule RS by RS := PS/Σ ⇒ π. We claim that then the original rule R is

equivalent to the set {RS | S ⊆
⋃n
i=1Gi, S unifiable}. To see why this is the case first

consider an application of the rule R with context Θ⇒ A. If A is not a substitution instance

of any formula in
⋃n
i=1Gi, then we may replace the application by an application of the rule

RS for an arbitrary unifiable S ⊆
⋃n
i=1Gi. Otherwise let I ⊆ {1, . . . , n} be the set of indices i

such that A is a substitution instance of a formula in Gi and for each i ∈ I choose one such

formula Bi ∈ Gi. Then for every i ∈ I the formula A is also a substitution instance of the

formula Bimgu{Bi|i∈I} and thus the application of R can be replaced by an application of

the rule R{Bi|i∈I}. For the other direction suppose that S ⊆
⋃n
i=1Gi is unifiable and consider

an application of the rule RS given by the substitution σ and the context Θ⇒ A. If A is a

substitution instance of the formula CS , then by definition of CS for every Gi with Gi ∩ S 6= ∅
there is a formula B ∈ Gi such that A is a substitution instance of B. Moreover, for every

premiss (Γj ⇒ ; 〈Fj , Gj〉) with Gj ∩ S = ∅ we have a derivation of Γjσ,Θ �Fj⇒ from which

using W we can easily derive the sequent Γjσ,Θ �Fj⇒ A �Gj . Thus we may replace the

application of RS by an application of R. Finally, the set {RS | S ⊆
⋃n
i=1Gi, S unifiable} is

a finite set of rules, since all restrictions of R were finite.

Lemma 3.3.4 (ci). Every non-trivial rule with finite restrictions is equivalent over Mon to

a finite set of rules with finite restrictions in standard form. If the rule was shallow (resp.

one-step), then so are the equivalent rules in standard form.

Proof. We show how to equivalently transform an arbitrary rule into a rule satisfying properties

1-4 in Definition 3.3.2 characterising the standard form. Suppose we have a rule R = P/Σ⇒ Π.
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If we are in the intuitionistic setting, we first take care of property 4 using Lemma 3.3.3 and

then consider each rule from the resulting finite set separately. The remaining procedure is the

same in both the intuitionistic and the classical case. The next step is to make the rule satisfy

the first property. This is done by using the fact that all our rule sets include the rules Mon

and replacing the rule by the cut between this rule and all possible rules Mon♥ according to

Definition 2.4.1. In the resulting rule no variable occurs in the premisses both on the left hand

side of a sequent and on the right hand side of a sequent, and Lemma 2.4.5 ensures that this

rule is equivalent over Mon to the original rule. Note that in the intuitionistic case this does

not destroy property 4 since all non-empty right components of context restrictions occurring

in the premisses are the same. For the second property suppose that there are premisses

(⇒ p; C∅) and (Γ⇒ p,∆; C) in P, where Γ ∪∆ 6= ∅ or C 6= C∅. Then instances of the latter

are derived by Weakening from instances of (⇒ p; C∅) and thus the premiss (Γ⇒ p,∆; C) can

be omitted. Finally, if we have a premiss (⇒ ; C), then the rule is subsumed by Weakening

and therefore trivial.

For the rest of this section we assume w.l.o.g. that for monotone modalities all rules with

finite restrictions are in standard form. While our goal is to translate such rules into axioms,

the varying number of context formulae makes it hard to translate rules directly. For this

reason again we first consider proto rules. Given a proto rule the first step is to turn its

premisses and conclusion into formulae.

Definition 3.3.5 (ci). Let R = P/Σ ⇒ Π be a rule and R̂ a proto rule for R given by the

context Γ⇒ ∆. The formulae Prem
R̂

and Concl
R̂

are defined by

Prem
R̂

:=
∧

(Θ⇒Ξ;〈F1;F2〉)∈P

(∧
Γ �F1 ∧

∧
Θ→

∨
∆ �F2 ∨

∨
Ξ
)

Concl
R̂

:=
∧

Γ ∧
∧

Σ→
∨

∆ ∨
∨

Π .

where as usual we take empty conjunctions to be > and empty disjunctions to be ⊥. Note that

in the intuitionistic case since the sequents are asymmetric the disjunctions in the succedent

of the implications contain at most one formula other than ⊥.

Then by propositional reasoning it is clear that the premisses of a proto rule R̂ (resp. its

conclusion) are derivable if and only if the sequent ⇒ Prem
R̂

(resp. ⇒ Concl
R̂

) is derivable.

Example 3.3.6. 1. The proto rule for the rule R4 given by the context �p1,�p2 ⇒ is

R̂4 =
�p1,�p2 ⇒ p

�p1,�p2 ⇒ �p

and gives Prem
R̂4

= �p1 ∧�p2 ∧ > → ⊥∨ p and Concl
R̂4

= �p1 ∧�p2 ∧ > → ⊥∨�p.
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2. The proto rule for the rule RT given by the context p1, p2 ⇒ is

R̂T =
p1, p2, p⇒
p1, p2,�p⇒

and gives the formulae Prem
R̂T

= p1∧p2∧p→ ⊥∨⊥ and Concl
R̂T

= p1∧p2∧�p→ ⊥∨⊥.

3. The proto rule for the rule R45 given by the context �p1 ⇒ �q1 is

R̂45 =
�p1 ⇒ p,�q1

�p1 ⇒ �p,�q1

and gives Prem
R̂45

= �p1 ∧ > → �q1 ∨ p and Concl
R̂45

= �p1 ∧ > → �q1 ∨�p.

For capturing the information given in the premisses and injecting it into the formula Concl
R̂

we follow [Sch07] and make use of slightly adapted notions from the theory of projective

formulae, see e.g. [Ghi99].

Definition 3.3.7 (ci). A formula A ∈ F(Λ) is projective if there is a substitution σ :

Var → F(Λ) such that `G[ci]MonCutConW ⇒ Aσ and such that for all p ∈ var (A) we have

`G[ci]MonCutConW A⇒ p↔ pσ. Such a substitution witnesses projectivity of A.

It is now standard to show the following lemma.

Lemma 3.3.8 (ci). If A ∈ F(Λ) is a formula and σ : Var→ F(Λ) is a substitution witnessing

projectivity of A, then for every formula B with var (B) ⊆ var (A) we have `G[ci]MonCutConW

A⇒ B ↔ Bσ.

Proof. By induction on the complexity of the formula B using the monotonicity rules.

Given a proto rule R̂ once we have a substitution witnessing the projectivity of the formula

Prem
R̂

we are done using the following lemma.

Lemma 3.3.9 (ci). If R̂ is a proto rule and σ a substitution witnessing projectivity of Prem
R̂

,

then the axiom Concl
R̂
σ is equivalent to R̂ over MonR for every rule set R.

Proof. Let R̂ be a proto rule with premisses Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n and conclusion Σ⇒ Π,

and let σ be a substitution witnessing projectivity of Prem
R̂

. We first show that the proto

rule R̂ is a derivable rule using the ground sequent ⇒ Concl
R̂
σ. By the fact that σ witnesses

projectivity of Prem
R̂

we know that there is a derivation D in G[ci]MonCutConWR of the

sequent Prem
R̂
⇒ Concl

R̂
σ → Concl

R̂
, and furthermore the sequent ⇒ Concl

R̂
σ is a ground

sequent and thus derivable. But then we may replace the proto rule R̂ by the following
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derivation:

⇒ Concl
R̂
σ

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

⇒ Prem
R̂

G[ci]W

D....
Prem

R̂
⇒ Concl

R̂
σ → Concl

R̂

⇒ Concl
R̂
σ → Concl

R̂
Cut

Concl
R̂
σ ⇒ Concl

R̂

G[ci]Cut

⇒ Concl
R̂

Cut

Σ⇒ Π
G[ci]Cut

This derivation is easily modified to accommodate the additional substitution and context in

an application of the proto rule R̂.

For the other direction we need to derive the sequent Concl
R̂
σ using R̂. By projectivity we

have `G[ci]MonCutConR ⇒ Prem
R̂
σ. Now resolving the propositional connectives using G[ci]Cut

yields the sequents Γiσ ⇒ ∆iσ, and applying the proto rule R̂ and propositional rules gives

`G[ci]MonCutConWR ⇒ Concl
R̂
σ.

In particular in the intuitionistic case it is not entirely clear that we can always construct

such a substitution. Fortunately, the premisses of rules in standard form have a distinct shape

which ensures that this is possible. We first consider the (easier) classical case.

Definition 3.3.10 (c). Let R = P/Σ⇒ Π be a rule in standard form and R̂ a proto rule for

R given by Γ⇒ ∆. Define the substitution θc
R̂

by

θc
R̂

(p) :=


> : (⇒ p; C∅) ∈ P

Prem
R̂
→ p : (Θ⇒ p,Ξ; C) ∈ P for some Θ⇒ Ξ and C with Θ ∪ Ξ 6= ∅ or C 6= C∅

Prem
R̂
∧ p : (Θ, p⇒ Ξ; C) ∈ P for some Θ⇒ Ξ

p : otherwise.

The substitution θ
R̂

is well-defined, since in a rule in standard form no variable occurs

both on the left side of a premiss and on the right side of a premiss, and if it occurs on the

right side, then it occurs either only in a premiss of the form given in the first case or only in

premisses of the form given in the second case.

Lemma 3.3.11 (c). If R̂ is a proto rule for a rule R in standard form, then the substitution

θc
R̂

witnesses projectivity of Prem
R̂

.

Proof. Suppose that the proto rule R̂ for the rule R = P/Σ⇒ Π is given by the context Γ⇒ ∆.

It is easy to see that for every variable p ∈ var
(
Prem

R̂

)
we have `GcMonCutConW Prem

R̂
⇒ p↔

pθc
R̂

. To see that `GcMonCutConW ⇒ Prem
R̂
θc
R̂

consider a premiss (Θ⇒ Ξ; 〈F1, F2〉) from P and

the corresponding clause (
∧

Γ �F1 ∧
∧

Θ→
∨

∆ �F2 ∨
∨

Ξ)θc
R̂

from Prem
R̂
θc
R̂

. If the premiss

has the form ( ⇒ p; C∅), then this clause only consists of the formula > which is trivially

derivable. Otherwise, since the substitution θc
R̂

is the identity on context formulae this clause
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is the same as
∧

Γ �F1 ∧
∧

Θθc
R̂
→
∨

∆ �F2 ∨
∨

Ξθc
R̂

. Now if Θ 6= ∅, then this is equivalent to∧
Γ �F1 ∧PremR̂

∧Θ→
∨

∆ �F2 ∨A, where A is either ⊥ if Ξ is empty, or equivalent to
∨

Ξ

or Prem
R̂
→
∨

Ξ if Ξ 6= ∅. Since
∧

Γ �F1 ∧
∧

Θ →
∨

∆ �F2 ∨
∨

Ξ is a clause in Prem
R̂

it is

easy to see that in both cases the clause is derivable. On the other hand, if Θ = ∅, then the

clause is equivalent to
∧

Γ �F1→
∨

∆ �F2 ∨(Prem
R̂
→
∨

Ξ), which again is easily seen to be

derivable using the fact that Prem
R̂

contains the clause
∧

Γ �F1→
∨

∆ �F2 ∨
∨

Ξ.

While the substitution defined above in principle also works in the intuitionistic case, we

would like the formula Concl
R̂
θR to be a translatable clause in the sense of Definition 3.2.9

as well. But this means that in the intuitionistic setting we cannot substitute the formula

Prem
R̂
→ p for variables p occurring under a modality on the right hand side of the principal

formulae, since it is not intuitionistically left resolvable. This problem can be fixed using the

following substitution θi
R̂

instead.

Definition 3.3.12 (i). For a rule R = P/Σ⇒ π in standard form and a proto rule R̂ for R

given by the context Γ⇒ δ define the substitution θi
R̂

by

θi
R̂

(p) :=


∨

(⇒p;〈F1,F2〉)∈P
∧

Γ �F1 ∨p : (Θ⇒ p; 〈F1, F2〉) ∈ P for some Θ and 〈F1, F2〉 6= C∅
Prem

R̂
∧ p : (Θ, p⇒ ξ; C) ∈ P for some Θ⇒ ξ and C

p : otherwise.

Note that in the previous Definition if there is a premiss (⇒ p; C∅) in P, then the formula

θi
R̂

(p) is equivalent to >, and if there is a premiss (Θ⇒ p; C) but no premiss (⇒ p; C′) in P,

then θi
R̂

(p) is equivalent to p.

Lemma 3.3.13 (i). If R̂ is a proto rule for a rule R in standard form, then the substitution

θi
R̂

witnesses projectivity of Prem
R̂

.

Proof. Similar to the classical case: Again, let the proto rule R̂ for the rule R = P/Σ ⇒ π

be given by the context Γ⇒ δ. Again, standard intuitionistic propositional reasoning gives

`GiMonCutConW Prem
R̂
⇒ p ↔ pθi

R̂
. To show that `GiMonCutConW Prem

R̂
θi
R̂

consider a premiss

(Θ⇒ ξ; 〈F1, F2〉) and the corresponding clause
∧

Γ �F1 ∧
∧

Θθi
R̂
→ δ �F2 ∨ξθiR̂ from Prem

R̂
θi
R̂

.

The case for premisses (⇒ p; C∅) is dealt with as in the classical case. Otherwise, if Θ 6= ∅,
this is equivalent to either

∧
Γ �F1 ∧PremR̂

∧
∧

Θ→ δ �F2 ∨⊥ or
∧

Γ �F1 ∧PremR̂
∧
∧

Θ→
⊥ ∨

∨
(⇒ξ;〈G1,G2〉)∈P

∧
Γ �G1 ∨ξ, depending on whether ξ or δ is empty. But both of these

are intuitionistically derivable, since the clause
∧

Γ �F1 ∧
∧

Θ → δ �F2 ∨ξ occurs in Prem
R̂

.

Finally, if Θ = ∅, then since the rule was in standard form δ must be empty and the clause is

equivalent to
∧

Γ �F1→
∨

(⇒ξ;〈G1,G2〉)∈P
∧

Γ �G1 ∨ξ, which is easily seen to be derivable.

Putting all the pieces together we obtain an automatic translation of proto rules into

translatable clauses for monotone modalities.
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Theorem 3.3.14 (ci). Every proto rule R̂ for a rule R in standard form given by a context Γ⇒
∆ is equivalent over Mon to a translatable clause with context formulae in (Supp (Γ) , Supp (∆)).

The translation is automatic.

Proof. Let R be a rule with restrictions in standard form and let R̂ be a proto rule for R given

by the context Γ⇒ ∆ and let V be the set of variables occurring in the rule R. By Lemmata

3.3.9 and 3.3.11 resp. 3.3.13 the axiom Concl
R̂
θ

[ci]

R̂
is equivalent over Mon to R̂. From the

definition of Concl
R̂
θ

[ci]

R̂
it is clear that the translation is automatic. To see that the formula

Concl
R̂
θ

[ci]

R̂
is a translatable clause with context formulae in (Supp (Γ) , Supp (∆)), for the sake

of presentation assume that all modalities are unary. The general case is analogous. It is

clear by construction that Concl
R̂

is of the form A1 ∧ . . . ∧ An → B1 ∨ · · · ∨ Bm, and that

the formulae in Γ occur only on the top level in the Ai, those in ∆ only in the Bi. Now

consider a variable p ∈ V occurring in a formula Ai = ♥p not in Γ. We need to check that

the formula θ
[ci]

R̂
(p) is in Fr(Supp (Γ) , V, Supp (∆)) ∪ V . If the variable p does not occur in

the premisses, then we have θ
[ci]

R̂
(p) = p ∈ V . Otherwise, since the rule was in standard

form the variable p occurs only on the left hand side of the premisses, and thus we have

θ
[ci]

R̂
(p) = Prem

R̂
∧ p. But by construction of Prem

R̂
it is clear that the formula Prem

R̂
∧ p

is in Fr [ci](Supp (Γ) , V, Supp (∆)). Similarly, if the variable p occurs in a formula Bi = ♥p
not in ∆, then if it does not occur in the premisses we have θ

[ci]

R̂
(p) = p ∈ V . Otherwise

it occurs only on the right hand side of the premisses. Thus we have θc
R̂

(p) = Prem
R̂
→ p

and θi
R̂

(p) =
∨

(⇒p;C)∈P
∧

Γ �C ∨p. Again, both of these formulae are by construction in

F`c(Supp (Γ) , V, Supp (∆)) resp. F`i(Supp (Γ) , V, Supp (∆)). Thus the formula Concl
R̂
θ

[ci]

R̂
is a

translatable clause with context formulae in (Supp (Γ) ,Supp (∆)) and variables in V .

Example 3.3.15. Continuing Example 3.3.6 we have:

1. For the proto rule R̂4 for the rule R4 given by the context �p1,�p2 ⇒ we get the

substitution θi
R̂4

with θi
R̂4

(p) = �p1 ∧�p2 and θi
R̂4

(pi) = pi for i = 1, 2. Thus the proto

rule R̂4 is equivalent over Mon to the axiom

Concl
R̂4
θi
R̂4

= �p1 ∧�p2 ∧ > → ⊥∨�(�p1 ∧�p2) .

2. For the proto rule R̂T for the rule RT given by the context p1, p2 ⇒ we get the

substitution θ
[ci]

R̂T
with θ

[ci]

R̂T
(p) = (p1 ∧ p2 ∧ p→ ⊥∨⊥) ∧ p and θ

[ci]

R̂T
(pi) = pi for i = 1, 2.

Thus the proto rule R̂T is equivalent over Mon to the axiom

Concl
R̂T
θ

[ci]

R̂T
= p1 ∧ p2 ∧�((p1 ∧ p2 ∧ p→ ⊥∨⊥) ∧ p)→ ⊥∨⊥ .

3. For the proto rule R̂45 for the rule R45 given by the context �p1 ⇒ �q1 we get the

substitution θc
R̂45

with θc
R̂45

(p) = (�p1 ∧ > → �q1 ∨ p) → p and θc
R̂45

(p1) = p1 and
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θc
R̂45

(q1) = q1. Thus the proto rule R̂45 is equivalent over Mon to the axiom

Concl
R̂45
θc
R̂45

= �p1 ∧ > → �q1 ∨�((�p1 ∧ > → �q1 ∨ p)→ p) .

Theorem 3.3.14 shows that for monotone modalities translatable clauses correspond very

closely to proto rules for rules in normal form: every translatable clause is equivalent to a

proto rule for a rule in normal form and every such proto rule is equivalent to a translatable

clause. Thus from a point of view leaning more towards Hilbert systems it would be more

natural to consider sequent calculi given by sets of proto rules and to consider rules with

restrictions as particular sets of proto rules. Nevertheless, we are mainly interested in rules

with restrictions and their corresponding axioms. By considering the equivalent sets of proto

rules we obtain a correspondence here as well.

Theorem 3.3.16 (ci). Every rule R with finite restrictions in normal form is equivalent over

Mon to an ω-set for a translatable clause AR. If for two sets C` and Cr of formulae with

C` ∩ Cr = ∅ all context restrictions of R have the form 〈F1, F2〉 with F1 ⊆ C` and F2 ⊆ Cr,

then AR has context formulae in (C`, Cr). In case all context restrictions of R are normal for

a rule set R the rule R is equivalent over Mon to a single translatable clause AR. If R is a

shallow (resp. one-step) rule, then it is equivalent over Mon to a non-iterative (resp. rank-1)

translatable clause.

Proof. Let R = P/Σ⇒ Π be a rule with finite context restrictions. It is clear that the rule

R is equivalent to the set of proto rules for it. Furthermore by Theorem 3.3.14 every such

proto rule is equivalent over Mon to a translatable clause. We would like to show that the

set of all these clauses is axiomatically equivalent to an ω-set for a translatable clause. To

construct this clause, note that since the restrictions of R are finite, we may simply take all

formulae occurring in the restrictions as the context of a proto rule. More precisely, let R̂ be

the canonical proto rule for R, i.e. the proto rule for R given by the context Γ⇒ ∆, where

Γ = {C | C ∈ F1 for some 〈F1, F2〉 occurring in P}

∆ = {D | D ∈ F2 for some 〈F1, F2〉 occurring in P} .

Then by propositional reasoning the set of translations of proto rules for R̂ is axiomatically

equivalent to the ω-set for the translation A
R̂

of the canonical proto rule R̂. Since A
R̂

has

context formulae in (Supp (Γ) ,Supp (∆)) the claim about the context formulae follows. If all

restrictions occurring in R are normal for a rule set R, then by Lemma 3.2.22 the rule R is

equivalent over Mon to the proto rule R̂ and thus also to the translatable clause A
R̂

. This

also holds for shallow or one-step rules, since the restrictions for such rules are always normal.

Moreover, in these cases the resulting axioms are easily seen to be equivalent to non-iterative

resp. rank-1 axioms.
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Example 3.3.17. 1. Using the method of the previous Theorem the set of axioms intu-

itionistically equivalent to the rule R4 is the ω-set for the translation of the canonical

proto rule R̂4 for the rule R4 given by the context �p1 ⇒ . This set has the form{
n∧
i=1

�pi ∧ > → ⊥∨�
n∧
i=1

�pi | n ≥ 0

}
.

By normality of �p1 for RK this is equivalent over RK to the translation �p1 ∧ > →
⊥∨��p1 of R̂4, which again is equivalent to the axiom (4) �p1 → ��p1.

2. Similarly, rule RT is classically equivalent to the ω-set
n∧
i=1

pi ∧�((

n∧
i=1

pi ∧ p→
m∨
j=1

qj ∨ ⊥) ∧ p)→
m∨
j=1

qj ∨ ⊥ | n,m ≥ 0


for the translation of the canonical proto rule R̂T for the rule RT given by the context

p1 ⇒ q1. In the intuitionistic case the index m ranges only over 0, 1. By normality of

propositional variables this is equivalent over RK to the translation p1 ∧�((p1 ∧ p→
q1 ∨⊥) ∧ p)→ q1 ∨⊥ of R̂T, and by propositional reasoning and monotonicity of � this

is axiomatically equivalent to the axiom (T) �s→ s.

3. Finally, rule R45 is classically equivalent to the ω-set
n∧
i=1

�pi ∧ > →
m∨
j=1

�qj ∨�((
n∧
i=1

�pi ∧ > →
m∨
j=1

�qj ∨ p)→ p) | n,m ≥ 0


for the translation of the canonical proto rule R̂45 for the rule R45 given by the context

�p1 ⇒ �q1. Since the formula �q1 is not right normal we cannot use Theorem 3.3.16 to

turn this into a single axiom. But by propositional reasoning this set is axiomatically

equivalent to the set consisting of axioms

n∧
i=1

�pi → �

 n∧
i=1

�pi ∧ ¬
m∨
j=1

�qj

 ∨ p
 ∨ m∨

j=1

�qj

for n,m ≥ 0. By monotonicity of � and propositional reasoning this set is moreover

axiomatically equivalent to the set
n∧
i=1

�pi → �

 n∧
i=1

�pi ∧ ¬
m∨
j=1

�qj

 ∨ m∨
j=1

�qj | n,m ≥ 0

 ,
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which by normality of � and propositional reasoning is axiomatically equivalent to{
n∧
i=1

�pi → �
n∧
i=1

�pi | n ≥ 0

}
∪

¬
m∨
j=1

�qj → �¬
m∨
j=1

�qj | m ≥ 0

 .

Here the first set is the ω-set for the axiom (4) �p1 → ��p1 and by normality of �

axiomatically equivalent to it. The second set is the ω-set for the axiom (5) ¬�q1 →
�¬�q1. In this particular case we are lucky and by normality of � and propositional

reasoning this set is equivalent to {
∧m
j=1 ¬�qj →

∧m
j=1�¬�qj | m ≥ 0}, which is

axiomatically equivalent to the single axiom (5).

The results of this section together with those of the previous section allow us to characterise

for monotone modalities the class of axioms which are equivalent to rules with restrictions

purely in the Hilbert style setting.

Theorem 3.3.18 (ci). For monotone modalities an axiom for a Hilbert style system is

1. equivalent to a set of rules with restrictions iff axiomatically equivalent to the union of a

set of ω-sets for translatable clauses

2. equivalent to a finite set of rules with finite restrictions iff axiomatically equivalent to

the union of a finite set of ω-sets for translatable clauses

3. equivalent to a finite set of rules with finite normal restrictions iff axiomatically equivalent

to a finite set of translatable clauses with normal context formulae

4. equivalent to a finite set of shallow rules iff equivalent to a finite set of non-iterative

translatable clauses (in the classical case: iff equivalent to a non-iterative axiom)

5. equivalent to a finite set of one-step rules iff equivalent to a finite set of rank-1 translatable

clauses (in the classical case: iff equivalent to a rank-1 axiom).

Proof. Using the translations in Section 3.2 and Theorem 3.3.16 and the facts that by

Lemma 3.3.4 every non-trivial rule with finite restrictions is equivalent to a finite set of rules

in normal form and that by Lemma 3.3.1 every rule with restrictions is equivalent to a set of

rules with finite restrictions.

The correspondences are shown diagrammatically in Table 3.2.

3.4 Applications: Limitative Results

The correspondence results of the previous two sections can be applied in at least two ways.

One possibility is to use the translation from axioms into rules to construct new sequent
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set of ω-sets for translatable clauses ! set of rules with restrictions

ω-set for a translatable clause ! rule with finite restrictions in
normal form

translatable clause with normal
context formulae

! rule with finite normal restrictions
in normal form

translatable clause ! proto rule for a rule with
restrictions in normal form

non-iterative translatable clause ! shallow rule

rank-1 translatable clause ! one-step rule

Table 3.2: The corresponding classes of axioms and rules

calculi for modal logics given axiomatically in the spirit of Question 1.1.3. Of course this

possibility hinges on methods to make the resulting sequent calculus cut-free. We will explore

this issue further in the following chapters, where we will also see the translation in action

for other than the standard examples. The second possibility is to follow Question 1.1.4 and

show limitative results about which kinds of modal logics can be given a sound and complete

sequent system with rules of a specific format. Such limitative results show on the one hand

how much additional machinery beyond Gentzen’s original rule format is necessary to capture

a specific logic. On the other hand these results might also help in constructing sequent calculi

for new modal logics, since they can be used to decide which kinds of calculi to search for. We

will now see some results in this spirit, beginning with limitative results about the expressive

strength of the different rule formats. It should be noted that since the translations make

heavy use of the cut rule, the results limit the expressive strength of systems with the cut

rule. Of course we may always add the cut rule to a cut-free system, and then apply the

results to the new system. Here we only consider the classical setting. We will make use of

the following standard notions for normal modal logics based on classical propositional logic,

see e.g. [BdRV01].

Definition 3.4.1 (c). A Kripke frame is a tuple F = (W,R) consisting of a non-empty set W

of worlds and binary accessibility relation R ⊆W ×W on the set of worlds. A Kripke model

(F, σ) is a Kripke frame F together with a valuation σ : W → P(Var). The model (F, σ) then

is based on the frame F. We also write F� for F({∧,∨,→,⊥,�}). If F = (W,R) and (F, σ) is

a Kripke model, then satisfaction for a formula A ∈ F� at a world w in this model is denoted

96



3.4. APPLICATIONS: LIMITATIVE RESULTS

by F, w, σ  A and is recursively defined by

F, w, σ  p iff p ∈ σ(w) for p ∈ Var

F, w, σ  �A iff for all v ∈W with wRv we have F, v, σ  A

and the standard clauses for the boolean connectives. A formula A ∈ F� is valid in a model

(F, σ) if F, w, σ  A for every world w of F. It is moreover valid in the frame F if it is valid in

every model based on the frame F. If a formula A is valid in a frame F we also write F  A.

For a set A of formulae we write F  A if F  A for every A ∈ A. Finally, a formula A is

satisfiable in a frame F = (W,R) if there are a world w ∈ W and a valuation σ such that

F, w, σ  A.

We graphically represent Kripke frames (W,R) in the standard way by drawing an arrow

from world w to world v if wRv holds. A little thought shows that a formula A is valid in a

frame F if and only if its negation ¬A is not satisfiable in F. In the following it will also be

convenient to use ♦A as an abbreviation for ¬�¬A. We will be interested in classes of frames

which are defined by a set of modal formulae.

Definition 3.4.2 (c). Let F be a class of Kripke frames and let A ⊆ F� be a set of modal

formulae. We say that A modally defines the class F if for every Kripke frame F we have

F ∈ F⇐⇒ F  A .

The class F is modally definable if it is modally defined by some set A of modal formulae.

Furthermore, we write LF for the set {A ∈ F� | F  A for every F ∈ F} of modal formulae

valid in every frame of the class F. Given a set A of axioms and a class F of frames the Hilbert

system HcA is sound for the class F if HcA ⊆ LF and complete if LF ⊆ HcA.

We will make use of the following small lemma about alternative characterisations of modally

definable frame classes from Hilbert-axiomatisations, where we write HcK for the Hilbert

system given by the set {�p ∧ �q ↔ �(p ∧ q), �>} of axioms and HcKA for the system

given by these axioms together with the axioms in A. It is well-known that HcK is sound and

complete for the class of all frames [BdRV01].

Lemma 3.4.3 (c). Let F be a modally definable class of Kripke frames and A ⊆ F� a set of

modal formulae. If HcKA is sound and complete for F, then A modally defines the class F.

Proof. Let F be modally defined by a set B of axioms. We need to show that for every frame

F we have F ∈ F⇔ F  A. So take an arbitrary frame F.

Suppose that F ∈ F. Since HcKA is sound for F we know that every formula derivable in

HcKA is valid in every frame in F, and thus also in F. But since the axioms A obviously are

derivable in HcKA we thus have F  A.
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Now suppose that F  A. Since HcKA is complete for F we know that every formula valid

in every frame in F is derivable in HcKA. Thus, since B modally defines F in particular every

formula in B is derivable in HcKA. But since F  A we also know that every formula derivable

in HcKA must be valid in F, and thus we get F  B. But B modally defines F, and thus we

have F ∈ F.

Remark 3.4.4. Note that the condition of modal definability of the class F in Lemma 3.4.3 is

crucial: it is well-known that the Hilbert-system HcK is sound and complete for the class of

irreflexive frames, a frame class which is not modally definable at all, see e.g. [HC96, p.176].

Using the previous Lemma it is possible to show that the Hilbert system generated by a set

A of axioms is not sound and complete for a modally definable class of Kripke frames - we

simply show that the set of axioms cannot possibly modally define the class of frames. For

convenience we capture the general idea in the following Lemma.

Lemma 3.4.5 (c). Let F be a modally definable class of Kripke frames and let A ⊆ F� be a

set of formulae. If there are two frames F1,F2 such that

1. F1 ∈ F and F2 /∈ F

2. for every formula A ∈ A we have F1  A⇔ F2  A,

then the logic HcKA is not sound and complete for F.

Proof. For the sake of contradiction, suppose that HcKA is sound and complete for F. Then

by Lemma 3.4.3 we know that A modally defines F. But then by assumption 1 we have F1  A,

and thus by assumption 2 we also have F2  A in contradiction to the fact that F2 /∈ F.

Thus in order to show that sequent systems including only rules of a certain format are not

expressive enough to capture a particular axiom or modally definable logic it is enough to show

that translations of such rules are not strong enough to define the class of frames for this logic.

In the following we will make extensive use of this technique. The first goal is to show that the

containments for the classes of logics which can be captured by one-step rules, shallow rules

and rules with restrictions are proper. For this we will show the intuitively obvious results

that one-step rules are not strong enough to capture reflexivity of the accessibility relation,

and that shallow rules are not capable of capturing transitivity or symmetry.

Theorem 3.4.6 (c). There is no set of one-step rules equivalent over RK to the axiom

(T) �p→ p.

Proof. We know that the axiom (T) �p → p modally defines the class of Kripke frames

with a reflexive accessibility relation [BdRV01]. On the other hand by Theorem 3.3.16 we

know that the translations of one-step rules are rank-1 axioms. To see that no set of rank-1

axioms can be sound and complete for the class of transitive frames consider the two frames
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a a b

F1 F2

Figure 3.2: The two frames used in the proof of Theorem 3.4.6 (reflexivity).

a b c 1 2 3

4

F1 F2

Figure 3.3: The two frames used in the proof of Theorem 3.4.7 (transitivity)

F1 := ({a}, {(a, a)}) and F2 := ({a, b}, {(a, b), (b, a)}) as shown in Figure 3.2. We will show

that for every rank-1 axiom A we have F1  A⇔ F2  A. The claim then follows immediately

from Lemma 3.4.5. So let A be a rank-1 formula. We show the contrapositions of the above

statement, that is we show that ¬A is satisfiable in F1 if and only if it is satisfiable in F2.

Obviously the negation of a rank-1 formula is rank-1 as well. Let σ1 be a valuation such

that (F1, a, σ1)  ¬A. Then for the valuation σ2 on F2 defined by σ2(a) = σ2(b) = σ1(a) we

obviously have (F2, a, σ2)  ¬A as well. For the other direction suppose that w.l.o.g. for a

world a and a valuation σ2 on F2 we have (F2, a, σ2)  ¬A. Then setting σ1(a) := σ2(b) and

using the fact that since ¬A is a rank-1 formula every propositional variable in ¬A occurs

under exactly one modality we obtain (F1, a, σ1)  ¬A as well.

Thus, since the axiom (T) is equivalent to a shallow rule (see Example 3.2.25), the class

of modal logics that can be captured by one-step rules is properly contained in the class of

modal logics that can be captured by shallow rules.

Theorem 3.4.7 (c). There is no set of shallow rules equivalent over RK to either of the

axioms (4) ��p→ �p or (B) p→ �♦p.

Proof. We use the same technique as above, making use of the fact that by Theorem 3.3.16

translations of shallow rules are non-iterative formulae.

The axiom (4) ��p→ �p modally defines the class of Kripke frames where the accessibility

relation is transitive [BdRV01]. Consider the two frames F1 := ({a, b, c}, {(a, b), (b, c), (a, c)})
and F2 := ({1, 2, 3, 4}, {(1, 2), (2, 3), (1, 4)}) as shown in Figure 3.3. Now suppose that A is a

non-iterative formula. Then ¬A is non-iterative as well. Again we show that ¬A is satisfiable

in F1 if and only if it is satisfiable in F2. Suppose we have a valuation σ2 on F2 and a world

w2 with (F1, w2, σ2)  ¬A. Define a valuation σ1 on F1 and a world w1 as follows:
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• if w2 = 1, then set σ1(a) := σ2(1), σ1(b) := σ2(2), σ1(c) := σ2(4) and set w1 := a

• if w2 = 2, then set σ1(b) := σ2(2), σ1(c) := σ2(3) and σ1(a) arbitrary, and set w1 := b

• if w2 ∈ {3, 4}, then set σ1(c) := σ2(w2) and σ1(a) and σ1(b) arbitrary, and set w1 := c.

Then it is not hard to see that (F1, σ1, w1)  ¬A. The other direction is analogous but easier.

Thus non-iterative axioms cannot define the class of transitive frames and we are done using

Lemma 3.4.5.

The proof for the axiom (B) p → �♦p is analogous using the two frames F1 := (N, succ)
and F2 := ({a, b}, {(a, b), (b, a)}) and the fact that (B) modally defines the class of Kripke

frames where the accessibility relation is symmetric [BdRV01].

Since the axiom (4) is equivalent to a rule with restrictions (again see Example 3.2.25),

this establishes that the class of logics which can be captured by shallow rules is properly

contained in the class of logics which can be captured by rules with restrictions.

Corollary 3.4.8 (c). Let L1 (resp. L0−1 resp. L) be the class of logics for which there is a

sound and complete (with GcCut) sequent system given by a set of modal one-step rules (resp.

shallow rules resp. rules with restrictions). Then L1 $ L0−1 $ L. �

We can also use Lemma 3.4.3 in a slightly different way to establish impossibility results by

making use of the following result.

Definition 3.4.9. The first-order correspondence language is the first-oder language containing

equality and a binary relation symbol. A class F of frames is first-order definable if there is

a formula ϕ in the first-order correspondence language such that for every frame F we have

F ∈ F iff F |= ϕ when interpreted as a first-order structure. A modal formula A ∈ F� is

elementary if the class F of frames modally defined by A is first-order definable.

Theorem 3.4.10 ([vB83, tC05])(c). Every non-iterative modal formula is elementary.

Corollary 3.4.11 (c). There is no set of shallow rules equivalent over RK to either of the

axioms (L) �(�p→ p)→ �p or (Grz) �(�(p→ �p)→ p)→ p.

Proof. The axiom (L) �(�p→ p)→ �p modally defines the class of Kripke frames where the

accessibility relation is transitive and conversely well founded, and the axiom (Grz) �(�(p→
�p)→ p)→ p modally defines the class of frames where the accessibility relation R is reflexive

and transitive and where there are no infinite paths x0Rx1Rx2R . . . with xi 6= xi+1 for every

i ≥ 0. Moreover, it is known that neither of these classes of frames is first-order definable

[BdRV01]. But if either of these classes were captured by a set of shallow rules, then by the

translation of Theorem 3.3.16 and by Lemma 3.4.3 it would be modally defined by a set of

non-iterative axioms, and therefore by Theorem 3.4.10 and the results in [vB76] it would be

first-order definable. Thus there are no such rule sets.
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So far the results have only concerned the rather restrictive rule formats of one-step rules

and shallow rules. Unfortunately it is not clear whether the technique of Lemma 3.4.5 can be

applied to rules with restrictions in general - the format of a translatable axiom might be to

general for this. But we might try to impose some extra conditions on the rule sets in order to

suitably restrict the format of the resulting axioms. Since we are in general mainly interested

in finding cut-free sequent systems, it might be tempting to simply stipulate that the sequent

system generated by our rules be cut-free. But unfortunately this is slightly problematic,

since our translation makes essential use of the cut rule. So we need to impose some further

restrictions. Here we are going to consider the restriction that the rule set is mixed-cut closed

in the sense of Definition 2.4.11. As we have seen in Corollary 2.5.7 this condition entails a

more restricted format of the rules. We will see that this restricted format enables us to show

a number of limitative results.

The choice of the restriction to mixed-cut closed rule sets warrants some discussion. While

mixed-cut closure is a property of rule sets, this property is suggested by considering proofs

of syntactic cut elimination, and in particular proofs which are ’reasonably standard’. For

the latter it seems fair to assume that a ’reasonably standard’ proof proceeds in the spirit

of Gentzen’s original proof and makes essential use of a permutability-of-rules argument. In

particular, one of the main ingredients of such a proof seems to be the technique of permuting a

cut on a modal formula, which is principal in the last applied rule on one side and contextual in

the last applied rule on the other side, into the premisses of the latter rule. But stipulating that

it is always possible to do so amounts to stipulating that the set of modal rules is mixed-cut

closed. It seems that as far as only modal rules are concerned this permutation argument is

essential in virtually all proofs of cut elimination which rely on a modification of Gentzen’s

original proof. Moreover, in the context of standard calculi the closely related condition

of weak substitutivity has been shown to be necessary for a strong form of cut elimination

[CT06a, CT06b]. In case the cut formula is a propositional formula, the other main technique

is to use the Inversion Lemma for the propositional connectives. But this lemma also usually

relies on a permutation-of-rules argument, which amounts to stipulating Gc-invertibility in the

sense of Definition 2.5.3. Thus it seems natural to assume that a reasonably standard proof

for cut-elimination for a sequent system given by GcR makes use of mixed-cut closure of R
and either mixed-cut closure of GcR or Gc-invertibility for R. Now in view of Theorem 2.5.6

whenever we have a mixed-cut closed rule set R which is Gc-inverting we can find an equivalent

rule set R′ such that GcR′ is mixed-cut closed. Thus we might equivalently stipulate that our

rules including the propositional rules are mixed-cut closed.

It is important to note that even though the restriction to mixed-cut closed rule sets is

suggested by the standard (syntactical) technique for proving cut elimination, the results

themselves only rely on a property of the rule set. Thus they are independent of any particular

proof technique and preclude also e.g. semantical proofs of cut admissibility. In view of
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Theorem 2.5.6 we only state these results with respect to rule sets R where GcR is mixed-cut

closed, but the reader should bear in mind that they hold for rule sets where R is mixed-cut

closed and Gc-permuting as well. The first step is to translate the restricted rule format from

Corollary 2.5.7 to the Hilbert-setting. Recall that a logic L has non-trivial modalities if for

every modality neither |=L ♥~p nor |=L ¬♥~p (see Theorem 2.5.6).

Lemma 3.4.12 (c). Let L be logic with non-trivial modalities and monotonicity, i.e. whenever

|=L pi → qi for i ≤ n, then |=L ♥(p1, . . . , pn) → ♥(q1, . . . , qn). If there is a set R of modal

rules (not necessarily including Cong or Mon) such that GcR is mixed-cut closed and GcRConW
is sound and complete for L, then L can be axiomatised in a Hilbert system by translatable

clauses with context formulae in (Λ(V1)∪V2,Λ(V3)∪V4) for V1, . . . , V4 ⊆ Var pairwise disjoint.

If L is a normal Λ�-logic, then the context formulae can be taken to be in ({p1,�p2}, {q1,�q2}).

Proof. It is clear that if a logic satisfies monotonicity, then it also satisfies congruence. Now

suppose we have such a rule set R. Then by Corollary 2.5.7 w.l.o.g. every restriction occurring

in a rule in R contains only variables or modalised variables. Furthermore, by renaming the

variables we may assume w.l.o.g. that there are sets C`, Cr of formulae with C` ∩Cr such that

for every restriction 〈F1;F2〉 of R we have F1 ⊆ C` and F2 ⊆ Cr. Since L has monotonicity

the rules in Mon are sound and we may simply add them to the rule set. Doing this and

then bringing the rules into standard form as in Lemma 3.3.4 does not change the form of

the context formulae. Now translating the rules into equivalent axioms using Theorem 3.3.16

yields the result. The statement for normal modal logics follows immediately.

This again gives us a restricted format for the axioms which we can use in combination

with Lemma 3.4.5 to show impossibility results. In particular axioms of the form specified in

the Lemma have modal nesting depth at most two, and the modalised context formulae use

different variables from those appearing on the top level of the formula. The first property is

already enough to give us an impossibility result for the logic of 2-transitive frames.

Definition 3.4.13. A Kripke frame F = (F,R) is 2-transitive if F  ��p→ ���p.

It is not too hard to see that the class of 2-transitive frames is first order defined by the

formula

∀w∀x∀y∀z(wRx ∧ xRy ∧ yRz → ∃v(wRv ∧ vRz)) .

While the axiom ��p → ���p can easily be translated into the equivalent rule with

restrictions {(⇒ q; 〈{��p}, ∅〉)}/ ⇒ �q and thus is captured (with Cut) by a sequent system

of rules with restrictions, it cannot be characterised by modal axioms of rank 2, and thus it

cannot be captured by a mixed-cut closed set of rules with restrictions.

Theorem 3.4.14 (c). There is no rule set R (not necessarily containing Cong or Mon) such

that GcR is mixed-cut closed and such that GcRConW is sound and (cut-free) complete for

the logic of 2-transitive frames.
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Figure 3.4: The two frames used in the proof of Theorem 3.4.14 (2-transitivity).

Proof. We use Lemma 3.4.5 to show that modal axioms of rank 2 cannot axiomatise this logic.

The result then follows from Lemma 3.4.12.

So consider the two frames F1 = ({a1, a2, a3, a4, b}, {(a1, a2), (a2, a3), (a1, a4), (a3, b), (a4, b)})
and F2 = ({c1, c2, c3, c4, d, e}, {(c1, c2), (c2, c3), (c1, c4), (c3, d), (c4, e)}) as shown in Figure 3.4.

The frame F1 is 2-transitive, while the frame F2 is not. Now let A be a modal formula with

modal rank at most 2. Then clearly the formula ¬A has modal rank at most 2 as well. But if

there are a valuation σ2 on F2 and a world w2 such that F2, w2, σ2  ¬A, then we construct a

valuation σ1 on F1 and a world w1 as follows: if for i ∈ {1, . . . , 4} we have w2 = ci, then set

w1 := ai; if w2 ∈ {d, e} set w1 := b. For i ∈ {1, . . . , 4} set σ1(ai) := σ2(ci). If w2 ∈ {c1, c4, d}
set σ1(b) := σ2(d), otherwise set σ1(b) := σ2(e). Then since ¬A has modal rank at most

2 it is not hard to see that F1, w1, σ1  ¬A as well. Similarly if for a valuation σ1 and

world w1 we have F1, w1, σ1  ¬A then we can construct a valuation σ2 and a world w2 with

F2, w2, σ2  ¬A. Thus we have F1  A iff F1  A and Lemma 3.4.5 yields the result.

The fact that translations of rules of this restricted form have modal rank 2 may already

suffice to show some limitative results, but the second property of such translations is quite

powerful as well: since in a rule with restrictions the variables occurring in a context formulae

only occur in this formula, intuitively the context formulae cannot interact with other context

formulae or the principal formulae. We use this to show that mixed-cut closed sets of rules

with context restrictions cannot capture symmetry of the accessibility relation.

Theorem 3.4.15 (c). There is no rule set R (not necessarily containing Cong or Mon) such

that GcR is mixed-cut closed and such that GcRConW is sound and (cut-free) complete for

the logic of symmetric frames.

Proof. Suppose that there is such a rule set. Then by Lemma 3.4.12 the logic of symmetric

frames can be axiomatised by a set A of translatable clauses with context formulae in

({p1,�p2}, {q1,�q2}). Thus in formulae from A the variables p2 and q2 occur only boxed and

every variable occurring under two layers of modalities is one of these two variables. Now

consider the two frames F1 := ({v, w}, {(v, w), (w, v)}) and F2 := (N, {(n, n+ 1) | n ∈ N}) as

shown in Figure 3.5. Clearly F1 is symmetric, while F2 is not. We show that axioms in A are

valid in F1 iff they are valid in F2. Suppose we have a formula A ∈ A. Then clearly for ¬A as
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a b 0 1 2 3 . . .

F1 F2

Figure 3.5: The two frames used in the proof of Theorem 3.4.15 (symmetry).

well the variables in {p2, q2} only occur boxed and this set contains every variable occurring

under two layers of modalities. Now suppose that for a world w2 ∈ N and a valuation σ2 on

F2 we have F2, w2, σ2  ¬A. W.l.o.g. we have w2 = 0 and define a valuation σ1 on {a, b} by

σ1 �{p2,q2} (a) := σ2 �{p2,q2} (2)

σ1 �var(A)r{p2,q2} (a) := σ2 �var(A)r{p2,q2} (0)

σ1(b) := σ2(1)

Then for the variables p ∈ {p2, q2} we have (F1, a, σ1  �p iff F2, 0, σ2  �p) and (F1, b, σ1 

�p iff F2, 1, σ2  �p). Also for variables q ∈ var (A) r {p2, q2} we have (F1, a, σ1  q iff

F2, 0, σ2  q) and (F1, b, σ1  q iff F2, 1, σ2  q). Thus we have F1, a, σ1  ¬A. Analogously

if for a valuation σ1 we have F1, a, σ1  ¬A, then setting σ2(0) := σ2(2) := σ1(a) and

σ2(1) := σ1(b) we get F2, 0, σ2  ¬A. Thus axioms in A are valid in F1 iff they are valid in

F2 and an application of Lemma 3.4.5 together with the fact that the axiom (B) p → �♦p
modally defines the class of symmetric Kripke frames [BdRV01] yields a contradiction.

Unlike in the case of 2-transitivity there is no known sequent system consisting of rules

with restrictions which is sound and complete (with Cut) for the logic of symmetric frames. It

is not clear whether the technique of this section can be adapted to show that there cannot

be such a system. We encounter a similar situation in the case of the logic GL of transitive

Kripke frames with a conversely well-founded accessibility relation. It is well-known that

this class of frames is modally defined by the axiom (L) �(�p→ p)→ �p and that its logic

is axiomatised by adding (L) to an axiomatisation for the standard modal logic K (see e.g.

[CZ97, BdRV01]). Again it is not clear whether this logic can be captured (using Cut) by

rules with restrictions, but we can show that it cannot be captured by a mixed-cut closed set

of rules with restrictions.

Theorem 3.4.16 (c). There is no rule set R (not necessarily containing Cong or Mon) such

that GcR is mixed-cut closed and such that GcRConW is sound and (cut-free) complete for

the logic GL.

Proof. Again, if there were such a rule set, then by Lemma 3.4.12 this logic could be axiomatised

by a set A of translatable clauses with context formulae in ({p1,�p2}, {q1,�q2}).
Consider the two transitive frames given by the infinite rooted trees with roots v resp.
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Figure 3.6: The two frames used in the proof of Theorem 3.4.16 (GL).

w in Figure 3.6 by setting xRy if x is on every path from the root to y and x 6= y. Since

every branch in F1 is finite the accessibility relation in F1 is conversely well-founded and

we have F1 |= GL. On the other hand, since F2 contains an infinite branch we have F2 6|=
GL. For i = 1, 2 and x ∈ Fi we write Fi[x] for the subframe of Fi generated by the set

{y | x lies on every path from the root to y}. Furthermore for n ∈ N we take fn to be the

canonical isomorphism F1[n]→ F2[n′]. Now let A be an axiom of the form given above. Then

¬A ≡ p1 ∧�p2 ∧ P ∧
∧
i∈I
�Ci ∧

∧
j∈J
♦¬Dj ∧ ♦¬q2 ∧ ¬q1

where for a set V of variables with p1, p2, q1, q2 /∈ V we have P ∈ Prop(V ) and Ci ∈
Frc({p1,�p2}, V, {q1,�q2}) and Dj ∈ F`c({p1,�p2}, V, {q1,�q2}). Strictly speaking the con-

text formulae p1,�p2,¬q1,♦¬q2 need not appear in ¬A, but since this only makes the proof sim-

pler we assume that they do appear. Thus w.l.o.g. the Ci have the form p1∧�p2∧P ′ → q1∨�q2

and the ¬Dj have the form ¬(q1∧�q2∧P ′′ → p1∨�p2) ≡ q1∧�q2∧P ′′∧¬p1∧♦¬p2 , where

P ′, P ′′ ∈ Prop(V ) and where again the formulae p1,�p2, q1,�q2 need not occur, but if they

occur, then they also occur on the top level of ¬A. Now suppose there are a valuation σ1 and

y ∈ F1 such that F1, σ1, y  ¬A.

If y 6= v, then there is a n ∈ N with y ∈ F1[n] and for z ∈ F2[n′] we set σ2(z) := σ1(f−1
n (z)).

Then F2, σ2, fn(y)  ¬A.

If y = v, then for z ∈ F2 we set

σ2(z) :=


σ1(f−1

n (z)) : z ∈ F2[n′]

{p2, q1, q2} ∪ (σ1(0) ∩ V ) : z ∈ F2[ω]

σ1(v) : z = w

Then for every z ∈ F2[ω] and for every i ∈ I we have F2, σ2, z  Ci iff F1, σ1, 0  Ci. Thus

for every such z we have F2, σ2, z 
∧
i∈I Ci and thus since ¬q2 and every ¬Dj are already

satisfied in a F2[n′] we have F2, σ2, w  ¬A.
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For the other direction suppose there are a valuation σ2 and z ∈ F2 such that F2, σ2, z  ¬A.

If there is a n ∈ N with z ∈ F2[n′], then similar to above for y ∈ F1[n] we set σ1(y) := σ2(fn(y))

and obtain F1, σ1, f
−1
n (z)  ¬A.

If z ∈ F2[ω], then for j ∈ J let yDj and yq2 be the first points each in F[ω] satisfying ¬Dj

respectively ¬q2, and let m be the maximal distance of either of these from z. Note that in this

case none of the ¬Dj can contain the formula ♦¬p2, since then the formula �p2 would need to

appear on the top level of ¬A as well and using transitivity we would have the contradiction

F2, z, σ2  �p2∧♦¬p2. Now it is enough to copy the valuations of points in the initial part F of

F2[z] of length m to points in F1[m+ 1] by using the canonical isomorphism f : F1[m+ 1]→ F

and setting σ1(y) := σ2(f(y)) for y ∈ F1[m+ 1]. This gives F1, σ1,m+ 1  ¬A.

If z = w, then similarly to the last case we take yDj and yq2 to be the first points each in

F2[ω] to satisfy a ¬Dj resp. ¬q2 which is not already satisfied in F2[n′] for any n ∈ N. Then

we copy the valuations of points in the initial part of F2[ω] of sufficient length to a branch

F1[m] of F1 where F2[m′] is not the only branch witnessing any of the ¬Dj or ¬q2 and m is at

least the maximal distance from ω to any of the yDj , yq2 . For every y ∈ F1[n] with n 6= m we

set σ1(y) := σ2(fn(y)), and σ1(v) := σ2(w). Then every ¬Dj is witnessed in a F1[n] and thus

we have F1, σ1, v  ¬A.

Thus in total we get F1  A iff F2  A. Now Lemma 3.4.5 gives the result.

In some cases it is possible to use additional properties of the logics to further restrict the

format of the sequent rules and with this the format of the axioms. As an example we consider

the modal logic S5. This logic is particularly interesting, since even though it has a relatively

simple semantic characterisation as the modal logic of Kripke frames where the accessibility

relation is an equivalence relation [BdRV01] and even though as we have seen earlier it is

captured by a sequent system with Cut and rules with restrictions (Example 2.3.7), so far it

has eluded all efforts to construct a “standard” cut-free sequent system for it. Of course there

are cut-free sequent systems for S5 in extended sequent frameworks such as hypersequents

[Avr96, Pog08], nested sequents [Brü09] or labelled calculi [Neg05], but all of these require

additional machinery beyond the standard framework of two-sided sequents. The following

results might be seen as a step towards a formal explication why finding a “standard” cut-free

system is very hard in the least. As a first step since the formula �p→ p must be derivable

in a cut-free sequent system for S5 we can strengthen the claim of Corollary 2.5.7.

Lemma 3.4.17 (c). Let R be a set of modal rules with restrictions (not necessarily including

Cong or Mon) such that GcRConW is sound and cut-free complete for S5 and such that GcR
is mixed-cut closed. Then w.l.o.g. for every restriction 〈F1, F2〉 of a rule in R we have

F1 ⊆ {�p, p} and F2 ⊆ {p}.

Proof. Similar to the proof of Theorem 2.5.6 we first show that by mixed-cut closure of GcR
whenever a rule has a restriction 〈F1, F2〉 such that p ∈ F1 (resp. p ∈ F2) for a variable p,
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then also p ∈ F2 (resp. p ∈ F1). For this again we apply the condition of mixed-cut closure

to the rule in question and one of the rules ∨R or ∧L depending on whether the variable p

was in F1 or F2. The next step is to show that there must be rules R1 = P1/Σ1 ⇒ Π1 and

R2 = P2/Σ2 ⇒ Π2 in R such that

1. �p ∈ Σ1 and (⇒ p) �C=⇒ p for a restriction C of R1

2. �p in Σ2 and �q ∈ Π2; or �q ∈ Π2 and (�p⇒ ) �C= �p⇒ for a restriction C of R2.

For the existence of R1 we proceed as follows. Since the formula �p → p is valid in all

S5-frames, the sequent �p ⇒ p must be derivable in GcRConW and by admissibility of

Weakening therefore also derivable in GcRCon. We now consider all possible derivations of this

sequent. Such a derivation must end with an application of a modal rule followed by a number

of applications of Con. And since rules with restrictions introduce a layer of modalities in

their principal formulae, in the last applied modal rule R the principal formulae must include

�p⇒ . But then for a restriction C of R we must have (⇒ p) �C=⇒ p, since otherwise the

sequent �p⇒ would be derivable using essentially the same derivation. The latter can not

be the case, since the formula �p→ ⊥ is not valid in all S5-frames. The existence of R2 is

shown as in the proof of Theorem 2.5.6 using the S5-valid formula �p→ �(p ∨ q).
Now we simplify the formulae in the context restrictions of rules in R in the familiar way:

if e.g. for a restriction 〈F1, F2〉 of a rule in R we have A ∨B ∈ F2 we use mixed-cut closure

of GcR and get that every sequent satisfying the context restriction of the rule ∨L must also

satisfy the restriction 〈F1, F2〉. Thus we have p ∈ F1 and p ∈ F2. The other propositional

connectives are analogous. If �A ∈ F1, then mixed-cut closure with the rule R2 from above

gives �p ∈ F1. Finally, if �A ∈ F2, then mixed-cut closure with rule R1 from above gives

p ∈ F1. Thus w.l.o.g. we may replace R by an equivalent set R′ of rules where only formulae

of the desired format appear in the restrictions. Obviously this preserves mixed-cut closure of

the rule set.

The translations of rules of this format are not strong enough to capture the logic S5.

Theorem 3.4.18 (c). There is no set R of modal rules (not necessarily containing Mon

or Cong) such that GcR is mixed-cut closed and such that GcRConW is sound and cut-free

complete for S5.

Proof. Similar to Lemma 3.4.12 using the preceding Lemma 3.4.17 it is not too difficult to

see that if there is such a rule set, then S5 can be axiomatised in a Hilbert style system by

translatable clauses with context formulae in ({�p, q}, {r}). The negations of such formulae

are equivalent to formulae of the form

q ∧�p ∧ P ∧
n∧
i=1

�Ai ∧
m∧
j=1

¬�Bj ∧ ¬r
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where for a set V of variables with V ∩{p, q, r} = ∅ we have P ∈ Prop(V ) and for i ≤ n, j ≤ m
we have Ai ∈ Frc({�p, q}, V, {r}) and Bj ∈ F`c({�p, q}, V, {r}). Again, the formulae q,�p

and ¬r need not appear in the formula, but then they may be replaced with > resp. �>.

Importantly, the formula �p (instead of �>) appears in the Ai or Bj only if it also appears

on the top level.

Now consider the two frames F1 := (N,≤) and F2 := (N,N × N). Suppose we have a

translatable clause A with context formulae in ({�p, q}, {r}). Then ¬A is equivalent to a

formula of the form given above. Suppose there is a world w in F2 and a valuation σ2 on F2

such that F2, σ2, w  ¬A. W.l.o.g. we have w = 0. But then defining the valuation σ1 by

setting σ1(n) := σ2(n) for every n ∈ N we get F1, σ1, 0  ¬A as follows: Since F2, σ2, 0  �p we

have F2, σ2, n  p for every n ∈ N. Thus also F1, σ1, n  p for every n ∈ N and F1, σ1,m  �p

for every m ∈ N. Moreover, for every m ∈ N and for every variable s ∈ V ∪ {q, r} we have

F1, σ1,m  s iff F2, σ2,m  s. But since every world m ∈ N is accessible from the world 0 in

F1 iff it is accessible from 0 in F2, and since the only formula in ¬A occurring under more

than one modality is p, we get F1, σ1, 0  ¬A as well. The other direction is similar. Thus in

total we have F1  A iff F2  A. Now again Lemma 3.4.5 gives the result.

Remark 3.4.19. As we have seen in Remark 2.6.6 in the presence of Contraction standard

variants of sequent calculi in which the principal formulae are copied into the premisses are

equivalent to sequent calculi given by rules with context restrictions as long as the underlying

rules are rules with context restrictions. Thus the limitative results of this section also extend

to these kinds of sequent calculi.

3.5 Notes

Axioms to rules. Our translation from axioms to rules is based on the results and methods

in [Sch07, SP09], where rank-1 axioms for modal logics based on classical propositional logic

are translated into one-step rules. An intermediate step, the adaption of this method to non-

iterative axioms based on classical propositional logic, was published in [LP11]. Subsequently,

the translation method was extended to cover non-iterative axioms for modal logics based on

intuitionistic propositional logic in [LP13a], which also contains a heuristic method for the

translation of nested axioms into rules with context restrictions. The full characterisation

of translatable axioms for modal logics based on classical propositional logic will appear in

[LP13b]. The characterisation, in particular the notion of a left- (resp. right-) resolvable

formula was inspired by the definition of the substructural hierarchy in [CGT08, CGT12].

Apart from the already mentioned results for rank-1 axioms in [Sch07, SP09] there seem

not to be many systematic investigations of translations from axioms into a particular format

of logical sequent rules in the standard sequent setting. While e.g. translations of axioms

for normal modal logics into rules of a (Hilbert-style) proof system are given in [BG13], the
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rule format considered there allows for arbitrary formulae occurring in the premisses and

conclusion of a rule. Such rules are then turned into reduced rules, i.e. rules where all formulae

occurring in the premisses or the conclusion are non-iterative, and where every variable occurs

in the scope of a modality.

Concerning extensions of the sequent framework perhaps the best understood connection is

that between modal (temporal) axioms and structural rules for extensions of modal (temporal)

display logic as exhibited in [Kra96]. There we find a translation from primitive axioms, i.e.

axioms of the form A→ B where the formulae A and B contain only propositional variables,

>,∨,∧ or the forward or backward looking temporal modalities ♦F ,♦P , and where A contains

each propositional variable at most once, into structural rules such that extending the standard

display calculus for temporal modal logic with these rules preserves Belnap’s conditions for cut

elimination. Moreover, every such structural rule ist translated back into a primitive axiom,

giving an exact characterisation of those axioms which can be treated in a modal (temporal)

display calculus. Also the recent work [CR13] extended methods used in the investigation of

substructural logics [CGT08, CGT12] to give systematic translations for a wide class of (not

necessarily modal) axioms into structural rules for a cut-free display calculus.

The line of research concerning automatic construction of cut-free labelled sequent calculi as

followed e.g. in [Neg05] is based on viewing normal modal logics as fragments of first order logic.

Modal axioms are first translated into corresponding frame properties expressed as geometric

implications in first-order logic, then the machinery developed in [NvP98, NvP01, Neg03]

is used to turn these first-order axioms into rules in the format of a regular rule scheme.

After closing under contractions the resulting sequent calculi are guaranteed to have cut

elimination. While this method is very general, it heavily relies on the correspondence of

modal axioms to first-order frame conditions and on the fact that the resulting formulae are

geometric implications. Thus it is not suitable e.g. for non-normal modal logics. The method

has subsequently been used to construct sequent calculi for multi-modal constructive modal

logics in [GGN12] and has recently been extended in [CMS13] to handle frame conditions

expressed by ∀∃-formulae as well.

Similarly, the recent work [Lah13] translates frame conditions for normal modal logics

expressed as n-simple first-order formulae into hypersequent rules, which extend a basic

hypersequent system for normal, transitive or symmetric frames. In the first two cases the

resulting calculus has strong cut admissibility, and in the latter case it can be shown to have

the subformula property. In either case the results yield decidability of the logic under scrutiny.

There also has been a fair amount of work on the problem of converting axioms for sub-

structural logics into structural rules for a sequent or hypersequent calculus [CGT08, CGT12,

CST09]. Here the axioms are decomposed using invertibility of some of the propositional rules

and then turned into structural (hyper-)sequent rules. In order to identify the class of axioms

which can be translated in such a way, the authors introduce the substructural hierarchy,
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which inspired our Definition 3.2.2. In case the resulting rules satisfy an additional property,

that of acyclicity, they can be transformed into so-called analytic rules by a process involving

restructuring of the rules to confine the active parts to the left hand sides of the sequents,

and completion of the premisses – a process very similar to our process of variable elimination

(Definition 2.4.1). Using semantical methods it is then shown that the resulting calculi enjoy

a strong form of cut admissibility. These methods are extended in [CMS13] to construct a

hypersequent calculus for the intermediate logic Bd2. In contrast to the structural rules in

the above mentioned works the additional rule here introduces a logical connective.

In the context of paraconsistent logics [CLSZ13] gives an automatic translation from a

restricted class of Hilbert-style axioms into logical rules extending a standard sequent calculus

for positive propositional logic. The axiom format is chosen in such a way that the rules

resulting from the translation are amenable to the extraction of a semantics in terms of partial

non-deterministic matrices introduced in [BLZ12]. This semantics ensures decidability of the

logic in question and is used to check whether the resulting calculus is analytic. Furthermore,

in case the resulting calculus is not analytic, the semantics is used to construct a finite family

of cut-free calculi which are equivalent to the original calculus in the sense that every sequent

is derivable in the latter calculus iff it is derivable in every one of the calculi in the family.

Rules to axioms. The method of using a substitution witnessing projectivity of the formula

corresponding to the premisses of a rule to translate this rule into an equivalent Hilbert-style

axioms was used in [Sch07] to show that one-step rules are equivalent to rank-1 axioms. Our

extension of this method to cover the translation of rules with restrictions based on classical

propositional logic into axioms will be published in [LP13b].

There seem not to be too many investigations into explicit translations of sequent rules into

Hilbert-style axioms. One example is the procedure given in [Kra96] to translate structural

rules in a modal temporal display calculus satisfying Belnap’s conditions for cut elimination

into primitive axioms. The idea here is to first transfer all the active parts to one side of the

sequents using structural equivalences and then turn the resulting rule into an axiom using

Ackemann’s Lemma and the standard translation of the structural connectives into logical

connectives.

Limitative results. Limitative results for particular logics and particular formats of sequent

rules in the literature seem to be sparse. One example for this is the result presented in [Tiu06]

stating that deep inference is necessary to capture the logic BV , an extension of multiplicative

linear logic. Another example are the results in [BCar] giving sufficient conditions for when

a logic can not have an ∃-analytic calculus. The definition of an ∃-analytic calculus is very

broad and encompasses amongst cut-free sequent calculi also cut-free calculi in the framework

of display logic. Thus the method probably can not be adapted to show limitative results e.g.

about the logics S5 or GL, for which such systems do exist.
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4 Construction of Cut-free Sequent

Systems

Given a saturated and tractable set of rules with restrictions we can use the results from

Chapter 2 to show cut elimination and decidability. But in practice we are rarely given such a

saturated and tractable set of rules. For example if we start with a modal logic given as a finite

set of axioms for a Hilbert-style system and use the methods of Chapter 3 to convert these

into sequent rules, the resulting rule set in general is not saturated. Following Question 1.1.3

from the introduction this of course gives rise to the question how to construct saturated rule

sets starting from a (finite) set of rules, and whether it is possible to automate this process.

Following the idea of [PS08, PS09, PS10, PS11] the first step here is to make the rule

set principal-cut closed, that is to absorb cuts on principal formulae into the rule set, by

adding all possible cuts between rules. We will see in the next section how this can be done

in general by considering an appropriate representation of the resulting rules. Moreover,

a closer examination of the representations shows that the rules are even tractable in the

sense of Definition 2.7.3. Unfortunately the resulting rule sets need not be contraction closed

and mixed- and context-cut closed, and thus we do not always obtain cut elimination and

decidability. Nevertheless, by restricting the format of the rules we can show some positive

results, e.g. that it is always possible to construct a cut-free sequent system of our specific

format for logics axiomatised by non-iterative Horn clauses. We illustrate these techniques by

applications to Elgesem’s logic of agency and ability as well as to weak conditional logics.

Constructing principal-cut closed rule sets by hand using this method can be a daunting

prospect: we need to compute many cuts between rules, and for this we need to compute

many cuts between many premisses. Since this can be very tedious and moreover is prone to

errors we introduce in Section 4.2 a graphical tool to manipulate rules with restrictions and

to compute cuts between rules and contractions of rules. Not only can this tool be used to

manually construct cuts between rules, it also helps to spot patterns in the resulting rule set

and can be used to show that a rule set is contraction closed.

4.1 Principal-cut Closure via Cut Trees

When we are faced with the task of constructing a saturated rule set from a given set of rules,

the first step is to absorb cuts between principal formulae into the rule set. This idea probably
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was used many times in the construction of cut-free sequent systems, as suggested e.g. by

the rule set RK for the standard modal logic K and countless others. As a general method it

was put forward e.g. in [PS08, PS09, PS10, PS11]. With the notion of a cut between rules

and with Lemma 2.4.5 we now have tools at hand, which enable us to absorb cuts into the

rule set in a very systematic and purely syntactical way: since for rule sets including the

propositional rules by Lemma 2.4.5 cuts between rules are derivable rules, we may simply

saturate the rule set under the addition of cuts between rules. The resulting rule set then

will be principal-cut closed. Of course there is a price to be paid for this: the resulting rule

set in general will consist of infinitely many rules. This is not necessarily a problem if we

have a tractable representation of the rules, though. For example the set RK of rules for the

standard modal logic K is an infinite set of rules represented in a finite and tractable way.

In this section we will introduce the concept of a cut tree as a possibility to represent the

rules resulting from cutting a number of rules. We will see that under modest restrictions

on the rule set (which can be satisfied by performing a preprocessing step) cut trees of a

small size suffice to represent all possible cuts between rules from the rule set. This will give

us for every finite set of rules a tractable and principal-cut closed rule set equivalent to it.

Unfortunately the resulting rule sets do not necessarily satisfy the other criteria used to ensure

cut elimination and generic decidability, and it is not clear whether there is a generic way

to force these criteria. But if they are satisfied we automatically obtain cut elimination and

decidability results. Let us try to make this more precise.

Definition 4.1.1. Let R be set of rules with restrictions. Define the cut closure of R to be

the minimal (with respect to ⊆) set cc (R) of rules with restrictions such that R ⊆ cc (R) and

such that for every two rules R1, R2 from cc (R) we have cut(R1, R2,♥~p) ∈ cc (R).

Clearly the set cc (R) is principal-cut closed and can be constructed by successively adding

rules cut(R1, R2, A) for rules R1, R1 from R or already constructed.

Example 4.1.2. The rule sets for standard modal logics given in Example 2.4.9 can be seen

to be the cut closures of the rule sets given by translating the corresponding axioms:

1. The rule set RK = {Kn | n ≥ 0} is the cut closure of the rule set {K0,K1,K2}.

2. The rule set RK4 = RK ∪ {4n | n ≥ 0} is the cut closure of the rule set RK ∪ {R4}.

3. The rule set RKT = RK ∪ {Tn | n ≥ 1} is the cut closure of RK ∪ {RT}.

4. The rule set RS4 = RK4 ∪RKT is the cut closure of RK ∪ {R4, RT}.

In general the cut closure of a rule set will contain infinitely many rules, so we would like to

represent the rules from cc (R) in a different way. We do this by making their construction

from rules in R explicit.
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Definition 4.1.3. Let R be a set of rules and let Σ ⇒ Π be a sequent such that for all

formulae A,B ∈ Σ,Π we have var (A) ∩ var (B) = ∅. An R-cut tree with principal formulae

Σ ⇒ Π and leafs R1, . . . , Rn for R1, . . . , Rn ∈ R is a proof of Σ ⇒ Π from the principal

formulae of the Ri using only Cut such that no two cut formulae share a variable. The number

of nodes in a cut tree D is denoted by size (D), its depth by depth (D).

Note that in the definition of a cut tree we only allow applications of the cut rule, that

the cut formulae all are principal formulae of the rules at the leafs of the cut tree and that

no formula occurs twice as a cut formula. The restriction on the variables in the principal

formulae is necessary for turning cut trees into rules.

Example 4.1.4. For R := {K2,K3, RT} the following is an R-cut tree with principal formulae

�r1,�r2,�q1,�q2 ⇒ and leafs K2,K3, RT:

(r1, r2 ⇒ s; C∅)
�r1,�r2 ⇒ �s

K2
(s, q1, q2 ⇒ t; C∅)
�s,�q1,�q2 ⇒ �t

K3

�r1,�r2,�q1,�q2 ⇒ �t Cut
(t⇒ ; Cid)

�t⇒ RT

�r1,�r2,�q1,�q2 ⇒ Cut

where slightly abusing notation we add the rules at the leafs of the cut tree to the leafs of the

derivation.

Intuitively, a cut tree can be seen as (almost) a rule by taking the principal formulae of

the cut tree to be the principal formulae of the rule and by taking the premisses of the rules

forming the leafs of the cut tree as its premisses. Unfortunately these premisses contain

variables which do not occur in the principal formulae. But this can be taken care of using

the technique of variable elimination from Section 2.4. This yields the following notion.

Definition 4.1.5. Let R be a set of rules and let D be an R-cut tree. The rule r(D)

represented by D is defined inductively as follows. If depth (D) = 0, then r(D) is the leaf

of D. If depth (D) > 0, then for two R-cut trees D1 and D2 the cut tree D is of the form
D1 D2

Σ⇒ Π
Cut, where Σ ⇒ Π arises from the principal formulae of D1 and D2 by a cut on a

formula A. Then the rule r(D) is defined as the rule cut(r(D1), r(D2), A).

Example 4.1.6. For R := {K2,K3, RT} let D be the R-cut tree

(r1, r2 ⇒ s; C∅)
�r1,�r2 ⇒ �s

K2
(s, q1, q2 ⇒ t; C∅)
�s,�q1,�q2 ⇒ �t

K3

�r1,�r2,�q1,�q2 ⇒ �t Cut

Then the rule represented by this cut tree is

r(D) = cut(K2,K3,�s) = {(r1, r2, q1, q2 ⇒ t; C∅)}/�q1,�q2,�r1,�r2 ⇒ �t

= K4 .
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Taking E to be the R-cut tree from Example 4.1.4, the rule represented by E thus is

r(E) = cut(r(D), RT,�t) = {(r1, r2, q1, q2 ⇒ ; Cid)}/�r1,�r2,�q1,�q2 ⇒

= T4 .

Intuitively we construct the rule represented by a cut tree by cutting the premisses in the

order given by the cuts of the cut tree. The equivalence of cut trees and cut closure is now

immediate.

Lemma 4.1.7. Let R be a set of rules. Then for every rule R we have that R ∈ cc (R) if and

only if R is represented by an R-cut tree.

Proof. By induction on the construction of rules in cc (R) resp. R-cut trees.

While cut trees thus give us representations of the rules in the cut closure of a rule set, they

are still not entirely what we are looking for. The problem is that the cut trees representing

a rule in general might be arbitrarily big and thus might not be suitable candidates for the

encodings of rules if we want to show tractability of the cut closure of a rule set. To show that

only relatively small cut trees suffice to represent every rule in the cut closure of a rule set we

first note that in a cut tree it is possible to change the order of the cuts without essentially

changing the represented rule. Recall from Definition 2.4.6 that a rule R1 subsumes a rule R2

if the two rules have the same principal formulae and if from the premisses of an application of

R2 we can derive the premisses of the corresponding application of R1 using only Weakening

and Contraction.

Lemma 4.1.8. Let R be a set of rules, and let D1 and D2 be R-cut trees with the same

principal formulae Σ⇒ Π and the same leafs R1, . . . , Rn. Then the rule r(D1) subsumes the

rule r(D2) and vice versa.

Proof. Due to the restrictions on the cut formulae in a cut tree the two cut trees D1 and

D2 differ only in the order of the cuts. But then by Lemma 2.4.4 from the premisses of and

application of r(D2) we can derive all the premisses of the corresponding application of r(D1)

using only Weakening and Contraction and vice versa. Thus each rule subsumes the other.

This allows us to rearrange the cuts in a cut tree without essentially changing the represented

rule. The reason why we may in general have arbitrarily large cut trees representing a rule is

that if one of the premisses of an application of Cut consists of at most two formulae, then

the other premiss contains at least as many formulae as the conclusion of the cut. Thus the

number of formulae might increase as we move upwards along a branch in a cut tree. This

problem disappears if the rule set is closed under cuts with such problematic rules.

Definition 4.1.9. A rule with restrictions is small if its principal formulae contain at most

two formulae. A set R is small-cut closed if for every two rules R1, R2 from R such that at
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least one of R1, R2 is small we have cut(R1, R2,♥~p) ∈ R. The small-cut closure of R is the

minimal (with respect to ⊆) small-cut closed set scc (R) of rules such that R ⊆ scc (R).

Again it is clear that the small-cut closure of a rule set can be constructed by successively

adding all the missing rules. In the case of small-cut closure, however, starting from a finite

set of rules we only need to add finitely many new rules, which can be done in a preprocessing

step.

Example 4.1.10. The rule set R = {K2,K3, RT} from Examples 4.1.4 and 4.1.6 is not

small-cut closed, since the rule RT is small, but the rule cut(K2, RT,�t) = {(q1, q2 ⇒
; C∅)}/�q1,�q2 ⇒ = T2 is not subsumed by any rule in R. The small-cut closure of this rule

set is the set

scc (R) = R∪ {cut(K2, RT,�t), cut(K3, RT,�t)}

= R∪ {T2,T3}

which by construction is small-cut closed.

For small-cut closed rule sets we may simply permute problematic cuts in a cut tree up to

the leafs using Lemma 4.1.8 and then replace them using the rules guaranteed by small-cut

closure. This gives a cut tree without the problematic cuts. But this also means that, provided

the cut tree itself has enough principal formulae, none of the rules at the leafs of the cut tree

has principal formulae containing less than three formulae. Remember from Definition 2.1.8

that the size of a sequent Γ ⇒ ∆ is the number |Γ ⇒ ∆| =
∑

A∈Γ Γ(A) +
∑

A∈∆ ∆(A) of

formulae occurring in it counting multiplicities.

Lemma 4.1.11. Let R be a set of rules. Then for every scc (R)-cut tree D with principal

formulae Σ⇒ Π there exists an scc (R)-cut tree E with principal formulae Σ⇒ Π and leafs

R1, . . . , Rn such that

1. if |Σ⇒ Π| ≤ 2, then depth (E) = 0 (and thus E consists of a single leaf R1 only)

2. if |Σ⇒ Π| > 2, then the principal formulae of each of the rules R1, . . . , Rn contain at

least 3 formulae

3. size (E) ≤ size (D) and the rules represented by D and E subsume each other.

Proof. By induction on the size of the cut tree. The base case is trivial. Suppose the size

of D is n+ 1, and that the premises of the lowermost cut are Γ1 ⇒ ∆1, A and A,Γ2 ⇒ ∆2.

Let D1 and D2 be the induced scc (R)-cut trees with principal formulae Γ1 ⇒ ∆1, A resp.

A,Γ2 ⇒ ∆2. Using the induction hypothesis we obtain scc (R)-cut trees E1 and E2 with

principal formulae Γ1 ⇒ ∆1, A and A,Γ2 ⇒ ∆2, which have the properties mentioned in the

Lemma. In particular for i = 1, 2 we have size (Ei) ≤ size (Di). If the principal formulae of both
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r(E1) and r(E2) contain at least three formulae each, then we are done. Otherwise, assume

that the principal formulae of r(E1) contain at most two formulae. Then E1 consists only of a

leaf R1 with principal formulae Γ1 ⇒ ∆1, A and the formula A occurs in the principal formulae

of exactly one leaf R2 of E2. By Lemma 4.1.8 we may permute the cut on A up to the leaf R2

in E2, resulting in a cut tree representing a rule equivalent to r(D). Since R is small-cut closed

we may now replace the two leafs R1 and R2 and the cut on A with the leaf cut(R1, R2, A).

Using the methods of Lemma 4.1.8 it is not too difficult to see that the rule represented by

this cut tree is still equivalent to the original rule. The constructed cut tree might not yet have

the properties specified in the Lemma, since the principal formulae of the leaf cut(R1, R2, A)

might consist of less than three formulae, but since the size of the constructed cut tree is now

smaller than the size of the original cut tree D, we may simply apply the induction hypothesis

again to obtain an scc (R)-cut tree E with the desired properties. The remaining case that

the principal formulae of r(E2) contain at most two formulae is analogous.

Example 4.1.12. Take R to be the rule set from the previous examples and scc (R) as given

in Example 4.1.10. In the R-cut tree E from Example 4.1.4 we may permute the problematic

cut on the formula �t up to the leafs. This yields the cut tree F given by

(r1, r2 ⇒ s; C∅)
�r1,�r2 ⇒ �s

K2

(s, q1, q2 ⇒ t; C∅)
�s,�q1,�q2 ⇒ �t

K3
(t⇒ ; Cid)

�t⇒ RT

�s,�q1,�q2 ⇒ �t Cut

�r1,�r2,�q1,�q2 ⇒ Cut

Lemma 4.1.8 ensures that the rules r(E) and r(F) are equivalent. Now using small-cut closure

of scc (R) this is turned into the scc (R)-cut tree

(r1, r2 ⇒ s; C∅)
�r1,�r2 ⇒ �s

K2
(s, q1, q2 ⇒ ; Cid)

�s,�q1,�q2 ⇒ �t
cut(K3, RT,�t)

�r1,�r2,�q1,�q2 ⇒ Cut

in which there are no more problematic cuts.

In the cut trees resulting from this procedure there are no cuts where a premiss contains at

most two formulae, and thus the size of the sequents always decreases when moving upwards

towards the leafs on a branch in the cut tree. This allows us to bound the size of the cut tree

in terms of the size of its principal formulae.

Corollary 4.1.13. Let R be a set of rules and let Σ ⇒ Π be a sequent with |Σ ⇒ Π| ≥ 3.

Then every rule in cc (R) with principal formulae Σ⇒ Π is equivalent to a rule represented

by an scc (R)-cut tree of size ≤ 2 · |Σ⇒ Π| − 5.

Proof. By Lemma 4.1.7 every rule R in cc (R) is represented by an R-cut tree, and thus by

Lemma 4.1.11 there is an equivalent rule which is represented by an R-cut tree with the
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(s, q1, q2 ⇒ t; C∅)
�s,�q1,�q2 ⇒ �t

K3
(t⇒ ; Cid)

�t⇒ RT

(r1, r2 ⇒ s; C∅)
�r1,�r2 ⇒ �s

K2
�s �t

Figure 4.1: The cut graph of the cut trees given in Examples 4.1.4 and 4.1.12.

properties specified in the lemma. In particular, if the principal formulae of R consist of at

least three formulae, then the leafs have principal formulae consisting of at least 3 formulae

each. An induction on the structure of such cut trees now shows the bound on the size.

While this bound on the size of the cut trees representing a rule with given principal formulae

already gives us a nice characterisation of the rules in the cut closure of a small-cut closed rule

set, ultimately we would like to use the generic results from Section 2.7 to show decidability

and complexity results for such rule sets. But for this we need the rule sets to be tractable, in

particular rule applications with a given conclusion must have small codes, and we must be

able to check reasonably fast whether a sequent is a premiss of such an application given by a

code. The first requirement is already met if we take the codes of rules to be the small cut

trees guaranteed by the previous corollary. Yet it is not entirely clear that we can recognise

the premisses of such a rule fast enough. In order to show that this is possible we also bound

the depth of the cut trees. For this we represent the cut trees in a slightly different way.

Definition 4.1.14. Let R be a rule set and let D be an R-cut tree with principal formulae

Σ⇒ Π and leafs R1, . . . , Rn. The cut graph for D is the graph whose nodes are the leafs of D,

and where two nodes Ri, Rj are connected by an edge if and only if a formula occurs in the

principal formulae of both Ri and Rj .

Now a formula occurs in the principal formulae of two different leafs of a cut tree if and

only if it is the cut formula for a cut in the cut tree. Hence two nodes in the cut graph for a

cut tree are connected by an edge if and only if in the cut tree there is a cut on a formula

occurring in the corresponding leafs of the cut tree. Thus cut graphs capture the “essence” of

cut trees: the structure of the cuts modulo rearrangement.

Example 4.1.15. The cut graph for the cut tree E given in Example 4.1.4 is the graph given

in Figure 4.1. Here the edges are labelled with the corresponding cut formulae. The cut tree

E can be constructed from the graph by taking the cut corresponding to the edge labelled

with the formula �t as the lowermost cut. If instead we take the cut corresponding to the

edge labelled with �s as the lowermost cut we obtain the cut tree D given in Example 4.1.12.

Since two disjoint generated subtrees of a cut tree can only be joined by at most one cut,

cut graphs do not contain cycles and thus can be taken to be (undirected and rooted) trees

if we take an arbitrary node as the root (see e.g. [Die06] for more details on these notions).

Using the following adaption of the 2-3-Lemma from [ISH65] we can show that in a cut graph
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we can always find an edge which divides the cut graph into two graphs of (very) roughly the

same size. Here for a rooted tree T and a node x in T we denote the subtree of T generated

by the set of nodes y for which x lies on every path from the root to y and which has x as the

root by Tx, and the number of nodes in T by |T |. The children of a node x in a rooted tree are

the nodes y such that x is the immediate predecessor of y on every path from the root to y.

Lemma 4.1.16. Let k ∈ N and T be a rooted tree, such that k + 1 < |T | and each node has

at most k children. Then there is a node x in T , such that
⌈

1
k+2 · |T |

⌉
≤ |Tx| ≤

⌊
k+1
k+2 · |T |

⌋
.

Proof. We construct a series (x0, x1, . . . , xd) of nodes in T , such that x0 is the root, and xd is

a leaf in the following way. Let x0 be the root. For i ≥ 0 and xi not a leaf let xi+1 be a child of

xi, such that |Txi+1 | is maximal. Since xi has at most k children we have |Txi | ≤ k · |Txi+1 |+ 1.

Now let

i0 := min

{
i ∈ {0, . . . , d} | |Txi | <

1

k + 2
· |T |

}
.

Since Tx0 = T clearly we have i0 > 0. Then xi0−1 is the desired node. Indeed we have

|Txi0−1 | ≤ k · |Txi0 |+ 1 < k · 1

k + 2
|T |+ 1 ≤ k

k + 2
|T |+ 1

k + 2
|T |

which yields the upper bound. The lower bound follows by minimality of i0.

Since an edge in a cut graph corresponds to a cut in the underlying cut tree, this enables us

to rearrange the cuts in the latter and so find an equivalent balanced cut tree with bounded

depth.

Lemma 4.1.17. Let R be a set of rules such that the principal formulae of every rule in R
contain at most k formulae, and let Σ⇒ Π be a sequent with |Σ⇒ Π| ≥ 3. Then every rule in

cc (R) with principal formulae Σ⇒ Π is subsumed by a rule represented by an scc (R)-cut tree

of size at most 2 · |Σ⇒ Π| − 5 and depth at most ck · log2 |Σ⇒ Π|+ k for ck := (log2
k+2
k+1)−1.

Proof. Let R be a rule in R. We show how to construct a cut tree E with the desired

properties. By Corollary 4.1.13 we know that the rule R is equivalent to a rule represented by

an scc (R)-cut tree D with principal formulae Σ⇒ Π and size at most 2 · |Σ⇒ Π| − 5. Thus

the cut tree D has at most |Σ ⇒ Π| − 2 leafs, and the cut graph G for D has at most that

many nodes. Furthermore, since the principal formulae of every rule in R contain at most k

formulae and since cuts with small rules do not increase the number of principal formulae of a

rule, the principal formulae of every rule in scc (R) contain at most k formulae as well. Thus,

taking an arbitrary node in G as the root, every node in G has at most k children. This means

that we may apply Lemma 4.1.16 to find a node x of G such that⌈
1

k + 2
· |G|

⌉
≤ |Gx| ≤

⌊
k + 1

k + 2
· |G|

⌋
.
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Then writing G r Gx for the rooted subtree of G generated by the complement of the set of

nodes of Gx in G we also have |G r Gx| ≤
⌊
k+1
k+2 · |G|

⌋
. The new cut tree E (with principal

formulae Σ⇒ Π) is now constructed by taking as the lowermost cut the cut in D corresponding

to the (unique) edge connecting Gx and G r Gx. For the next level of cuts we repeat the

process for the cut graphs Gx and G r Gx. Continuing upwards in this fashion after at most

log k+2
k+1

(|Σ⇒ Π| − 2) steps we arrive at a sub-graph with at most k + 1 nodes, which we insert

into E in the form of a sub-derivation of depth at most k. Thus the cut tree E has depth at

most

log k+2
k+1

(|Σ⇒ Π| − 2) + k ≤
(

log2

k + 2

k + 1

)−1

· log2 |Σ⇒ Π|+ k .

By construction the size of E is the same as the size of D, and by Lemma 4.1.8 the represented

rules are equivalent.

Thus for finite small-cut closed rule sets we have small representations of all the rules in

their cut closure. But we even get a bit more. If we start with a finite set of rules, then

computing the small-cut closure of this rule set only adds finitely many new rules. Moreover,

this can be done in a preprocessing step, and thus only adds a constant time overhead to the

construction of the individual rules. This gives us a representation of the cut closure for every

finite set of rules.

Definition 4.1.18. Let R be a set of rules whose principal formulae contain at most k

formulae each. The rule set generated by R is the set Rp of rules represented by scc (R)-cut

trees with depth at most ck · log2 |Σ⇒ Π|+ k where Σ⇒ Π are their principal formulae and

ck = (log2
k+2
k+1)−1 is the constant introduced in Lemma 4.1.17.

Theorem 4.1.19. Let R be a finite set of rules with G[cim] ⊆ R. Then the rule set Rp is

principal-cut closed, tractable and equivalent to R.

Proof. Since the rule set R contains the propositional rules, equivalence of R and scc (R)

follows by Lemma 2.4.5. Since R is finite, we know that for some k the principal formulae of

every rule in R contain at most k formulae. Thus by Lemma 4.1.17 we have equivalence of

cc (R) and Rp. Equivalence of R and cc (R) follows from Lemma 2.4.5.

To see that Rp is principal-cut closed consider two rules R1, R2 from Rp. Since both of

these rules are represented by scc (R)-cut trees, the rule cut(R1, R2,♥~p) is also represented by

a scc (R)-cut tree, and again using Lemma 4.1.17 there is a rule represented by an scc (R)-cut

tree of bounded size and depth which subsumes the rule cut(R1, R2,♥~p).
To see that the rule set is tractable we take the encodings of applications of rules in Rp to

be the small cut trees representing rules in Rp together with a substitution of their principal

formulae and a context. Then given a sequent Γ⇒ ∆ and such an encoding of an application

of a rule in Rp we can check in space polynomial in |Γ ⇒ ∆| that the conclusion of the

application of the rule given by the encoding is Γ⇒ ∆. Furthermore, since the cut-trees have
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depth at most ck · log2 |Γ⇒ ∆|+k, each of the premises of the represented rules is constructed

by cutting at most
(
2`
)ck·log2 |Γ⇒∆|+k

= |Γ⇒ ∆|`·ck · 2`·k many premises of rule applications

at the leaves, where ` is the maximal arity of modalities. Thus given a sequent we can check

whether it is a premiss of a rule application given by a small cut tree, a substitution of its

principal formulae and a context by guessing at most this number of premisses of rules at the

leafs of the cut tree, performing the cuts according to the cut tree, substituting the variables

and adding the context. Since the values of k, ck and ` only depend on the rule set and not

on the input, the check can be done in time polynomial in the size of the encoding of the

rule application. Therefore we can check whether a sequent is a premiss of the application in

nondeterministic polynomial time and thus in polynomial space (in the size of the encoding of

the rule application).

Ideally, we would like to use this representation of the cut closure to decide derivability

for logics given by finite sets of rules. Unfortunately, for this we also need the rule set to be

closed under contractions and context- and mixed-cuts. These are properties which are not

automatically guaranteed by the construction of the rules in Rp.

Corollary 4.1.20. Let R be a finite set of rules. If the rule set Rp is right- or left-contraction

closed, and mixed- and context-cut closed, then RpCon has cut elimination. If Rp is contraction

closed and mixed- and context-cut closed, then the derivability problem for R is in Exptime.

Proof. Cut elimination follows from Theorems 2.4.16 and 4.1.19, and the complexity bound

follows from Corollary 2.7.6.

It is not clear whether the rule set can be automatically modified to satisfy these additional

conditions. Since in contrast to principal-cut closure the properties of mixed- and context-cut

closure are not monotone in the sense that adding a rule might destroy these properties, it is

doubtful whether we can simply saturate the rule set as in the case of principal-cut closure.

For contraction closure we could simply add all the missing rules, but it is not clear how to

do this in a way that the resulting rule set is still tractable. Some of these obstacles can be

evaded by restricting the rule format to that of shallow rules. Since sets of shallow rules are

always mixed- and context-cut closed (Example 2.4.12), for these rule sets we only need to

require contraction closure. In case we have contraction closure, then by Theorem 2.7.8 we

obtain an even lower complexity bound.

Corollary 4.1.21. Let R be a finite set of shallow rules. If the rule set Rp is contraction

closed, then RpCon has cut elimination and the derivability problem for R is in Pspace. �

Finally, if the principal formulae of the rules in a rule set contain at most one formula on

the right hand side, then the rule set is trivially right-contraction closed. Thus for such rule

sets we automatically obtain an equivalent cut-free sequent system. We can also characterise

the corresponding class of axioms for Hilbert-style systems.
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Definition 4.1.22. A formula is a Horn clause if it is of the form
∧n
i=1Bi → C for n ≥ 0

and formulae B1, . . . , Bn, C.

Theorem 4.1.23. Let R be a finite set of shallow rules where the right hand sides of the

principal formulae of each rule contain at most one formula. Then RpCon has cut elimination.

Thus if A is a finite set of non-iterative translatable Horn clauses and if RA consists of the

translations of the axioms in A according to Section 3.1, then the sequent system given by

(G[cim]RA)pCon has cut elimination.

Proof. Cuts between shallow rules with at most one formula in the right hand side of the

principal formulae also are shallow rules and have at most one formula on the right hand

side of the principal formulae. Thus the generated rule set Rp is context- and mixed cut

closed (compare Example 2.4.12) and right-contraction closed (compare Example 2.4.14).

Hence by Theorems 2.4.16 and 4.1.19 it has cut elimination. Given a finite set of translatable

non-iterative Horn clauses, the translation from Section 3.2 gives an equivalent finite set of

shallow rules (compare Corollary 3.2.26). It is not hard to see that the right hand sides of the

principal formulae of these rules contain at most one formula.

Thus in particular we have cut-free sequent systems for every modal logic based on intu-

itionistic propositional logic and axiomatised by non-iterative translatable Horn clauses and

for every modal logic based on classical logic and axiomatised by non-iterative Horn clauses.

Example 4.1.24. 1. The rule set {K2}p is (classically and intuitionistically) equivalent to

the axiom �p ∧�q → �r and G[ci]{K2}pCon has cut elimination.

2. We have seen in Example 3.2.17 that the axioms �p ∧�q → �(p ∧ q) and (IK2) �(p→
q) ∧ ♦p→ ♦q for constructive modal logic CK [Wij90, BdPR01] translate into the rules

K2 {(p1, p2 ⇒ q; C∅)}/�p1,�p2 ⇒ �q

RIK2 {(p, q ⇒ r; C∅)}/�p,♦q ⇒ ♦r

Furthermore, it is not hard to see that the axiom �> translates into the rule K0 =

{( ⇒ p; C∅)}/ ⇒ �p. Thus setting RCK := {K2, RIK2,K0} we have that the rule

set GiRpCMKCon is sound and complete for constructive modal logic CMK and has cut

elimination.

More examples are given by weak systems of conditional logics [Che75, Che80, Nut80,

OPS07, PS11]. Here we consider the logics in a purely syntactical way. Some stronger

conditional logics will be examined in more detail in Chapter 5.

Example 4.1.25 (c). Let Λ� be the set of connectives containing in addition to the standard

boolean connectives the binary connective �. We write this connective in infix notation and
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(CA) (p� r) ∧ (q� r)→ (p ∨ q� r)

(CC) (p� q) ∧ (p� r)→ (p� q ∧ r)
(CEM) (p� q) ∨ (p� ¬q)

(CM) (p� (q ∧ r))→ (p� q) ∧ (p� r)

(CMon) (p� q) ∧ (p� r)→ ((p ∧ q)� r)

(CN) p� >
(CS) p ∧ q → (p� q)

(CSO) (p� q) ∧ (q� p)→ ((p� r)↔ (q� r))

(CV) (p� q) ∧ ¬(p� ¬r)→ ((p ∧ r)� q)

(ID) p� p

(MP) (p� q)→ (p→ q)

Table 4.1: Hilbert-style axiomatisations for conditional logics formulated using �.

read the formula A� B as “A conditionally implies B”. Consider the axioms for conditional

logics based on classical propositional logic given in Table 4.1. Since each of the axioms in

S := {(CA), (CC), (CM), (CMon), (CN), (CS), (CSO), (ID), (MP)}

is equivalent to finitely many non-iterative translatable Horn clauses, by the methods of

Chapter 3 for every set A of axioms with A ⊆ S we have a corresponding set RA of

translations of these axioms into rules. Thus for such a set A the sequent system given by the

rules RpA is equivalent to A and by Theorem 4.1.23 the sequent system given by GcRpACon
has cut elimination.

Of course now the question is how it is possible to check whether the cut closure of a rule

set is saturated. In particular, the rule set needs to be contraction closed. The following

lemma allows us to restrict the check to rules of a specific form. Remember from Lemma 2.4.4

that for a set P of premisses and a sequent Θ⇒ Ξ the set P(Θ⇒ Ξ) contains all sequents

Θ �F1 ,Σ⇒ Π,Ξ �F2 for premisses (Σ⇒ Π; 〈F1, F2〉) in P.

Lemma 4.1.26. Let P1 and P2 be sets of premisses, and let Θ⇒ Ξ be a sequent. If every

sequent in P2(Θ⇒ Ξ) is derivable from P1(Θ⇒ Ξ) using only ConW, then for every variable

p every sequent in (P2 	 p)(Θ⇒ Ξ) is derivable from (P1 	 p)(Θ⇒ Ξ) using only ConW.

Proof. Take a sequent Γ⇒ ∆ from (P2 	 p)(Θ⇒ Ξ). We look at the possible cases.

If Γ⇒ ∆ ∈ P2(Θ⇒ Ξ), then p does not occur in Γ⇒ ∆. Moreover, since the sequent is

derivable from P1(Θ⇒ Ξ) using only ConW there is a sequent Γ′ ⇒ ∆′ from P1(Θ⇒ Ξ) with
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Supp (Γ′) ⊆ Supp (Γ) and Supp (∆′) ⊆ Supp (∆). Thus p does not occur in Γ′ ⇒ ∆′ either and

we have Γ′ ⇒ ∆′ ∈ (P1 	 p)(Θ⇒ Ξ). Thus Γ⇒ ∆ follows from (P1 	 p)(Θ⇒ Ξ) using only

ConW.

Otherwise we have Γ ⇒ ∆ = Σ1,Σ2 ⇒ Π1,Π2 where the sequents Σ1 ⇒ Π1, p and

p,Σ2 ⇒ Π2 are in (P2 	 p)(Θ ⇒ Ξ). Thus we have sequents Σ′1 ⇒ Π′1 and Σ′2 ⇒ Π′2 in

P1(Θ⇒ Ξ) with

Supp
(
Σ′1
)
⊆ Supp (Σ1) Supp

(
Π′1
)
⊆ Supp (Π1, p)

Supp
(
Σ′2
)
⊆ Supp (p,Σ2) Supp

(
Π′2
)
⊆ Supp (Π2) .

But then at least one of the three sequents

Σ′1 ⇒ Π′1 Σ′2 ⇒ Π′2 Σ′1,Σ
′
2 ⇒ Π′1,Π

′
2

must be in (P1	 p)(Θ⇒ Ξ), and thus the sequent Γ⇒ ∆ follows from (P1	 p)(Θ⇒ Ξ) using

only ConW.

Using this lemma we can show that it is enough to only consider contractions along a path

in a cut graph.

Definition 4.1.27. Let R be a set of rules. A rule from cc (R) is called a path rule, if it is

represented by a cut tree whose cut graph is a path.

Example 4.1.28. The rules represented by the cut trees given in Examples 4.1.4 and 4.1.12

are path rules, since the cut graph for these cut trees (shown in Figure 4.1) is a path.

In particular, if R is a leaf of a cut tree witnessing that a rule is a path rule, then at most

two formulae of the principal formulae of R occur as cut formulae in the cut tree.

Theorem 4.1.29. Let R be a set of rules. Suppose that all contractions of path rules from

cc (R) are subsumed by rules in cc (R). Then cc (R) is contraction closed.

Proof. Let R be a rule in cc (R). We need to show that every contraction of R is subsumed

by a rule in cc (R). By Lemma 4.1.7 the rule R is represented by a cut tree D. Let G be

the cut graph for D. Consider the (left or right) contraction of R on the literals ♥~p and ♥~q.
These two literals occur in the principal formulae of exactly one leaf of D each. Let H be

the cut graph induced by the path connecting the two nodes of G corresponding to these two

leafs. Then imposing an arbitrary ordering on the cuts from H we obtain a cut tree E which

represents a path rule Q in cc (R). But since cc (R) is contraction closed for path rules, the

contraction of Q on ♥~p and ♥~q is subsumed by a rule S in cc (R). Let H′ be the cut graph

for the cut tree for the rule S. Then since the rule S has the same principal formulae as the

contraction of the rule Q, in the cut graph G we may replace the path H by H′, connecting
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the remaining parts of G to those nodes of H′ where the cut formula corresponding to the

according edge occurs in the principal formulae. Again, taking an arbitrary ordering of the

cuts we obtain a cut tree. Let T be the rule represented by this cut tree. Then the rule T has

the same principal formulae as the contraction of the rule R on ♥~p and ♥~q, and by repeated

applications of Lemma 4.1.26 all the premisses of the latter are derivable from the premisses

of T using only ConW. Thus the contraction of R is subsumed by a rule in cc (R).

In particular, since rules with at most one formula in the principal formulae can not be used

in the construction of the path rules used in the proof of Theorem 4.1.29, such rules can be

added to a rule set without destroying contraction closure of the cut closure.

Corollary 4.1.30. Let R be a set of rules such that cc (R) is contraction closed. Then for

every rule R with principal formulae Σ ⇒ Π such that |Σ ⇒ Π| = 1 the set cc (RR) is

contraction closed.

Proof. Since the rule R has only one principal formula, nodes in a cut graph labelled with

R have degree one. Moreover, in the cut tree representing a rule Q no principal formulae

of Q occur in a leaf labelled with R. Thus when constructing the cut graph H in the proof

of Theorem 4.1.29 above, no node of H is labelled with R. Reasoning as above, contraction

closure of cc (RR) is now seen to depend only on contraction closure of cc (R).

This is an important result, since it means that in order to check whether the cut closure of

a rule set is contraction closed it is sufficient to check contraction closure of the cut closure

of the subset consisting of ’big’ rules, i.e. rules with at least three formulae in the principal

formulae. This also means that once we have established contraction closure of the cut closure

of a rule set we may add ’very small’ rules, i.e. rules whose principal formulae consist of only

one formula, for free. We can use this to uniformly establish contraction closure for some basic

systems of conditional logic and thus uniformly re-establish the decidability and complexity

results for these systems found in [Che75, OS01, OPS07, PS09, PS11].

Theorem 4.1.31 (c). Let A ⊆ {(CC), (CEM), (CM), (CN), (CS), (ID), (MP)} with (CM) ∈ A
and with (CN) ∈ A whenever (CEM) ∈ A. Then if RA is the set of rules consisting of the

translations of the axioms in A the rule set (RA)p is contraction closed. Moreover, the sequent

calculus given by Gc(RA)pCon has cut elimination and the derivability problem for this system

is in Pspace.

Proof. Translating the axiom (CM) of Table 4.1 into a rule using the methods of Section 3.2

(see in particular Remark 3.2.27) gives the rule

RCM {(p⇒ q; C∅), (q ⇒ p; C∅), (r ⇒ s; C∅)}/p� r ⇒ q� s

124



4.2. SEQUENT RULES IN PICTURES

which states monotonicity of � in the second argument. Using this to translate the axioms

(CC), (CEM) and (CN) into rules we obtain the rules

RCC {(pi ⇒ pj ; C∅) | i, j ∈ {1, 2, 3}, i 6= j} ∪ {(q, r ⇒ s; C∅)}/p1 � q, p2 � r ⇒ p3 � s

RCEM {(p⇒ q; C∅), (q ⇒ p; C∅), (⇒ s, t; C∅)}/ ⇒ p� s, q� t

RCN {(⇒ q; C∅)}/ ⇒ p� q .

Note that the rule RCN is the right contraction of RCEM. It is now not too difficult to see that

path rules (or indeed any rules) in cc ({RCM, RCC, RCEM, RCN}) have the form CKCEMn,m =

Pn,m/p1 � q1, . . . , pn� qn ⇒ pn+1 � qn+1, . . . , pn+m� qn+m for n ≥ 0,m ≥ 1 with

Pn,m := {(pi ⇒ pj ; C∅) | i, j ≤ n+m, i 6= j} ∪ {(q1, . . . , qn ⇒ qn+1, . . . , qn+m; C∅)}

and that path rules (or again any rules) in cc ({RCM, RCC}) have the form CKn := CKCEMn,1

for n ≥ 1, and thus that both of these rule sets are contraction closed (see also [Che80, PS08,

PS09, PS10, PS11]). Thus by Corollary 4.1.30 all extensions of these rule sets with rules

whose principal formulae contain at most one formula are contraction closed as well. This

gives contraction closure and cut elimination for the rule sets GcRpACon for all sets A as stated

in the theorem. The complexity result then follows from the results in Section 2.7.

4.2 Sequent Rules in Pictures

The results of the previous section show that it is possible to construct principal-cut closed and

tractable rule sets for many modal logics in an automatic way by considering a representation

of the rules in the cut closure of a rule set as cut trees. Unfortunately the construction does

not guarantee contraction closure or context- or mixed-cut closure of the resulting rule set. In

order to check whether e.g. contraction closure holds, it is sometimes advisable to explicitly

construct all the rules in the rule set, as done e.g. in the proof of Theorem 4.1.31. Moreover,

in some cases we might prefer an explicit representation of the rules to their representation in

terms of cut trees, e.g. if we would like to use the rules in a very efficient decision procedure.

Thus sometimes we still need to construct the principal-cut closure of a rule set by hand. One

of the standard methods for this is to saturate the rule set under the addition of cuts between

rules until a pattern in the form of the rules can be distinguished. As can be testified by anyone

who tried to do this for a reasonably complex logic, due to the sheer number of sequents which

need to be handled in each step, this can be a very laborious and error-prone process. This

holds especially if the modalities have arity greater than one or are not monotone.

To address this issue we now introduce a graphical tool to aid the manual handling of

rules, cuts between rules and contractions of rules. It should be noted that ’tool’ here is

meant in a theoretical sense and not in the sense of an implementation. The general idea is to
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represent sequents as doodles, that is as arrows with multiple heads and tails. Then performing

a cut between two sequents amounts to connecting heads and tails of arrows, and applying

Contraction is mirrored by identifying two heads or two tails. This presentation is extended

in a natural way to rules and the operations of cut between rules and contraction of a rule.

There are two major advantages to this presentation: The first is that as mentioned earlier

this presentation greatly reduces the amount of effort required for computing cuts between

rules. The second advantage is that it allows us to spot patterns in the construction of rules

more easily. Being able to do so is very important, since the principal-cut closure of a rule

set in general comprises infinitely many rules of many different shapes, and thus we need to

identify a suitably regular subset of rules which subsumes all the rules in the constructed set.

The examples in this section mainly serve illustrative purposes, and thus are relatively simple

examples such as the standard normal modal logics or the weak conditional logics considered

in the last section. The tool will be put to full use in the next chapter, where we will construct

new cut-free sequent calculi for stronger conditional logics. Let us start with the basic notion.

Definition 4.2.1. Let F be a set of formulae. A doodle over F is an arrow with multiple

heads and tails pointing to (resp. emerging from) formulae in F . A formula occurs positively in

a doodle if a head points to it, and negatively if a tail emerges from it. A doodle d represents

a sequent Γ⇒ ∆ if exactly the formulae in Γ occur negatively in d and exactly the formulae

in ∆ occur positively in d and if moreover the multiplicity of every formula in Γ is the number

of heads pointing to it in d and the multiplicity of every formula in ∆ is the number of tails

emerging from it in d.

It is clear that sequents and doodles are in one-to-one correspondence.

Fact 4.2.2. Every sequent is represented by exactly one doodle and every doodle represents

exactly one sequent.

Using this simple correspondence we represent sequents in a graphical way.

Example 4.2.3. The following is a doodle over the set {p, q ∧ r,�s, t,��s} of formulae.

p q ∧ r �s t ��s

The formulae p, q ∧ r,�s occur negatively in the doodle, the formulae t and ��s positively.

The sequent represented is p, q ∧ r,�s⇒ t,��s,��s.

This allows us to formulate the graphical counterpart of a cut between sequents in an

intuitive way as the result of connecting heads and tails of doodles.

Definition 4.2.4. Let A be a formula and let d1 and d2 be doodles such that A occurs

positively in d1 and negatively in d2. Then the cut between d1 and d2 on A is the doodle

arising from d1 and d2 by connecting one head of d1 pointing to A to one tail of d2 emerging

from A.
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Example 4.2.5. Let d1 be the doodle from Example 4.2.3 and let d2 be the doodle representing

the sequent ��s, p⇒ �u. Then the cut between d1 and d2 on ��s is constructed the following

way. We start with the two doodles d1 and d2 as given in (4.1) below.

p q ∧ r �s t ��s ��s p �u (4.1)

p q ∧ r �s t ��s p �u (4.2)

p q ∧ r �s t ��s p �u (4.3)

Now we identify the occurrences of the cut formula ��s and connect one head of d1 pointing

to this formula to one tail of d2 emerging from it as in (4.2). Finally we ’yank the wire’, which

gives the doodle shown in (4.3). In this case we still have a head pointing to the formula ��s.

If this is not the case we also omit the formula.

Again it is clear that performing cuts on sequents corresponds to performing cuts on doodles.

Fact 4.2.6. If the doodles d1 and d2 correspond to the sequents Γ1 ⇒ ∆1, A and A,Γ2 ⇒ ∆2,

then the cut between d1 and d2 on A corresponds to the sequent Γ1,Γ2 ⇒ ∆1,∆2.

Similarly, we have a graphical analogue to applying Contraction to a sequent.

Definition 4.2.7. Let d be a doodle with at least two positive (resp. negative) occurrences

of the formula A. The right contraction (resp. left contraction) of d on A is the doodle arising

from d by identifying two heads pointing to A (resp. two tails emerging from A). The maximal

contraction of a doodle d is the result of identifying for every formula A all heads pointing to

A and all tails emerging from A.

Example 4.2.8. Let d be the doodle given in (4.3) above. Then the left contraction of d on

the formula p is the doodle

p q ∧ r �s t ��s �u

where the superfluous occurrence of the formula p has been omitted. This is also the maximal

contraction of d.

Fact 4.2.9. If a doodle d corresponds to the sequent Γ⇒ ∆, A,A, then the right contraction

of d on A corresponds to the sequent Γ ⇒ ∆, A. If the doodle d corresponds to the sequent

B,B,Σ⇒ Π, then the left contraction of d on B corresponds to the sequent B,Σ⇒ Π. If the

doodle d corresponds to the sequent Θ⇒ Ξ, then the maximal contraction of d corresponds to

the sequent Supp (Θ)⇒ Supp (Ξ).
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In order to formulate the graphical analogue of cuts between rules we need a notion

corresponding to variable elimination for a set of premisses. Of course doodles correspond to

sequents instead of premisses, and thus the following definition should be read with variable

elimination for a set of sequents in mind. For technical reasons we furthermore maximally

contract the resulting doodles.

Definition 4.2.10. Let D be a finite set of doodles and let p be a variable. Then the

p-elimination of D is the set D 	 p of doodles containing all maximal contractions of cuts

between doodles d1 and d2 on p for d1, d2 ∈ D and all doodles from D in which p does not

occur.

Example 4.2.11. We construct the p-elimination of the four doodles given in (4.4) below:

p q ∧ r �s t ��s �ut�us (4.4)

p q ∧ r �s t ��s �ut�us (4.5)

q ∧ r �s ��s �ut�us (4.6)

In a first step we connect the head pointing to the formula p to the tails emerging from p in

all possible ways, giving the doodles in (4.5). Then we maximally contract all the doodles, in

this case identifying the two heads pointing to the formula t. Together with omitting the now

superfluous instances of the formulae p and t this gives the doodles in (4.6).

Remark 4.2.12. Note that a variable p might still occur in the p-elimination of a set of doodles,

e.g. if it had two heads of the same doodle pointing at it. In our case this will not be a

problem, since this will not occur in the doodles we consider. The definition could be extended

to demand multiple cuts completely removing the variable p in this case, but this would

necessitate a in this case needless complication to avoid pathological cases as for the set of

doodles representing the sequents Γ⇒ ∆, p, p and p, p,Σ⇒ Π.

The connection with the notion of variable elimination for a set of premisses is as follows.

Lemma 4.2.13. Let P be a set of premisses and let Γ ⇒ ∆ be a sequent which does not

contain any variables occurring in the premisses P and such that Supp (Γ) = Γ and Supp (∆) =

∆. If D is the set of doodles corresponding to the sequents in P(Γ ⇒ ∆), then for every

variable p occurring in P the set D 	 p is the set of doodles corresponding to the sequents in

(P 	 p)(Γ⇒ ∆).

Proof. We first show that every sequent in (P 	 p)(Γ ⇒ ∆) is represented by a doodle in

D	 p. Let (Σ⇒ Π; 〈F1, F2〉) be a premiss from P 	 p and consider the corresponding sequent
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Γ �F1 ,Σ⇒ Π,∆ �F2 from (P 	 p)(Γ⇒ ∆). If the sequent is in P(Γ⇒ ∆), then the variable p

does not occur in it. Furthermore, we have a doodle d ∈ D corresponding to the sequent. But

since p does not occur in the doodle d we have d ∈ (D	 p) as well. Suppose on the other hand

that there are premisses (Σ1 ⇒ Π1, p; 〈G1, G2〉) and (p,Σ2 ⇒ Π2; 〈H1, H2〉) in P such that

(Σ⇒ Π; 〈F1, F2〉) = (Supp (Σ1,Σ2)⇒ Supp (Π1,Π2) ; 〈G1 ∪H1, G2 ∪H2〉) .

Then in D we have two doodles d1 and d2 corresponding to the two sequents

Γ �G1 ,Σ1 ⇒ Π1, p,∆ �G2 and Γ �H1 , p,Σ2 ⇒ Π2,∆ �H2 .

Thus the cut between the doodles d1 and d2 on p corresponds to the sequent

Supp (Γ �G1 ,Σ1,Γ �H2 ,Σ2)⇒ Supp (Π1,∆ �G2 ,Π2,∆ �H2)

which since Supp (Γ) = Γ and Supp (∆) = ∆ and since the variables in Γ⇒ ∆ do not occur in

Σi ⇒ Πi for i = 1, 2 is the same as the sequent

Γ �G1∪H1 ,Supp (Σ1,Σ2)⇒ Supp (Π1,Π2) ,∆ �G2∪H2 = Γ �F1 ,Σ⇒ Π,∆ �F2 .

Thus every sequent in (P 	 p)(Γ⇒ ∆) is represented by a doodle in D	 p. Similarly, it is not

too difficult to see that every doodle in D 	 p represents a sequent in (P 	 p)(Γ⇒ ∆).

We would like to extend the graphical representation to rules as well. But since doodles

correspond to sequents instead of premisses, we can only represent the premisses instantiated

with a particular context. This gives correspondence not directly to rules, but to proto rules

instead.

Definition 4.2.14. Let V be a set of variables and let F be a set of formulae such that no

variable from V occurs in a formula in F . A rule doodle with context in F and principal

formulae in Λ(V ) is a pair (D, d) where D is a set of doodles over F ∪ V and d is a doodle

over F ∪ Λ(V ). The doodles in D are the premisses and the doodle d is the conclusion of the

rule doodle. A rule doodle (D, d) corresponds to a proto rule R̂ for a rule R = P/Σ⇒ Π given

by the context Γ⇒ ∆ if D is the set of doodles corresponding to the sequents in P(Γ⇒ ∆)

and d is the doodle corresponding to the sequent Γ,Σ⇒ Π,∆.

In the following we will only consider rule doodles where the conclusion is compatible with

the premisses in the sense that in the conclusion there is a head pointing to a formula in

the set F of context formulae if and only if in at least one of the premisses there is a head

pointing to the same formula, and similarly for tails emerging from formulae in F . To make

the construction of the formulae in the conclusion explicit when drawing rule doodles we
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represent these formulae by their parse trees or in prefix notation. Also, in the first case we

often draw the conclusion of a rule doodle at the bottom and its premisses at the top.

Example 4.2.15. The following are three rule doodles with contexts in the sets ∅, {�r} and

{r, s} respectively. Conclusions are drawn thicker at the bottom and premisses at the top.

�

p

�

q

�

r

�

p

�r ∧

p q

r s

For the sake of presentation one of the premisses in the last rule doodle is drawn dashed.

The rule doodles represent the canonical proto rules for the rules K2, R4 and ∧R given by the

contexts ⇒ , �r ⇒ and r ⇒ s respectively.

Even though the context in rule doodles is explicit and thus rule doodles correspond only

to proto rules instead of rules, it is clear that every rule with context restrictions can be

represented by a rule doodle by encoding the context restrictions in the context of the canonical

proto rule and thus in the context of the rule doodle:

Lemma and Definition 4.2.16. Let R = P/Σ⇒ Π be a rule with restrictions and let R̂ be

the canonical proto rule for R given by the context Γ⇒ ∆ where

Γ := {C | C ∈ F1 for some 〈F1, F2〉 occurring in P}

∆ := {D | D ∈ F2 for some 〈F1, F2〉 occurring in P} .

Then there is a unique rule doodle corresponding to R̂. We call this the rule doodle for R.

Proof. The doodle (D, d) is constructed by taking D to be the set of (unique) doodles

corresponding to the sequents in P(Γ⇒ ∆) and d to be the (unique) doodle corresponding to

the sequent Γ,Σ⇒ Π,∆.

The analogue of a cut between rules now takes the following form.

Definition 4.2.17. Let (D1, d1) and (D2, d2) be two rule doodles with contexts in F1 resp.

F2 and principal formulae in Λ(V1) resp. Λ(V2) such that no variable occurs in a formula in F1

and in V2 or in a formula in F2 and in V1 and such that a formula ♥~p occurs positively in d1

and negatively in d2. Then the cut between (D1, d1) and (D2, d2) on ♥~p is the rule doodle

(D, d) with D := (D1 ∪D2)	 ~p and where d is the maximal contraction of the cut between

the doodles d1 and d2 on ♥~p.

While this definition might seem a bit cumbersome, when viewed as a graphical operation

a cut between rule doodles is very intuitive: we first identify the two occurrences of the cut
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formula and then simply pairwise connect all heads pointing to a variable of this formula with

all tails emerging from it to construct the new premisses. Analogously connecting heads and

tails for the cut formula itself yields the new conclusion.

Example 4.2.18. 1. We first consider a cut between two rule doodles for the rule K2 in

the sense of Lemma 4.2.16. Identifying the two instances of the cut formula �r the two

rule doodles are

�

p

�

q

�

r

�

s

�

t

Now computing the cut between the two rules amounts to connecting heads and tails at

the node labelled with r and at its parent, giving the rule doodle

�

p

�

q

�

s

�

t

where the superfluous occurrence of �r has been omitted.

2. Consider a cut between the rules K2 and R4. Again identifying the two occurrences of

the cut formula we have the two rule doodles on the left below, and connecting heads

and tails at the node labelled with p and its parent node and omitting the superfluous

nodes we obtain the rule doodle on the right below, which is easily seen to be the rule

doodle for the rule 41.

�r �

r

�

s

�

t

�r �

s

�

t

3. A cut between the two rules ∧L and ∧R is constructed in a graphical way by first

considering the two rule doodles

sr ∧

p q

r s

Connecting heads and tails at the nodes labelled with p and q and at their parent node

gives the diagram on the left below and finally contracting duplicate heads and tails
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to maximally contract the premisses and omitting the superflous nodes gives the rule

doodle on the right below.

sr ∧

p q

r s r s

The latter is easily identified as the rule doodle for the rule Rid.

Indeed, this procedure captures the construction of cuts between (proto) rules:

Lemma 4.2.19. Let R1 = P1/Σ1 ⇒ Π1,♥~p and R2 = P2/♥~p,Σ2 ⇒ Π2 be two rules and

let Θ ⇒ Ξ be a sequent such that the sets var (Θ⇒ Ξ) , var (Σ1 ⇒ Π1) , var (Σ2 ⇒ Π2) are

pairwise disjoint. Furthermore, for i = 1, 2 let (Di, di) be the rule doodle corresponding

to the proto rule for Ri given by the context Θ ⇒ Ξ. Then the cut between (D1, d1) and

(D2, d2) on ♥~p corresponds to the proto rule for the rule cut(R1, R2,♥~p) given by the context

Supp (Θ)⇒ Supp (Ξ).

Proof. Since for i = 1, 2 the rule doodle (Di, di) corresponds to the proto rule for Ri given

by Θ⇒ Ξ, the set D1 ∪D2 of doodles is the set of doodles corresponding to the sequents in

P1(Θ⇒ Ξ) ∪ P2(Θ⇒ Ξ) = (P1 ∪ P2)(Θ⇒ Ξ). Maximally contracting heads pointing to and

tails emerging from formulae in Θ,Ξ yields a set D′ of doodles corresponding to the sequents

in (P1 ∪ P2)(Supp (Θ)⇒ Supp (Ξ)). Thus by repeated applications of Lemma 4.2.13 the set

D := D′	 ~p is the set of doodles corresponding to the sequents in ((P1 ∪P2)	 ~p)(Supp (Θ)⇒
Supp (Ξ)). On the other hand, it is clear that the maximal contraction of the cut between

the doodles d1 and d2 on ♥~p corresponds to the sequent Supp (Θ) ,Σ1,Σ2 ⇒ Supp (Ξ) ,Π1,Π2.

Thus writing d for this doodle the rule doodle (D, d) corresponds to the proto rule for the rule

cut(R1, R2,♥~p) given by the context Supp (Θ)⇒ Supp (Ξ).

Thus in order to construct a cut between two rules we may use the graphical tool to

construct the cut between the two rule doodles for the two rules. While the resulting rule

doodle corresponds to a proto rule instead of a rule, this proto rule in fact is the canonical

proto rule for the cut between the two rules and is easily turned into a rule by turning all

formulae occurring both in the premisses and the conclusion into context restrictions in the

obvious way.

Example 4.2.20. Continuing Example 4.2.18 we have:

1. Repeated cuts between the rule doodles for the rule K2 yield the rule doodles

�

p1

. . . �

pn

�

q
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which are easily seen to be rule doodles for the rules in the set {RKn | n ≥ 2}. By

construction, this rule set is principal cut closed.

2. Cutting the rule doodle for the rules Kn+1 with the rule doodle for the rule R4 yields

the rule doodles

�r �

p1

. . . �

pn

�

q

for n ≥ 1. A second cut with the rule doodle for the rule R4 at first adds another tail

emerging from the context formula �r, which is then identified with the original tail.

This gives the rule set {4n | n ≥ 0} which again by construction is principal cut closed.

3. Since the cut between the two rule doodles for the rules ∧R and ∧L yields the rule doodle

for the identity rule (see Example 4.2.18,3), the rule set {∧R,∧L} is principal-cut closed

already. Continuing in this fashion for the remaining propositional rules it is not hard

to show that the rule sets G[cim] are principal-cut closed.

In a similar vein we also have a graphical analogue to the notion of a contraction of a rule.

Definition 4.2.21. Let (D, d) be a rule doodle such that the formulae ♥~p and ♥~q both occur

positively (resp. negatively) in d. The right (resp. left) contraction of (D, d) on ♥~p and ♥~q is

the rule doodle given by (D′, d′) where D′ is constructed from D by renaming every occurrence

of a variable in ~q by the corresponding variable in ~p and identifying duplicate heads and tails,

and where d′ is the doodle constructed from d by renaming ♥~q to ♥~p and identifying duplicate

heads (resp. tails).

It is clear that this captures the notion of contractions of rules.

Lemma 4.2.22. Let R be a rule such that the formulae ♥~p and ♥~q occur both positively (resp.

negatively) in the principal formulae of R. If the rule doodle (D, d) corresponds to the proto

rule for R given by the context Γ⇒ ∆, then the right (resp. left) contraction of (D, d) on ♥~p
and ♥~q corresponds to the proto rule for ConR(R,♥~p,♥~q) (resp. ConL(R,♥~p,♥~q)) given by

the context Γ⇒ ∆.

Proof. Straightforward from the definitions.

Thus the contraction of a rule doodle for a rule R is the rule doodle for the contraction

of R. This gives us a way of graphically constructing a principal-cut closed and contraction

closed rule set: we alternate between adding the rules corresponding to cuts between rule

doodles and contractions of rule doodles to the rule set. In the easier cases the principal-cut

closure of a rule set is almost contraction closed already.
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(A1) ¬C> (A3) EA→ A
(A2) EA ∧ EB → E(A ∧B) (A4) EA→ CA

(A5) ¬C⊥

AELG1 := {(A1), (A2), (A3), (A4)} AELG2 := A1 ∪ {(A5)}

Table 4.2: The Hilbert-style axiomatisation for Elgesem’s logic of agency and ability.

Example 4.2.23. The rule doodle for the rule Kn+1 is given below left. In order to construct

the left contraction of this rule doodle on �pn and �pn+1 we first rename the variable pn+1

to pn, which yields the rule doodle in the middle. Finally identifying the tails emerging from

pn resp. �pn gives the rule doodle on the right.

�

p1

· · · �

pn

�

pn+1

�

q

�

p1

· · · �

pn

�

q

�

p1

· · · �

pn

�

q

The resulting rule doodle is obviously a rule doodle for the rule Kn. Thus if we want to

construct a principal-cut and contraction closed rule set starting only with the rule K2, then

we first add all the cuts as in Example 4.2.20 and then add the missing contraction K1. It is

then easy to see that the resulting rule set is principal-cut closed as well as contraction closed.

The more interesting case is that where adding contractions of rules necessitates closing the

rule set under principal-cuts again. The stronger systems of conditional logics considered in

the next chapter provide such an involved example. First we apply the graphical method to

some less involved examples.

Example 4.2.24 (c). We consider Elgesem’s logic of agency and ability [Elg97] and follow

[GR05] for the notation and axiomatisation. For the sake of presentation we restrict the

framework to only one agent. The extension to multiple agents is straightforward. The logic of

agency and ability is based on classical propositional logic with two additional unary modalities

E and C, where EA is read as “the agent brings it about that A” and CA is read as “the

agent is capable of realising A”. The Hilbert-style axiomatisations AELG1 and AELG2 for the

two logics L1 and L2 considered in [GR05] are given in Table 4.2. Converting the axioms into
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4.2. SEQUENT RULES IN PICTURES

rules using the methods of Chapter 3 gives the rules

RA1 := {(⇒ p; C∅)}/Cp⇒

RA2 := {(q ⇒ p1; C∅), (q ⇒ p2; C∅), (p1, p2 ⇒ q; C∅)}/Ep1,Ep2 ⇒ Eq

RA3 := {(p⇒ ; Cid)}/Ep⇒

RA4 := {(p⇒ q; C∅), (q ⇒ p; C∅)}/Ep⇒ Cq

RA5 := {(p⇒ ; C∅)}/Cp⇒

The rule doodles for these rules are shown below.

C

p

E

p1

E

p2

E

q

r E

p

s E

p

C

q

C

p

Similar as in the case of the rules Kn repeated cuts on the rule doodle for the rule RA2 yield

the rule doodles

E

p1

· · · E

pn

E

q

for n ≥ 2. Call the rules corresponding to these doodles REn . Note that these rules are not

yet contraction closed, since the left contraction of the rule RE2 , i.e., the rule RE1 , can not be

constructed this way. But since contractions of rules preserve soundness of the rule set we

may simply add RE1 to our rule set. Now the cut of the rule doodle for the rule REn with the

rule doodle representing the rule RA3 as shown on the left below yields the rule doodle shown

on the right below, where tautologous premisses, i.e. doodles including circles, are omitted.

E

p1

· · · E

pn

E

q

r s E

p1

· · · E

pn

r s

Call the rule corresponding to this rule doodle RcEn . Similarly, a cut between the rule doodle

for a rule REn and the one for the rule RA4 gives the rule doodle below left, and a cut between

the rule doodles for the rules RA1 and RA4 gives the one below middle.

E

p1

· · · E

pn

C

q

E

p

E

p
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REn = {(p1, . . . , pn ⇒ q; C∅)} ∪ {(q ⇒ pk; C∅) | 1 ≤ k ≤ n}/Ep1, . . . ,Epn ⇒ Eq
RcEn = {(p1, . . . , pn; Cid)}/Ep1, . . . ,Epn ⇒
RECn = {(p1, . . . , pn ⇒ q; C∅)} ∪ {(q ⇒ pk; C∅) | 1 ≤ k ≤ n}/Ep1, . . . ,Epn ⇒ Cq
RE+ = { ⇒ p; C∅)}/Ep⇒
RA1 = {(⇒ p; C∅)}/Cp⇒
RA5 = {(p⇒ C∅)}/Cp⇒

RELG1 := {RA1, RE+} ∪ {REn | n ≥ 1} ∪ {RcEn | n ≥ 1} ∪ {RECn | n ≥ 1}
RELG2 := R1 ∪ {RA5}

Table 4.3: The rules and rule sets for Elgesem’s logic of agency and ability

Call the corresponding rules RECn and RE+ respectively. Analogously for the missing cut

between the rules RA5 and REC1 we would obtain the additional rule doodle shown above right,

but the rule represented by this rule doodle is easily seen to be subsumed by the rule RcE1 .

All the constructed rules and the resulting rule sets RELG1 and RELG2 are given in Table 4.3.

An inspection of the corresponding rule doodles shows that both rule sets are principal-cut

and contraction closed. Thus since all the rules are shallow by the methods of Chapter 2 we

obtain cut elimination and decidability in polynomial space, reproving the semantically driven

result for L2 in [SP08] in a purely syntactic way.

Proposition 4.2.25 (c). Let RELG1 and RELG2 be as defined in Table 4.3. Then for i = 1, 2

the rule set RELGi is equivalent to the axioms AELGi, the sequent system given by GcRELGiCon

has cut elimination and its derivability problem is in Pspace. Thus the logics L1 and L2 are

decidable in polynomial space.

Proof. Equivalence of the rules and the axioms follows by construction. Since principal-cut

closure and contraction closure is easily verified the cut elimination result thus follows from

Theorem 2.4.16 and the complexity result follows using the methods of Section 2.7.

Example 4.2.26 (c). In a way similar to the previous example it is also possible to explicitly

construct the rules for the weak conditional logics considered at the end of the previous section

in a graphical fashion. In this case it is more convenient to present the formulae in prefix

notation instead of as parse trees and to stack them on top of each other. Moreover, for the

sake of readability we indicate equivalence of a number of variables by shading all the variables

and since the names of the variables are not important we simply replace them with dots.

Thus e.g. instead of drawing the rule

{(p1 ⇒ p2; C∅), (p2 ⇒ p1; C∅), (q1 ⇒ q2; C∅)} /p1 � q1 ⇒ p2 � q2
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4.2. SEQUENT RULES IN PICTURES

corresponding to the axiom (CM) as shown below left we draw it as shown on the right.

�

p1 q1

�

p2 q2

� . .

� . .

In this presentation the axiom (CC) is translated (in the presence of the rule corresponding

to (CM)) into the rule doodle shown below left. A cut between this rule doodle and the rule

doodle corresponding to the axiom (CEM) is performed as shown below middle and right.

� . .

� . .

� . .

� . .

� . .

� . .

� . .

� . .

� . .

� . .

Since all the shaded variables are equivalent, we may simply draw one doodle pointing to the

whole block of variables instead of multiple copies of the doodle pointing to each variable. Then

again by cutting and contracting rule doodles it is not difficult to construct the rule doodles

given in Table 4.4. In particular, note that axiom (ID) translates into the doodle for RCKCEMID0,1 ,

axiom (CS) into the one for RCKCEMCS0,1 and axiom (MP) into that for RCKCEMCS1,0 . For any set

A ⊆ {(CM), (CC), (CN), (ID), (CEM), (MP), (CS)} with (CM), (CC), (CN) ∈ A we then obtain

the corresponding rule set as given in Table 4.5, where we denote the set A by concatenating

the axioms and abbreviate CMCCCN to CK. In the graphical representation it is now very easy

to see that these rule sets are principal-cut and contraction closed. Then as above we obtain

cut elimination and complexity results for all the logics considered. In particular, this gives a

graphical reconstruction of the rules sets for weak systems of conditional logic presented in

[Che80, PS08, PS09, PS10, PS11].

Proposition 4.2.27 (c). Let A ⊆ {(CEM), (CS), (ID), (MP)} and let RCKA be the correspond-

ing rule set as defined in Table 4.5. Then RCKA is equivalent to the axioms {(CN), (CM), (CC)}∪
A, the sequent system given by GcRCKACon has cut elimination and the derivability problem

for GcRCKA is in Pspace. �

Remark 4.2.28. In the presence of the rules corresponding to the axioms (MP) and (CS) the

rules RCKCEMCSn,m for n+m > 1 are actually derivable rules. Thus we might also omit these

rules and use the method given in Remark 2.4.18 to show cut elimination. In fact, the rule

sets given in [PS09, PS11] have this form.
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� . .
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Table 4.4: The rules for the weak conditional logics in their graphical representation. To
economise on notation we always take n to be the number of negative and m to be
the number of positive literals in the principal formulae.

RCK :={RCKCEMn,m | n ≥ 0, m = 1}
RCKID :={RCKCEMIDn,m | n ≥ 0, m = 1}
RCKCEM :={RCKCEMn,m | n ≥ 0, m ≥ 1}
RCKIDCEM :={RCKCEMIDn,m | n ≥ 0, m ≥ 1}
RCKMP :=RCK ∪ {RCKCEMCSn,m | n ≥ 1, m = 0}
RCKIDMP :=RCKID ∪ {RCKCEMCS | n ≥ 1, m = 0}
RCKCEMMP :={RCKCEMCSn,m | n+m ≥ 1}
RCKIDCEMMP :={RCKCEMCSIDn,m | n+m ≥ 1}

RCKCS :={RCKCEMCSn,m | n ≥ 0, m = 1}
RCKIDCS :={RCKCEMCSIDn,m | n ≥ 0, m = 1}
RCKCEMCS :={RCKCEMCSn,m | n ≥ 0, m ≥ 1}
RCKIDCEMCS :={RCKCEMCSIDn,m | n ≥ 0, m ≥ 1}
RCKMPCS :={RCKCEMCSn,m | n+m ≥ 1, m = 0, 1}
RCKIDMPCS :={RCKCEMCSIDn,m | n+m ≥ 1, m = 0, 1}
RCKCEMMPCS :={RCKCEMCSn,m | n+m ≥ 1}
RCKIDCEMMPCS :={RCKCEMCSIDn,m | n+m ≥ 1}

Table 4.5: The rule sets for weak systems of conditional logic.
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Remark 4.2.29. Using these rule sets it is also easy to show that all the logics considered have

the Craig interpolation property (see Section 5.5). For the conditional logics axiomatised by

{(CM), (CC)} or by {(CM), (CC), (ID)} this was done in [PS08, PS10]. For most of the other

conditional logics this also follows from [PS09, PS11], but was not mentioned there.

4.3 Notes

Principal-cut closure via Cut Trees. The method of constructing a principal-cut closed

rule set by absorbing cuts between rules into the rule set most probably was used countless

times in the construction of cut-free sequent calculi. But as a systematic procedure it seems not

to have been mentioned until [PS08, PS09, PS10, PS11]. Most of our results about small cut

trees representing the rules of shallow rule sets for modal logics based on classical propositional

logic were originally published in [LP11]. The most pressing open question related to this

method is of course whether the resulting rule set can be made contraction closed in a generic

and tractable way.

Problem 4.3.1. Is it possible to use cut trees to automatically construct a tractable, principal-

cut closed and contraction closed set of rules from a finite set of shallow rules?

Combined with the translation from axioms to rules in the classical case this would ensure

Pspace-decidability for every logic axiomatised by a finite number of non-iterative axioms

and thus give a negative answer to the above mentioned Open Problem 2.8.1 and reduce

the complexity bounds from [Lew74, tC05]. Failing this it would also be very interesting

to characterise the class of non-iterative axioms for which the principal-cut closure of the

translations into rules is contraction closed. Unfortunately, already relatively simple axiom

sets seem to produce rules whose principal-cut closure is not contraction closed. One example

would be the rule set consisting of the axioms of conditional logic CK together with the axioms

(CN′) ⊥� p, (SDA) (p ∨ q� r)→ (p� r) and (CA) (p� r) ∧ (q� r)→ (p ∨ q� r),

which is the basis of the conditional logic S considered in [Che75]. In particular the combination

of the axioms (CC) and (CA) seems to be problematic. While this presents a big obstacle to

the extension of the automatic method to e.g. stronger conditional logics such as the logic S of

[Bur81] considered e.g. in [SPH10] and under the name PCL in [GGOS09], it also highlights the

need for tools to manually construct cut and contraction closed rule sets in case an automatic

construction does fail.

Sequent Rules in Pictures The graphical representation of sequent rules developed out

of the construction of sequent calculi for the stronger systems of conditional logic considered

in the next chapter and is inspired by a talk by Bob Coecke on diagrammatical calculi (see

e.g. [Coe10]). The general idea was reported in [LP12a].
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There seem to be not too many comparable notions in the literature, the most closely related

concept possibly being that of a logical tomograph in [Arn08]. This work is based on work by

Hertz [Her22, Her23, Her29] and develops the idea of using directed hypergraphs to display

the structural relations between atoms in a derivation in classical propositional logic. Sequents

with complex formulae are first presented as directed hypergraphs with a root, a directed

hyperarc emerging from vertices labelled with the formulae in the antecedent and pointing to

the root, and a directed hyperarc emerging from the root and pointing to vertices labelled

with the formulae in the succedent. Then successively for each node labelled with a complex

formula new nodes labelled with its immediate subformulae are introduced along with new

directed hyperarcs depending on the main connective of the formula. Thus e.g. for a vertex v

labelled with the formula A ∧B which is pointed to by a hyperarc two new vertices vA and

vB are introduced along with two new directed hyperarcs emerging from v and pointing to

vA resp. vB. Continuing in this fashion the directed hypergraph is turned into the logical

tomograph of the sequent, where the external vertices are labelled with propositional variables.

Since maximal strands in this directed hypergraph then correspond to the sequents in the

normal form of the original sequent in the sense of our Definition 3.2.6, this construction can

be used to give a graphical decision procedure for classical propositional logic. The main

difference of this work to our graphical representation of sequent rules is that the latter is

primarily used in the construction of a set of sequent rules and not in the actual derivation of

a sequent. Of course it is possible to present derivations in a calculus given by rule doodles as

sequences of sets of doodles on the underlying set of (parse trees of) formulae, where a set of

doodles results from its predecessor in the sequence by an application of a rule doodle. In this

way e.g. applications of the propositional rules correspond to certain processes of ’bending

and identifying the wires’. But it is not yet clear whether apart from the novelty value this

would be of any use.

Concerning other graphical representations considered in proof theory such as proof nets

[Gir87] or atomic flows [GG08] the main difference is that the main focus of these methods lies

on the investigation of the structure of a whole derivation or on the reduction of unnecessary

“bureaucracy”, while our method focusses on single rules and serves the much less ambitious

goal of providing a tool for the construction of cut-free calculi.

Examples. The logic of agency and ability considered in Example 4.2.24 was originally

introduced in [Elg97]. Subsequently in [GR05] it was discovered that the originally proposed

axiomatisation is not complete with respect to the given semantics, which led to the introduction

of the axiom (A5). Our logic L1 consists of the original axioms, the logic L2 is the one including

the additional axiom. Decidability and Pspace-complexity results for the logic L2 were shown

in [SP08] by interpreting the semantics in a coalgebraic framework and making use of the

there developed generic semantical methods. No sequent calculi seem to have been considered

for this logic yet.
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Most of the sequent calculi for the weak systems of conditional logic considered in this

chapter were known before. For the calculus for the logic CK see e.g. [Che75, Che80]. This

calculus and the extension with the axiom (ID) were also considered in [PS08, PS10], where the

calculi are moreover used to show that the logics have the Craig interpolation property. Further

extensions of the systems with combinations of the axioms (ID), (MP), (CEM) were given in

[PS09, PS11], where also cut elimination for these systems was shown using a generic syntactic

proof. Calculi for extensions of CK including the axiom (CMon) can be found in [SPH10].

There are furthermore a number of results about labelled sequent calculi for these weak systems.

A calculus for CK together with a complexity bound has been given in [OS01], and systems

for extensions with the axioms (ID), (MP), (CEM), (CS) or the combinations (ID) + (MP) or

(ID) + (CEM) were introduced in [OPS07], see also [Poz10]. Finally, nested sequent calculi for

extensions of CK with combinations of the axioms {(ID), (MP), (CEM)} or with the axioms

(ID) and (CSO) are presented in [AOP12]. These calculi yield Pspace-decision procedures for

the logics in question.
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In this chapter we will put to use most of the techniques developed in the earlier chapters and

construct cut-free sequent calculi and generic decision procedures for a number of stronger

systems of conditional logic. The logics we are going to consider are the conditional logics

introduced in [Lew73a] which can be characterised in terms of sphere semantics. The general

interest in these logics stems from the program of giving a formal analysis of the concept

of a counterfactual implication, i.e. an implication whose antecedent may be false. One of

the classical examples for this type of implication (taken from [Lew73a]) is the statement “If

kangaroos had no tails, they would topple over”. This kind of implication is not really captured

by the standard truth-functional material implications, since otherwise due to the fact that the

antecedent is false the statement “if kangaroos had no tails, they would not topple over” would

need to be true as well, contrary to intuition. On the other hand, a counterfactual implication

intuitively should not be antitone in the first argument, since otherwise the statement “if

kangaroos had three legs and no tails, they would topple over” would be implied by the first

statement. Over the years a number of logics have been proposed to formally capture the

notion of counterfactual implication. For an overview see e.g. [NC01, AC09]. In this context

we are not going to try to decide which of these systems gives the ’right’ analysis of this notion,

but we will take this plethora of logics as a suitable testing ground for our generic methods.

While these logics can be seen as extensions of the weak conditional logics considered in the

previous chapter, we will take the comparative possibility operator instead of the (weak or

strong) counterfactual implication as the basic operator, since it allows for a simpler and more

elegant axiomatisation of conditional logics with sphere semantics. On the other hand since

this operator and the (weak or strong) counterfactual implication are interdefinable we retain

full expressivity.

After recalling the basic notions and systems of conditional logics with sphere semantics

in Section 5.1 we will start by using the translation from Chapter 3 to turn the axioms into

rules with context restrictions. From these we will then construct saturated sets of rules using

the doodling calculus from the previous chapter, which also give rise to decision procedures

for the logics at hand. The main piece of work is done in Section 5.2, where the system

for the basic logic V4 is developed. In Section 5.3 we consider extensions of the logic with

additional axioms. By translating the operators the resulting decision procedures also give

rise to decision procedures for the logics formulated in the counterfactual implication, which

using the circuit presentation of formulae moreover can be seen to be of the same complexity.
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Nevertheless, we are also interested in explicit sequent systems for these languages. Thus in

Section 5.4 we incorporate the translation between the comparative plausibility operator and

the strong counterfactual implication into the rules by adapting the method of cuts between

rules and explicitly construct saturated sequent systems for the logics in the language with the

latter operator, which again yields decision procedures of matching complexity. Unfortunately,

in the case of the weak counterfactual implication the translation is slightly more involved,

so as we will see later we cannot use the same method as applied in the case of the strong

counterfactual implication. Finally in Section 5.5 we will use the cut-free sequent calculi to

show interpolation results for almost all the logics.

5.1 Conditional Logics with Sphere Semantics

We briefly recapitulate the basic notions for conditional logics with sphere semantics from

[Lew73a]. The set language of conditional logic is given by the set Λcond of connectives

including apart from the standard boolean connectives the (binary) comparative plausibility

operator 4 and the (binary) weak and strong counterfactual implications � and �. To

save notation we adopt the notational convention that the boolean connectives bind more

strongly than the new connectives. Thus we sometimes reduce e.g. the brackets in the formula

((A ∨B) 4 (C ∧D)) to (A ∨B 4 C ∧D). We read the comparative plausibility operator in a

formula A 4 B as “formula A is at least as plausible as formula B” and the counterfactual

implications in A� B and A� B as “if A were the case then so would B”. The logics

considered are based on Lewis’ sphere semantics:

Definition 5.1.1. Given a set I of worlds, a system of spheres over I is a family $ of subsets

of I which is closed under unions and nonempty intersections and which is nested, i.e. for

every two sets S1 and S2 from $ we have S1 ⊆ S2 or S2 ⊆ S1. A sphere model then is a triple

I = (I, ($i)i∈I , π) consisting of a set I of worlds, for every world i ∈ I an associated system of

spheres over I and a valuation π : Var → P(I). The valuation π is extended to a valuation

J.K : F(Λcond)→ P(I) on formulae by taking the standard clauses for the boolean connectives

in classical propositional logic together with the clauses

JA 4 BK :=
{
i ∈ I | for all spheres S ∈ $i ( if S ∩ JBK 6= ∅ then S ∩ JAK 6= ∅)

}
JA� BK :=

{
i ∈ I | for some sphere S ∈ $i (S ∩ JAK 6= ∅ and S ⊆ JA→ BK)

}
JA� BK := JA� BK ∪

{
i ∈ I |

⋃
S∈$i

S ∩ JAK = ∅
}

for the conditional operators.

Intuitively, a system of spheres gives a measure of comparative similarity, worlds in a smaller

sphere being more similar to the actual world than those occurring only in larger spheres.
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(A 4 B)↔ ¬(A ∨B� ¬A)

↔
(
A ∨B� ¬(A ∨B)

)
∨ ¬(A ∨B� ¬A)

(A� B)↔ ¬(A ∧ ¬B 4 A ∧B)

↔ ¬(A� ¬A) ∧ (A� B)

(A� B)↔ (⊥ 4 A) ∨ ¬(A ∧ ¬B 4 A ∧B)

↔
(
(A� A)→ (A� B)

)
.

Table 5.1: The equivalences between the conditional connectives

Then a formula A 4 B states intuitively that for every B-world there is an A world which is

at least as similar to the actual world. Similarly, a formula A� B states intuitively that A

is considered possible from the point of view of the actual world and that the A-worlds most

similar to the actual world are B-worlds as well. The interpretation for a formula A� B is

similar, the only difference being that it is considered true also in case that A is not considered

possible from the point of view of the actual world.

A closer analysis of the truth conditions of the different connectives shows that they are

interdefinable using the equivalences given in Table 5.1. Thus we may equivalently formulate

conditional logics using either of the three connectives. In the following we will take conditional

logics L to be Λcond-logics based on classical propositional logic in the sense of Definition 2.1.5

and for a given conditional connective ∗ ∈ {4,�,�} we will write L∗ for the ∗-fragment of

L. The logics we are going to consider are defined in terms of classes of sphere models:

Definition 5.1.2. Let I = (I, ($i)i∈I , π) be a sphere model. We say that I is

• normal if for every world i ∈ I we have
⋃
S∈$i

S 6= ∅

• totally reflexive if for every world i ∈ I we have i ∈
⋃
S∈$i

S

• weakly centered if it is normal and for every world i ∈ I and nonempty sphere S ∈ $i we

have i ∈ S

• centered if for every world i ∈ I we have {i} ∈ $i

• absolute if for every two worlds i, j ∈ I we have $i = $j .

As usual, a formula A is universally valid in a sphere model I = (I, ($i)i∈I , π) if it holds in

every world of I, that is if we have JAK = I, and it is universally valid in a class C of sphere

models if it is universally valid in every sphere model in C. We say that a logic L is the logic

of a class C of sphere models if every formula is a theorem of L iff it is universally valid in C.
Then the logics V,VN,VT,VW,VC,VA and VNA are defined via
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CPR
` B → A
` A 4 B

(CPA) (A 4 A ∨B) ∨ (B 4 A ∨B)

(TR) (A 4 B) ∧ (B 4 C)→ (A 4 C)

(CO) (A 4 B) ∨ (B 4 A)

(N) ¬(⊥ 4 >)

(T) (⊥ 4 ¬A)→ A

(W) (⊥ 4 ¬A) ∨ ¬(¬A 4 >)→ A

(C) (A 4 >) ∧ (> 4 A)→ A

(A1) (A 4 B)→
(
⊥ 4 ¬(A 4 B)

)
(A2) ¬(A 4 B)→

(
⊥ 4 (A 4 B)

)
AV4 := {(CPR), (CPA), (TR), (CO)}

AVN4 :=AV4 ∪ {(N)} AVT4 :=AV4 ∪ {(T)} AVW4 :=AV4 ∪ {(W)}
AVC4 :=AV4 ∪ {(C)} AVA4 :=AV4 ∪ {(A1), (A2)} AVNA4 :=AV4 ∪ {(N), (A1), (A2)}

Table 5.2: Hilbert-style axiomatisations for strong conditional logics formulated using 4

• V is the logic of the class of sphere models

• VN is the logic of the class of normal sphere models

• VT is the logic of the class of totally reflexive sphere models

• VW is the logic of the class of weakly centered sphere models

• VC is the logic of the class of centered sphere models

• VA is the logic of the class of absolute sphere models

• VNA is the logic of the class of normal and absolute sphere models.

If L is one of these logics, then we also say that a formula A is L-valid if A is a theorem of L
and write |=L A.

These logics are known to have sound and complete Hilbert-style axiomatisations, see

[Lew73a, Chapter 6]. The equivalent axioms using only the comparative plausibility operator

are given in Table 5.2. Using semantical methods it has been established in [FH94] that the

validity problem is Pspace-complete for the logics V�,VN�,VT� and VC� and coNP-

complete for the logics VA� and VNA�. Since the required resources in these proofs are

bounded by the number of subformulae of the input formula, and since the translations given

in Table 5.1 increase the number of subformulae only by a constant amount, these complexity

results carry over to the other languages as well.
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5.2 The Conditional Logic V

We will now use the methods of Chapters 3 and 4 to construct saturated sets of rules with

restrictions first for the logic V4 and then for its extensions. Note that the Hilbert-style

axiomatisation of V4 as given in Table 5.2 contains the rule CPR as well as axioms. But a

straightforward extension of the argument for the equivalence of a Hilbert system given by

a set of axioms and the sequent system given by the corresponding set of ground sequents

shows that we can translate this rule directly into the sequent rule

CPR {(q ⇒ p; C∅)}/ ⇒ p 4 q

(alternatively we could first show that the rule CPR is equivalent to the axiom A 4 (A ∧B)

using propositional reasoning and congruence, and then translate this axiom into the rule

CPR). Translating the remaining axioms (CPA), (TR) and (CO) into rules using the methods

from Section 3.2 yields the rules

CPA {(qi ⇒ p1, p2; C∅) | i = 1, 2} ∪ {(pi ⇒ qi; C∅) | i, j = 1, 2}/ ⇒ (p1 4 q1), (p2 4 q2)

TR {(p1 ⇒ r; C∅), (r ⇒ p1; C∅), (q2 ⇒ s; C∅), (s⇒ q2; C∅), (q1 ⇒ p2; C∅), (p2 ⇒ q1; C∅)}/

(p1 4 q1), (p2 4 q2)⇒ (r 4 s)

CO {(p1 ⇒ q2; C∅), (q2 ⇒ p2; C∅), (p2 ⇒ q1; C∅), (q1 ⇒ p2; C∅)}/ ⇒ (p1 4 q1), (p2 4 q2)

Now we make use of the graphical representation of rules as given in the last chapter. For

the sake of readability here again we draw the rule doodles in the more economic way seen in

Example 4.2.26 by moving the main connective of the formulae to the side and stacking the

formulae on top of each other. E.g. instead of drawing the figure on the left below we draw

the one on the right.

4

p q

4

r s 4 r s

4 p q

The rules for conditional logic V4 then correspond to the rule doodles shown in Figure 5.1.

Starting from these rule doodles we now apply the operations of cut (between rule doodles)

and contraction (of rule doodles) until we arrive at a saturated rule set, discarding superfluous

rule doodles in the process. Note that since all the rules are one-step rules, the rule sets

will be automatically context- and mixed-cut closed, and thus we only need to construct

a principal-cut and contraction closed rule set. In order to further demonstrate the use of

doodles in the construction we consider the steps in detail.

We start by constructing the cut between CPR and TR on the lowermost literal of TR.

Omitting the names of variables and marking the variables on which cuts are performed by
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4 p q

CPR 4 p1 q1

4 p2 q2

CPA

4 p1 q1

4 p2 q2

4 r s

TR

4 p1 q1

4 p2 q2

CO

Figure 5.1: The rule doodles corresponding to the translations of the axioms for V4

the symbol ∗ we obtain

4 ∗ ∗

4 . .

4 . .

 

4 ∗ ∗

4 . .

4 . .

 

4 ∗ ∗

4 . .

4 . .

Now yanking the wires, omitting loops (i.e. tautologous premisses) and eliminating superfluous

nodes gives the simple rule shown below left. In a similar fashion performing the cut on the

other negative literal of TR we construct the rule in the middle below, and performing a cut

between these two rules yields the rule Mon4 shown on the right.

4 . .

4 . .

4 . .

4 . .

4 . .

4 . .

Mon4

This last rule is particularly useful, since it allows us to greatly simplify the rule set by

replacing each rule with its monotone version. This is done by performing cuts between Mon4

and the rules CPA,CO and TR, giving the rules CPAm,COm and TRm shown below.

4 . .

4 . .

CPAm

4 . .

4 . .

COm
4 . .

4 . .

4 . .

TRm
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Since each of the original rules is subsumed by their monotone version we may simply omit the

original rules from the rule set. Similarly, the new rule COm is subsumed by the rule CPAm,

since missing heads of the premisses may be added by weakening. Thus we may omit the

former rule as well and continue with the rule set {CPR,Mon4,CPA
m,TRm}. The next step

is to construct a cut between TRm and CPAm as shown on the left and middle below (again

we mark the variables on which cuts are performed by ∗), followed by a contraction on the

two positive literals of the resulting rule, giving the rule shown on the right. Let us write R1,1

for this rule.

4 . .

4 . .

4 * *

4 . .

 

4 . .

4 . .

4 . .

 4 . .

4 . .

R1,1

Again, since the rule R1,1 subsumes the rule Mon4 we omit the latter rule from the rule set.

Now constructing cuts between TRm and the new rule R1,1 on the negative literals of TRm

yields the rule on the left below, which we may draw equivalently as shown on the right and

which we call R2,1. Note that this rule subsumes the rule TRm.

4 . .

4 . .

4 . .

4 . .

4 . .

4 . .

R2,1

Performing cuts between two instances of this rule and the rule CPAm as shown on the left

below (rotated) and contracting the two negative literals in the resulting rule gives the rule

R1,2 shown on the right below.

4

.

.

4

.

.

4

∗

∗

4

∗

∗

4

.

.

4

.

.

4 . .

4 . .

4 . .

R1,2

Now we are almost done. The two rules R2,1 and R1,2 will be the building blocks of our rule

set. It is now useful to visualise the rule doodles three dimensionally in a T-shape with the
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r1

s1

r2

s2

p1

q1

r1

s1

p1

q1

p2

q2

r1

s1

r2

s2

· · ·

· · ·

rn

sn

p1

q1

p2

q2

...

...

pm−1

qm−1

pm

qm

Figure 5.2: The rules for the logic V4 in graphical representation. The rules R1,2 and R2,1 are
shown on the left and the general rule Rm,n is shown on the right.

positive literals in the top bar and the negative literals in the stem of the T. Furthermore,

since this implicitly encodes the principal formulae, we omit the nodes labelled with 4 and

the corresponding doodle. Thus e.g. instead of drawing the figure on the left below we draw

the one on the right.

4

p2

q2

4

p1

q1

4

r

s

p1

q1

p2

q2

r

s

Then the rules R1,2 and R2,1 are drawn as shown on the left in Figure 5.2. Now repeatedly

cutting instances of the rule R1,2 yields for n ≥ 2 a rule R1,n with n positive literals and one

negative literal in the principal formulae. Similarly, cutting instances of R2,1 on the lowermost

negative literals yields for m ≥ 2 a rule Rm,1 with m negative literals and one positive literal

in the principal formulae. Now cutting these two rules on the negative literal of the former
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and the positive literal of the latter gives the rule Rm,n with m negative and n positive literals

in the principal formulae as shown in Figure 5.2 on the right. Here in order to enhance

readability we draw some doodles with a head pointing to another doodle instead of drawing

heads pointing to all the formulae occurring positively in the latter. The following definition

captures these rules in non-graphical notation.

Definition 5.2.1. For m ≥ 0, n ≥ 1 the rule Rm,n is defined as the rule Pm,n/Σm ⇒ Πn

where

Pm,n := {(sk ⇒ q1, . . . , qm, r1, . . . , rn; C∅) | 1 ≤ k ≤ n}

∪ {(pk ⇒ q1, . . . , qk−1, r1, . . . , rn; C∅) | 1 ≤ k ≤ m}

Σm ⇒ Πn := (p1 4 q1), . . . , (pm 4 qm)⇒ (r1 4 s1), . . . , (rn 4 sn) .

Furthermore, define RV4 := {Rm,n | m ≥ 0, n ≥ 1}.

The rules in RV4 are sound for the logic V4 by construction, and since they subsume each

of the original rules we get completeness (with Cut) as well. This can also be seen directly.

Theorem 5.2.2 (c). The sequent calculus GcRV4CutCon is sound and complete for conditional

logic V4.

Proof. For soundness we show that if Σ⇒ Π is derivable in GcRV4CutCon, then the formula∧
Σ→

∨
Π is valid in all models of V4. As usual this follows from showing that whenever

for every premiss Γ⇒ ∆ of an application of a rule in GcRV4CutCon the formula
∧

Γ→
∨

∆

is valid in a model of V4, then so is the conclusion of this application. The proof for the

propositional rules as well as for Cut and Con is standard.

So suppose that for some m ≥ 0, n ≥ 1 the last applied rule was Rm,n, with conclusion

(A1 4 B1), . . . , (Am 4 Bm)⇒ (C1 4 D1), . . . , (Cn 4 Dn) and premisses

{Dk ⇒ B1, . . . , Bm, C1, . . . , Cn | 1 ≤ k ≤ n} ∪ {Ak ⇒ B1, . . . , Bk−1, C1, . . . , Cn | 1 ≤ k ≤ m}

Furthermore, suppose all the premisses are V4-valid. Let I = (I, ($i)i∈I , π) be a sphere

model and take an arbitrary world i ∈ I. We need to show that the formula
∧m
k=1(Ak 4

Bk) →
∨m
`=1(C` 4 D`) holds at i. So suppose i ∈ JAk 4 BkK for all k ≤ m and that for

a k ≤ n we have i /∈ JC` 4 D`K for all ` with 1 ≤ ` ≤ n and ` 6= k. If
⋃

$i ∩ JDkK = ∅,
then we have i ∈ JCk 4 DkK and are done. In particular, this is the case if

⋃
$i = ∅.

Otherwise, choose a sphere S ∈ $i and a world j ∈ S ∩ JDkK. Since the premisses of

the rule application are V4-valid, we have |=V4 Dk →
∨m
`=1B` ∨

∨n
`=1C`, which gives

j ∈
⋃m
`=1 JB`K ∪

⋃n
`=1 JC`K. Thus j ∈

⋃n
`=1 JC`K or j ∈ JB`K for some ` ≤ m. In the latter

case, since i ∈ JA` 4 B`K we find a j2 ∈ S ∩ JA`K, and since |=V4 A` →
∨`−1
`′=1B`′ ∨

∨n
`′=1C`′

we find a world j2 ∈
⋃`−1
`′=1 JB`′K ∪

⋃n
`′=1 JC`′K. Continuing like this we find a world j′ ∈ I
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with j′ ∈ S ∩
⋃n
`=1 JC`K. Now if j′ /∈ JCkK, then there is a ` 6= k with j′ ∈ JC`K. But since

i /∈ JC` 4 D`K there is a sphere S′ ∈ $i with S′ $ S and S′ ∩ JD`K 6= ∅ and S′ ∩ JC`K = ∅. As

above we find a world j′′ ∈ S′∩
⋃n
t=1 JCtK = (S′∩

⋃n
t=1 JCtK)rJC`K. Repeating the argument we

finally obtain a sphere S′′ ∈ $i with ∅ 6= S′′∩
⋃n
`=1 JC`K = S′′∩ JCkK, and since by construction

S′′ ⊆ S we have i ∈ JCk 4 DkK. Thus the formula
∧m
k=1(Ak 4 Bk)→

∨m
`=1(C` 4 D`) holds at

world i.

For completeness by the completeness result for HcAV4 in [Lew73a, Chapter 6] it suffices

to show that all axioms and rules of HcAV4 are derivable in GcRV4CutCon. But this is easy:

rule CPR is derived using R0,1, axioms (CPA) and (CO) using rule R0,2 and axiom (TR) using

rule R2,1.

Furthermore, almost by construction we obtain saturation of the rule set.

Theorem 5.2.3 (c). The rule set GcRV4 is saturated.

Proof. The rules in GcRV4 are all shallow rules and thus automatically mixed- and context-cut

closed. Furthermore, since the rule set Gc is saturated (see Example 2.4.14) and since the rules

in RV4 mention only the conditional connectives, we only need to check principal-cut closure

and contraction closure for the rules in RV4 . For contraction closure it is fairly obvious from

the graphical representation of the rules that the right contraction of a rule Rm,n+1 and the

left contraction of a rule Rm+1,n are subsumed by the rule Rm,n. The main idea for showing

that the rule set RV4 is principal-cut closed is to show that cuts between the rules R2,1 and

R1,2 of the form as shown in Figure 5.3 top left and middle are subsumed by a cut of the form

shown on the top right. But this can be seen easily by weakening the appropriate premiss.

Since a rule Rm,n can be viewed as the result of performing cuts between m− 1 instances of

R2,1 and n− 1 instances of R1,2, we can use this to permute all the instances of R1,2 in a cut

between two rules Rm,n and Rk,` to the top. Moreover, cuts between two instances of the rule

R2,1 of the form shown in Figure 5.3 bottom left are similarly easily seen to be subsumed by

cuts of the form shown on the right. We use this to successively permute instances of R2,1

so that cuts are only performed on the lowest negative literal. Intuitively this amounts to

’straightening the stem of the T’. Since multiple cuts between the rules R2,1 and R1,2 of this

form are exactly the rules in RV4 , this shows that a cut between two rules Rm,n and Rk,` is

subsumed by the rule Rm+k−1,n+`−1.

It is worth noting that the proof of Theorem 5.2.3 also shows that the cut closure of a small

set of rules generating all the rules in RV4 is contraction closed.

Corollary 5.2.4 (c). Let R′V4
:= {R0,1,R1,1,R2,1,R1,2}. Then GcR′V4

CutCon is sound and

complete for V4 and the rule set cc
(
R′V4

)
is contraction closed.
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Figure 5.3: Straightening the rules in the proof of Theorem 5.2.3

Proof. Soundness and completeness for V4 follow from the proof of Theorem 5.2.2. Contraction

closure of the cut closure follows by bringing cuts between rules in the form corresponding to

rules in RV4 as in the proof of Theorem 5.2.3 and using contraction closure of RV4 .

Thus making use of either the generic cut elimination theorem and decision procedures from

Chapter 2 for RV4 or the results about small representations of rules in the cut closure of

R′V4
we have cut elimination and a complexity result for V4.

Corollary 5.2.5 (c). The rule set GcRV4Con has cut elimination and thus the validity problem

for V4 is in Pspace. More precisely, it is solvable in space polynomial in the circuit size of

the input.

Proof. Since the rule set is saturated, Theorem 2.4.16 yields cut elimination. Furthermore, it is

not hard to see that the rule set RV4 is tractable. Thus using Corollary 2.7.9 and the fact that

GcRV4CutCon is sound and complete for V4 we obtain the complexity result. Equivalently,

the latter result follows from Corollaries 4.1.21 and 5.2.4 using the representation of rules in

the cut closure of R′V4
as small cut trees.
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Remark 5.2.6. In the spirit of [Sch07] we may now also use the translation from rules to

axioms to give an alternative axiomatisation for the logic V4. Since the two rules R0,1 and

R2,2 generate all the rules in RV4 using cuts and contractions, it suffices to translate these

two rules into axioms. Instead of using the translation from Section 3.3 in this case due to the

relatively simple structure of the premisses it is easier to translate the rules directly. We do

this by identifying a variable q which occurs in only one premiss and substitute the variable

according to this premiss. For the rule R0,1 we have the premiss q ⇒ p and the conclusion

p 4 q, and it is clear that by substituting p ∧ r for q we force the implication p ∧ r → p of the

premiss and obtain the equivalent axiom (p ∧ r)� p. For the rule R2,2 we apply the same

method and obtain the equivalent axiom

((r1∨r2)∧t1 4 q1)∧((r1∨r2)∧t2 4 q2)→ (r1 4 (r1∨r2∨q1∨q2)∧u1)∨(r2 4 (r1∨r2∨q1∨q2)∧u2) .

While the Hilbert-system given by these two axioms then is sound and complete for V4, the

original axiomatisation of course is slightly superior in terms of readability and intuitiveness.

5.3 Extensions of V

We now extend the results of the previous section to the extensions of the logic V mentioned in

Section 5.1. The logics VN,VT,VW,VC,VA and VNA arise by extending the axiomatisation

of V with additional axioms from

(N) ¬(⊥ 4 >) (C) ((A 4 >) ∧ (> 4 A))→ A

(T) (⊥ 4 ¬A)→ A (A1) (A 4 B)→ (⊥ 4 ¬(A 4 B))

(W) ((⊥ 4 ¬A) ∨ ¬(¬A 4 >))→ A (A2) ¬(A 4 B)→ (⊥ 4 (A 4 B))

in the way as given in Table 5.2, which we repeat here for convenience:

AVN4 :=AV4 ∪ {(N)} AVT4 :=AV4 ∪ {(T)} AVW4 :=AV4 ∪ {(W)}
AVC4 :=AV4 ∪ {(C)} AVA4 :=AV4 ∪ {(A1), (A2)} AVNA4 :=AV4 ∪ {(N), (A1), (A2)}

Note that apart from the axioms (A1) and (A2) all the axioms are non-iterative. The axioms

(N) and (T) are already translatable clauses in the sense of Definition 3.2.9 extended as by

Remark 3.2.11. Thus we can translate them immediately using the methods of Chapter 3.

This yields the two rules

RN := {(p⇒ ; C∅), (⇒ q; C∅)}/(p 4 q)⇒

RT := {(p⇒ ; C∅), (⇒ q; Cid}/(p 4 q)⇒ .
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RN := {(p⇒ ; C∅), (⇒ q; C∅)}/(p 4 q)⇒
RT := {(p⇒ ; C∅), (⇒ q; Cid}/(p 4 q)⇒ .

RW := {(⇒ p; Cid), (⇒ q; C∅)}/ ⇒ (p 4 q)

RC := {(p⇒ ; Cid), (⇒ q; C∅)}/(p 4 q)⇒ .

RA := {(p⇒ ; C∅), (q ⇒ ; CVA)}/ ⇒ (p 4 q)

Table 5.3: The translations of the additional axioms for extensions of V4

The axioms (W) and (C) can be simplified first. By propositional reasoning adding axiom (W)

is equivalent to adding axiom (T) and the translatable clause

(W′) ¬(¬A 4 >)→ A .

Furthermore, since using rule CPR the formula (> 4 A) is derivable in V for every formula A,

we may replace axiom (C) with the translatable clause

(C′) (A 4 >)→ A .

Translating these two axioms into rules then yields the rules

RW := {(⇒ p; Cid), (⇒ q; C∅)}/ ⇒ (p 4 q)

RC := {(p⇒ ; Cid), (⇒ q; C∅)}/(p 4 q)⇒ .

For the axioms (A1) and (A2) the translation is not quite as straightforward. But using

methods as in the case of the axioms for S5 we obtain the rule

RA := {(p⇒ ; C∅), (q ⇒ ; CVA)}/ ⇒ (p 4 q)

where CVA is the context restriction 〈{r 4 s}, {r 4 s}〉. The details of the construction are

given below. These newly constructed rules are summarised in Table 5.3. Then by construction

we obtain soundness and completeness of the sequent calculi with the cut rule.

Proposition 5.3.1 (c). The following calculi are sound and complete for the specified logics:

GcRV4RNCutCon for VN4 GcRV4RTCutCon for VT4
GcRV4RTRWCutCon for VW4 GcRV4RCCutCon for VC4
GcRV4RACutCon for VA4 GcRV4RNRACutCon for VNA4

Proof. From the completeness results in [Lew73a, Chapter 6], by first translating the axioms

given there into the language using only the comparative plausibility operator using the
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equivalences given in Table 5.1 we obtain soundness and completeness of the Hilbert-systems

as specified in Table 5.2. Then reasoning as above and using Corollary 3.2.26 we can show

that the constructed rules are equivalent to the axioms over RV4Mon4, where Mon4 {(p⇒
r; C∅), (s⇒ q; C∅)}/(p 4 q)⇒ (r 4 s) is the rule constructed on page 147. Since this rule is

subsumed by the rule R1,1 from RV4 , the constructed rules evidently are equivalent to the

axioms also over RV4 . This gives the result for the systems not including the rule RA.

For the systems including the rule RA we first show that adding both axioms (A1) and (A2)

is equivalent over RV4 to adding the ω-set
n∧
i=1

(ri 4 si) ∧ ¬
m∨
j=1

(tj 4 uj)→

⊥ 4 ¬ n∧
i=1

(ri 4 si) ∨
m∨
j=1

(tj 4 uj)

 | n,m ≥ 0


for the axiom

(A) (r 4 s) ∧ ¬(t 4 u)→ (⊥ 4 ¬(r 4 s) ∨ (t 4 u)) .

For the one direction it is clear that both (A1) and (A2) are logically equivalent (modulo

injective renaming) to formulae in the ω-set. For the other direction, if we have axioms (A1)

and (A2), then we can derive for every i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ m the formulae

(ri 4 si)→ (⊥ 4 ¬(ri 4 si)) and ¬(tj 4 uj)→ (⊥ 4 (tj 4 uj))

and thus also the formulae

n∧
i=1

(ri 4 si) ∧ ¬
m∨
j=1

(tj 4 uj)→ (⊥ 4 ¬(ri 4 si))

and
n∧
i=1

(ri 4 si) ∧ ¬
m∨
j=1

(tj 4 uj)→ (⊥ 4 (tj 4 uj)) .

Thus by propositional reasoning we can derive the formula

n∧
i=1

(ri 4 si) ∧ ¬
m∨
j=1

(tj 4 uj)→
n∧
i=1

(⊥ 4 ¬(ri 4 si)) ∧
m∧
j=1

(⊥ 4 (tj 4 uj)) .

On the other hand it is not too hard to see that in GcRV4 we can derive for all formulae

A,B1, . . . , Bk the equivalence
∧k
i=1(A 4 Bi) ↔ (A 4

∨k
i=1Bi), and thus we can derive the

formula
n∧
i=1

(ri 4 si) ∧ ¬
m∨
j=1

(tj 4 uj)→

⊥ 4 n∨
i=1

¬(ri 4 si) ∨
m∨
j=1

(tj 4 uu)


which by standard propositional reasoning is equivalent to the formula (A)i,j in the ω-set for
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the axiom (A). Now by the translation of Chapter 3 the ω-set for the axiom (A) is translated

into the rule RA. Thus using Theorem 3.2.30 the latter is equivalent over RV4 to the ω set for

(A), and thus also to the two axioms (A1) and (A2).

Since all the additional rules contain at most one formula in their principal formulae, the re-

sults about the representations of the rules in the cut closure as small cut trees straightforwardly

yield decidability and complexity results.

Theorem 5.3.2 (c). The validity problem for each of the logics VN4,VT4,VW4,VC4 is in

Pspace. The validity problem for the logics VA4 and VNA4 is in Exptime.

Proof. The result for the logics without absoluteness follows directly since by Corollary 5.2.4

the rule set cc
(
R′V4

)
is contraction closed, and thus by Corollary 4.1.30 the cut closures

of extensions of R′V4
with rules from RN,RT,RW,RC are contraction closed (and therefore

saturated) as well. For the logics involving absoluteness Corollary 4.1.30 only yields contraction

closure of the cut closure of the sets R′V4
∪{RA} resp. R′V4

∪{RN,RA}. But in these cases since

the only restrictions occurring in the rules are C∅ and CVA, it is straightforward to check that

the cut closure is mixed- and context-cut closed as well. Now Lemma 4.1.7 and Corollary 4.1.21

resp. Corollary 4.1.20 yield the complexity bounds.

For the logics V4,VN4,VT4,VW4 and VC4 the Pspace-complexity result given in the

previous theorem resp. Corollary 5.2.5 is optimal. This can be seen by reduction from the

validity problem for the standard modal logics K,D or T, which are embedded into the logic

at hand using the translation ♦p↔ (p 4 >), see [Lew73a, Chapter 6].

While Theorem 5.3.2 gives us decision procedures and complexity bounds for the extensions

of V4 without having to explicitly construct cut-free sequent calculi, it is now not too difficult

to do so by simply computing cuts between rules in RV4 and the additional rules. Since a

cut between a rule Rm,n and the rule RN gives the rule Rm,0 in case n = 1 and is subsumed

by the rule Rm,n−1 in case n > 1, for the logic VN4 it suffices to add all the rules Rm,0 for

m ≥ 1 to the rule set. A cut between a rule Rm,n and the rule RT on the other hand deletes

all the heads pointing to the first argument of one positive literal of Rm,n and replaces the

tails emerging from its second argument by the context. Thus in case n > 1 this rule is again

subsumed by the rule Rm,n−1. In case n = 1 we need to add the constructed rule Tm to the

rule set. For VW4 and VC4 observe that a cut between the rule RW resp. RC and the rule

R1,1 yields the rules

RW2 := {(⇒ p; Cid)}/ ⇒ (p 4 q)

RC2 := {(p⇒ ; Cid), (⇒ q; Cid)}/(p 4 q)⇒

which subsume the rules RW and RC respectively. Cutting RW2 with Rm,n has the effect of

replacing the antecedent of one negative literal with the context in all premisses and deleting
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Σm ⇒ Πn := (p1 4 q1), . . . , (pm 4 qm)⇒ (r1 4 s1), . . . , (rn 4 sn)

Tm := PT
m/Σm ⇒ Π0 where

PT
m :=

{(pk ⇒ q1, . . . , qk−1; C∅) | 1 ≤ k ≤ m}
∪ {(⇒ q1, . . . , qm; Cid)}

Wm,n := PW
m,n/Σm ⇒ Πn where

PWm,n :=
{(pk ⇒ q1, . . . , qk−1, r1, . . . , rn; C∅) | 1 ≤ k ≤ m}
∪{(⇒ q1, . . . , qm, r1, . . . , rm; Cid)}

Am,n := PA
m,n/Σm ⇒ Πn where

PAm,n :=
{(sk ⇒ q1, . . . , qm, r1, . . . , rn; CVA) | 1 ≤ k ≤ n}
∪ {(pk ⇒ q1, . . . , qk−1, r1, . . . , rn; CVA) | 1 ≤ k ≤ m}

RW2 := {(⇒ p; Cid)}/ ⇒ (p 4 q)

RC2 := {(p⇒ ; Cid), (⇒ q; Cid)}/(p 4 q)⇒

RVN4 := {Rm,n | m+ n ≥ 1} RVC4 := RV4 ∪ {RW2,RC2}
RVT4 := RV4 ∪ {Tm | m ≥ 1} RVA4 := {Am,n | m ≥ 0, n ≥ 1}
RVW4 := RV4 ∪ {Wm,n | m+ n ≥ 1} RVNA4 := {Am,n | m+ n ≥ 1}

Table 5.4: The rules and rule sets for extensions of V4.

all doodles pointing to its succedent. For VC4 note that a cut between RC2 and R0,2 yields

the rule RW2. For VA4 similar to the case of VW4 a cut between a rule Rm,n and the rule RA

on the uppermost negative literal of the former in effect deletes this literal from the conclusion

and changes the context restriction in every premiss to CVA. The new rules for VT4,VW4 and

VA4 in non-graphical notation and the resulting rule sets are given in the following definition.

Definition 5.3.3. For m,n ∈ N the rules Tm,Wm,n,Am,n,RW2,RC2 as well as the rule sets

RL for L ∈ {VN4,VT4,VW4,VC4,VA4,VNA4} are defined as in Table 5.4.

Note that in the case of VC4 we arrived in a systematic and purely syntactic way at the

sequent system corresponding to the tableau system given in [Gen92]. Again all the rule sets

are sound for the respective logics by construction, but as the next lemma shows this can also

be seen directly.

Lemma 5.3.4 (c). Let L be a logic in {VN4,VT4,VW4,VC4,VA4,VNA4}. Then the

sequent system given by GcRLCon is sound for L.

Proof. Again we show soundness of the rule sets by showing that whenever all premisses of an

application of a rule from the rule set are valid in the corresponding class of sphere models,

then so is its conclusion. For the rules in RV4 see Theorem 5.2.2. The proofs for the additional

rules are all similar to the case for RV4 .
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For RVN4 : Assume that for m > 0 the premisses of an application of the rule Rm,0 are

VN4-valid. Then for every k with 1 ≤ k ≤ m we have |=VN4 Ak →
∨k−1
`=1 B` and moreover we

have |=VN4

∨m
`=1B`. Suppose that I is a normal sphere model, i.e., for every world i ∈ I we

have
⋃

$i 6= ∅, and take an arbitrary world i ∈ I. We need to show that i ∈ J¬
∧m
`=1(A` 4 B`)K.

Assume on the contrary that i ∈ JA` 4 B`K for every ` ≤ m and take a nonempty sphere

S ∈ $i. Since
∨m
`=1B` is VN4-valid, and since S is nonempty, there is a world i1 ∈ S with

i1 ∈
⋃m
`=1 JB`K and thus we find an index k1 such that i1 ∈ JBk1K. But since by assumption

i ∈ JAk1 4 Bk1K we find a world i2 ∈ S such that i2 ∈ JAk1K. On the other hand we have

|=VN4 Ak1 →
∨k1−1
`=1 B` and thus we obtain i2 ∈ JBk2K for an index k2 with k2 < k1. Continuing

like this after at most m steps we find a world j with j ∈ S ∩ JA1K in contradiction to the fact

that A1 → ⊥ is VN4-valid. Thus we have i /∈ JA` 4 B`K for some ` ≤ m.

For RVT4 : Suppose that the premisses of an application of the rule Tm are VT4-valid.

Then again for every k with 1 ≤ k ≤ m we have |=VT4 Ak →
∨k−1
`=1 B` and furthermore

|=VT4

∧
Γ→

∨
∆∨

∨m
`=1B`. Now let I be totally reflexive, i.e., for every world i ∈ I we have

i ∈
⋃

$i. Then for any world i ∈ I we have i ∈ J
∧

Γ→
∨

∆K or i ∈ J
∨m
`=1B`K. In the former

case we also have i ∈ J
∧

Γ ∧
∧m
`=1(A` 4 B`)→

∨
∆K and are done. In the latter case since I

is totally reflexive we can choose a sphere S ∈ $i with i ∈ S. Now the same proof as in the

case for VN4 above shows that for some ` ≤ m we have i /∈ JA` 4 B`K.
For RVW4 : If for some m,n ≥ 0 the premisses of an application of the rule Wm,n are valid,

we have

|=VW4

∧
Γ→

m∨
k=1

Bk ∨
n∨
k=1

Ck ∨
∨

∆

and furthermore for every k with 1 ≤ k ≤ m we have

|=VW4 Ak →
k−1∨
`=1

B` ∨
n∨
`=1

C` .

Now suppose that the sphere model I is weakly centered, i.e., for every world i ∈ I there is a

sphere S ∈ $i with S 6= ∅ and for every sphere S ∈ $i with S 6= ∅ we have i ∈ S. Now take an

arbitrary world i ∈ I. Again we need to show that

i ∈

t∧
Γ ∧

m∧
k=1

(Ak 4 Bk)→
n∨
k=1

(Ck 4 Dk) ∨
∨

∆

|

.

By assumption we have i ∈ J
∧

Γ→
∨m
k=1Bk ∨

∨n
k=1Ck ∨

∨
∆K. Then we have either i /∈⋃m

`=1 JB`K ∪
⋃n
`=1 JC`K and are done since then i ∈ J

∧
Γ→

∨
∆K; or we have i ∈ JC`K for

some ` with 1 ≤ ` ≤ n and are done since the world i is contained in every non-empty

sphere S ∈ $i and hence i ∈ JCk 4 DkK; or we have i ∈ JBkK for some k with 1 ≤ k ≤ m.

In the latter case we fix such a k and use the fact that I is weakly centered to choose

a non-empty sphere S ∈ $i. Then i ∈ S. Again, for the sake of contradiction assume
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that i /∈ J
∧m
k=1(Ak 4 Bk)→

∨n
k=1(Ck 4 Dk)K. Then in particular for every k ≤ m we have

i ∈ JAk 4 BkK and for every k ≤ n we have i /∈ JCk 4 DkK. Then since i ∈ JBkK there is a

world i1 ∈ S∩JAkK. Since |=VW4 Ak →
∨k−1
`=1 B`∨

∨n
`=1C` we have i1 ∈

⋃k−1
`=1 JB`K∪

⋃n
`=1 JC`K.

Repeating the argument at most k times yields a world j ∈ S ∩
⋃n
`=1 JC`K. Choose k1 with

j ∈ JCk1K. Since by assumption i /∈ JCk1 4 Dk1K, there is a sphere S′ $ S with S′ ∩ JCk1K = ∅
and S′ ∩ JDk1K 6= ∅. Since I is weakly centered again we have i ∈ S′. Now repeating the whole

argument with the sphere S′ instead of S gives a sphere S′′ $ S′ with S′′∩ (JCk1K∪ JCk2K) = ∅.
Continuing like this after at most n repetitions we arrive at a sphere S′′′ with S ∩ JCkK = ∅ for

every k ≤ n. But now a final iteration of the first part of the argument yields S′′′∩
⋃n
`=1 JC`K 6= ∅,

a contradiction.

For RVC4 : Since every centered sphere model is also normal, and since the rule RW2 is the

same as the rule W1,0, we have soundness of the rule RW2 as above. For rule RC2 suppose

on the other hand that |=VC4

∧
Γ ∧A→

∨
∆ and |=VC4

∧
Γ→ B ∨

∨
∆. Then since I is a

centered sphere model for all i ∈ I we have {i} ∈ $i, and for i ∈ I obviously {i} is the smallest

sphere in $i. We need to show that i ∈ J
∧

Γ ∧ (A 4 B)→ ∆K. If i ∈ J
∧

Γ⇒
∨

∆K, then

i ∈ J
∧

Γ ∧ (A 4 B)→
∨

∆K as well and we are done. Otherwise since |=VC4

∧
Γ ∧A⇒

∨
∆

and |=VC4

∧
Γ→ B ∨

∨
∆ we have i /∈ JAK and i ∈ JBK. But then since {i} is the smallest

sphere in $i we have i /∈ JA 4 BK and thus i ∈ J
∧

Γ ∧ (A 4 B)→
∨

∆K.

For RVA4 : This case again is analogous to the case of RV4 , making use of the easy fact

that if in a sphere model for two worlds i, j we have $i = $j , then for every formula (A 4 B)

we have i ∈ JA 4 BK if and only if j ∈ JA 4 BK. In more detail, assume that the premisses

of an application of Am,n for m ≥ 0 and n ≥ 1 are valid, i.e., suppose that for every k with

1 ≤ k ≤ n we have

|=VA4

c∧
`=1

(E` 4 F`) ∧Dk →
m∨
`=1

B` ∨
n∨
`=1

C` ∨
d∨
`=1

(G` 4 H`)

and that for every k with 1 ≤ k ≤ m we have

|=VA4

c∧
`=1

(E` 4 F`) ∧Ak →
k−1∨
`=1

B` ∨
n∨
`=1

C` ∨
d∨
`=1

(G` 4 H`) .

Furthermore, let I be an absolute sphere model, i.e., for every two worlds i, j from I we have

$i = $j . Take an arbitrary world i from I. We need to show that

i ∈

t
c∧
`=1

(E` 4 F`) ∧
m∧
`=1

(A` 4 B`)→
n∨
`=1

(C` 4 D`) ∨
d∨
`=1

(G` 4 H`)

|

.

So assume that i ∈ J
∧c
`=1(E` 4 F`) ∧

∧m
`=1(A` 4 B`)K, that i /∈ JG` 4 H`K for every ` with

1 ≤ ` ≤ d and that for a k with 1 ≤ k ≤ n we have i /∈ JC` 4 D`K for every ` with
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1 ≤ ` ≤ n and ` 6= k. Then if
⋃

$i ∩ JDkK = ∅ we are done. In particular this holds in case⋃
$i = ∅. Otherwise, choose a world j ∈

⋃
$i ∩ JDkK. Using validity of

∧c
`=1(Ei 4 Fi)∧Dk →∨m

`=1B` ∨
∨n
`=1C` ∨

∨d
`=1(G` 4 H`) we have

j ∈

t
c∧
`=1

(E` 4 F`)→
m∨
`=1

B` ∨
n∨
`=1

C` ∨
d∨
`=1

(G` 4 H`)

|

.

But since I is absolute the same formulae of the form X 4 Y hold in the worlds i and

j, and thus we have j ∈ J
∧c
`=1(E` 4 F`)K and j /∈ JG` 4 H`K for every ` with 1 ≤ ` ≤ d.

Hence we obtain that j ∈
⋃m
`=1 JB`K ∪

⋃n
`=1 JC`K. If j ∈ JB`K for some ` ≤ m, then since

i ∈ JA` 4 B`K we find a world j2 ∈ S ∩ JA`K. Thus using validity of
∧c
`′=1(E′` 4 F ′`) ∧ A` →∨`−1

`′=1B`′ ∨
∨n
`′=1C`′ ∨

∨d
`′=1(G`′ 4 H`′) and the fact that the same formulae of the form

X 4 Y hold in the worlds i and j2 we get that j2 ∈
⋃`−1
`′=1 JB`′K ∪

⋃n
`′=1 JC`′K. Iterating this

process we find a world j′ with j′ ∈ S ∩
⋃n
`=1 JC`K. If j′ /∈ JCkK, then there is an index ` with

` 6= k with j′ ∈ JC`K. On the other hand we have i /∈ JC` 4 D`K, and thus there is a sphere

S′ ∈ $i with S′ $ S and S′ ∩ JD`K 6= ∅ and S′ ∩ JC`K = ∅. Similar to above there is a world

j′′ ∈ S′ ∩
⋃n
t=1 JCtK = (S′ ∩

⋃n
t=1 JCtK)r JC`K. Iterating the argument we find a sphere S′′ ∈ $i

with ∅ 6= S′′ ∩
⋃n
`=1 JC`K = S′′ ∩ JCkK and S′′ ⊆ S. Thus we get i ∈ JCk 4 DkK and we are

done.

For RVNA4 : For an application of the rule Am,n with n ≥ 1 this follows as in the case for

VA4. For the case n = 0 it is easy to adapt the proof for VN4 to the additional context in

the fashion of the previous case.

The next step is to show cut-free completeness. We know from Proposition 5.3.1 that

the extensions of the calculus GcRV4CutCon with combinations of the rules corresponding

to the axioms characterising the logics are complete for the respective logics. Thus taking

the logic VC4 as an example we have that since GcRV4RCCutCon is complete for VC4, by

cut elimination the system Gc cc
(
RV4 ∪ {RC}

)
Con is complete for VC4 as well. Now if we

can show that all rules in cc
(
RV4 ∪ {RC}

)
are derivable rules in RVC4ConW, then we are

done, since then as noticed in Remark 2.4.18 we can transform every (cut-free) derivation in

Gc cc
(
RV4 ∪ {RC}

)
Con into a (cut-free) derivation in GcRVC4Con. As it might be helpful

to visualise the rules, the rule doodles representing the rules RN,RT and RW are given in

Figure 5.4.

Lemma 5.3.5 (c). Let L be a logic in {VN4,VT4,VW4,VC4,VA4,VNA4}. Then the

sequent system given by GcRLCon is complete for L.

Proof. We show that if L is one of the logics considered and R is the rule set for this logic

given in Proposition 5.3.1, then all rules in cc (R) are derivable rules in RLWCon. In order to

show this it is enough to show that cuts between a rule Rm,n and possibly several instances of

the additional rules not in RV4 are derivable rules in RL. This is due to the fact that as we
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4 . .

RN

4 . .

r

s

RT

4 . .

t

u

RW

Figure 5.4: The graphical representations of the rules for extensions of V4

have seen in Theorem 5.2.3 cuts between two rules Rm,n and Rk,` are subsumed by the single

rule Rm+k−1,n+`−1, and thus if the construction of a rule in cc (R) involves such a cut, then

reordering the cut tree and replacing this cut with the rule Rm+k−1,n+`−1 gives a rule without

the cut which subsumes the original rule. We consider each of the rule sets in turn.

For RVN4 : A cut between the rule RN = {(p ⇒ ; C∅), ( ⇒ q; C∅)}/(p 4 q) ⇒ and a rule

Rm,n with n ≥ 1 simply deletes one positive literal in the conclusion of the latter, all heads

pointing to its first argument and all tails emerging from its second argument in the premisses.

Thus the resulting rule is subsumed by the rule Rm,n−1.

For RVT4 : A cut between the rule RT = {(p ⇒ C∅), ( ⇒ q; Cid)}/(p 4 q) ⇒ and a rule

Rm,n with n ≥ 2 similarly deletes a positive literal in the conclusion of the latter and all heads

pointing to its first argument. This is already enough to ensure that the resulting rule is

subsumed by the rule Rm,n−1. If n = 1, then the cut gives the rule Tm.

For RVW4 : The rules RT and RW are subsumed by the rules W1,0 resp. W0,1. Cuts between

the rules RT and Rm,n are subsumed by the rules Rm,n−1 for n > 1 or Wm,0 for n = 1. Thus

given cut between a rule Rm,n and multiple instances of the rules RT and RW it suffices to

first eliminate the cuts involving the instance of RT and then deal with the remaining cuts

between a rule Rm,n or Wm,0 and instances of RW. Cuts between a rule Rm,n and multiple

instances of the rule RW = {(⇒ p; Cid), (q ⇒ ; C∅)}/ ⇒ (p 4 q) are treated in the following

way. Assume that the cuts occur on the (negative) literals {(pi 4 qi) | i ∈ I} of Rm,n for

some I ⊆ {1, . . . ,m}. Then the cuts with RW have the effect of deleting all heads pointing

to the second arguments of the corresponding literals. Moreover, the cut on the literal

(pmax(I) 4 qmax(I)) produces a premiss which can be weakened to the premiss with heads

pointing to all qi for i ∈ {1, . . . ,m}r I and to all rj for 1 ≤ j ≤ n and with heads pointing to

resp. tails emerging from all the context formulae. Thus the resulting rule is subsumed by

the rule Wm−|I|,n. In the case of a cut between the rules Wm,0 and RW the resulting rule is

subsumed by the rule Wm−1,0.

For RVC4 : The rule RC is subsumed by the rule RC2. On the other hand, a cut between the

rule Rm,n+` and ` instances of the rule RC on the literals (rn+1 4 sn+1), . . . , (rn+` 4 sn+`) has
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the premisses

P ′m,n = {(sk ⇒ q1, . . . , qm, r1, . . . , rn; Cid) | 1 ≤ k ≤ n}

∪ {(pk ⇒ q1, . . . , qk−1, r1, . . . , rn; Cid) | 1 ≤ k ≤ m}

∪ {(⇒ q1, . . . , qm, r1, . . . , rn; Cid)} .

Thus an application of this rule is derived using multiple applications of first the rule RW2

and then the rule RC2 as follows. First we have a derivation D given by

Γ⇒ q1, . . . , qm, r1, . . . , rn,∆

Γ⇒ q1, . . . , qm, (r1 4 s1), . . . , (rn 4 sn),∆
RW2

and for k with 1 ≤ k ≤ m derivations Dk given by

Γ, pk ⇒ q1, . . . , qk−1, r1, . . . , rn,∆

Γ, pk ⇒ q1, . . . , qk−1, (r1 4 s1), . . . , (rn 4 sn),∆
RW2

Γ, pk, (pk+1 4 qk+1), . . . , (pm 4 qm)⇒ q1, . . . , qk−1, (r1 4 s1), . . . , (rn 4 sn),∆
W

Abbreviating the multiset (r1 4 s1), . . . , (rn 4 sn),∆ to Σ we then derive the conclusion using

multiple applications of RC2:

D1....
Γ, p1, (p2 4 q2), . . . , (pm 4 qm)⇒ Σ

Dm....
Γ, pm ⇒ q1, . . . , qm−1,Σ

D....
Γ⇒ q1, . . . , qm,Σ

Γ, (pm 4 qm)⇒ q1, . . . , qm−2,Σ
RC2

....
Γ, (p2 4 q2), . . . , (pm 4 qm)⇒ q1Σ

Γ, (p1 4 q1), . . . , (pm 4 qm)⇒ Σ
RC2

This shows that the original rule is a derivable rule in RVC4ConW.

For RVA4 : The rule RA is subsumed by the rule A0,1, and for m ≥ 0, n ≥ 1 the rule Rm,n is

subsumed by the rule Am,n. A cut between a rule Rm,n and the rule RA on the literal (pi 4 qi)

deletes all doodles representing premisses of Rm,n with tails emerging from pi and replaces

all heads in doodles representing the premisses of Rm,n pointing to qi with heads (resp. tails)

pointing to (resp. emerging from) context formulae (t 4 u) and (v 4 w). Thus cuts between

Rm,n and ` instances of RA are subsumed by the rule Am−`,n.

For RVNA4 : Again the rules RA and Rm,n are subsumed by the rules A0,1 resp. Am,n. The

rule RN furthermore is subsumed by the rule A1,0. A cut between RN and RA gives the identity

rule. Cuts between a rule Rm,n and k instances of the rule RA and ` instances of the rule RN

are subsumed by the rule Am−k,n−`.

Together, these two lemmata give soundness and cut-free completeness of our rule sets.
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Theorem 5.3.6 (c). Let L be a logic in {VN4,VT4,VW4,VC4,VA4,VNA4}. Then the

sequent system given by GcRLCon is sound and complete for L.

Proof. Immediate from Lemma 5.3.4 and Lemma 5.3.5.

Remark 5.3.7. For the logics VN4,VW4,VA4 and VNA4 the proof of Lemma 5.3.5 is also

easily extended to show that the corresponding rule sets are principal-cut closed. Thus for

these logics we might also use derivability of the original rules and the generic cut elimination

theorem to show cut-free completeness. For the logics VT4 and VC4 we would need to add

further rules to the rule set, though, which is why this presentation was chosen.

We may now also use the explicitly constructed rule sets modified according to Definition 2.6.1

to show decidability of the logics in question.

Corollary 5.3.8 (c). The validity problem for the logics VN4,VT4,VW4,VC4, is solvable

in space polynomial in the circuit size of the input. The validity problem for VA4 and VNA4
is solvable in time exponential in the circuit size of the input.

Proof. Let L be one of the specified logics. Then the rule set RL is tractable. Moreover, by

Theorem 5.3.6 above and Theorem 2.6.5 the sequent calculus (GcRL)∗ is sound and complete

for L. Now using the procedures given in the proofs of Theorem 2.7.8 resp. Theorem 2.7.5 we

obtain the complexity bound.

5.4 Strong And Weak Counterfactual Implication

One of the original motivations for studying conditional logics stems from trying to formalise

counterfactual implications. But from this point of view it is more natural to take either

the strong counterfactual implication � or its weak version � as a primitive instead of

the comparative plausibility operator 4. Of course since these connectives are interdefinable

a decision procedure for a conditional logic formulated in terms of one of these connectives

immediately yields a decision procedure for the logic formulated in terms of the other ones. It

is not immediately clear, however, that the resulting procedure has the same complexity as

the original one. It is clear from the earlier mentioned translations of the strong and weak

counterfactual implications into the comparative plausibility operator given by

(A� B)↔ ¬((A ∧ ¬B) 4 (A ∧B))

(A� B)↔ (⊥ 4 A) ∨ ¬((A ∧ ¬B) 4 (A ∧B))

that the (formula) size might grow exponentially. On the other hand, the number of sub-

formulae grows only by a constant factor. Thus using the circuit representation of formulae

(Definition 2.7.2) we do obtain complexity results for these languages.
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Corollary 5.4.1 (c). Let L be one of {V,VN,VT,VW,VC} and let ∗ ∈ {�,�}. Then the

validity problem for the logic L∗ is in Pspace. If L ∈ {VA,VNA}, then the validity problem

for L∗ is in Exptime.

Proof. Translating a formula A of F(�) given in the circuit representation into the language

of 4 adds 3 additional nodes for each node labelled with �. Similarly, the translation from

the language of � adds 6 additional nodes for each node labelled with �. Thus in either

case if Aτ is the translated formula we have ||Aτ ||c ≤ 6 · ||A||c and are done using Corollary 5.2.5

resp. Corollary 5.3.8.

This reproves the known complexity results for the logics not including absoluteness from

[FH94] in a purely syntactical way. For the logics VA� and VNA� our Exptime-complexity

bound unfortunately is far from the coNP-bound established in the same article, but on the

other hand this might be expected of a generic procedure. Even though we have decision

procedures already, it is still interesting to construct explicit sequent calculi for the logics

considered in the language of counterfactual implication. We can do so for the strong

counterfactual implication by basically translating the rules for the comparative plausibility

operator into the other language. The idea for this is to make use of the translation axiom

(A� B)↔ ¬ (A ∧ ¬B 4 A ∧B) (5.1)

from Section 5.1 to construct two “translation rules”. The extension of the rule set RV4 with

these translation rules then gives a rule set for the logic V4,�. Moreover, since both for

the strong counterfactual implication and the comparative plausibility operator the principal

formulae of the translation rules contain exactly one literal with this connective as its main

connective, computing a cut between such a translation rule and a rule Rm,n has the effect of

replacing one literal in the principal formulae of the latter rule with a literal with the strong

counterfactual implication as main connective. Thus computing all possible cuts between a

rule Rm,n and the two translation rules yields a rule corresponding to Rm,n but in the language

of �. The set of all these rules will then yield a sequent calculus for V�. For extensions of

V� the process is similar. The reason why this method does not work straightforwardly for

the weak counterfactual implication is that the principal formulae of one of the translation

rules constructed from the translation

(A� B)↔ (⊥ 4 A) ∨ ¬(A ∧ ¬B 4 A ∧B)

contain two literals with the comparative plausibility operator as main connective. Thus a cut

between this rule and a rule Rm,n does not reduce the number of literals with the comparative

plausibility operator as main connective in the principal formulae of the latter rule. On the
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other hand, we could try to use the translation

(A 4 B)↔
(
A ∨B� ¬(A ∨B)

)
∨ ¬(A ∨B� ¬A)

but then again one literal from the principal formulae of a rule Rm,n would be replaced by two

literals with � as the main connective and we would not be able to derive a single formula

with � as the main connective. It is not clear whether the method can somehow be adapted

to work in this case as well.

So let us consider the strong counterfactual implication. Using the methods of Chapter 3

on the translation axiom given in (5.1) yields the two rules Rt1 and Rt2 given by

Rt1 :=Pt/(p 4 q), (r� s)⇒

Rt2 :=Pt/ ⇒ (p 4 q), (r� s)

for the premisses

Pt =

{
(p⇒ r; C∅), (p, s⇒ C∅), (r ⇒ p, s; C∅),
(q ⇒ r; C∅), (q ⇒ s; C∅), (r, s⇒ q; C∅)

}
Moreover, by construction we have equivalence of the translation rules with the translation ax-

ioms overRV4 . This gives us soundness and completeness of the rule sets from Proposition 5.3.1

not involving absoluteness extended with the translation rules.

Proposition 5.4.2 (c). The following calculi are sound and complete for the specified logics:

GcRV4Rt1Rt2CutCon for V4,�
GcRV4RNRt1Rt2CutCon for VN4,� GcRV4RTRt1Rt2CutCon for VT4,�
GcRV4RTRWRt1Rt2CutCon for VW4,� GcRV4RCRt1Rt2CutCon for VC4,�

Proof. Applying the translation procedure from Theorem 3.2.14 to the axioms (p� q)→
¬((p ∧ ¬q) 4 (p ∧ q)) and ¬((p ∧ ¬q) 4 (p ∧ q))→ (p� q) yields exactly the rules Rt1 and

Rt2. Thus by the same theorem each of the rules is equivalent to the original axiom over

RV4 . This together with soundness and completeness of the rule sets in the language with 4

(Proposition 5.3.1) and the fact that the connective � is defined by the translation axioms

gives the stated result.

Again we now might exploit the representation of rules in the cut closures of these rule sets

to show decidability of the logics. For this we need to show that the cut closures of the rule

sets given above are contraction closed. We do this by considering the representation of such

rules in terms of cut graphs.

Lemma 5.4.3 (c). Let L be one of V�,VN�,VT�,VW� or VC� and let R be the corre-

sponding set of modal rules as given in Proposition 5.4.2. Then the rule set cc
(
RV4RRt1Rt2

)
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Rt2 Rt1 . · · · . Rt1 Rt2

G2

G1
G

Figure 5.5: The cut graphs constructed in the proof of Lemma 5.4.3

is contraction closed.

Proof. In view of Theorem 4.1.29 we only need to check that contractions of path rules in

cc
(
RV4RRt1Rt2

)
are subsumed. So let R be such a path rule. Then the cut graph G for its

representing cut tree is a path. On the other hand we know that the only rule in RV4RRt1Rt2
in which the connective � occurs on the left hand side of the principal formulae is the rule

Rt1 and likewise the only rule in which it occurs on the right hand side is Rt2. Thus whenever

one of these rules, say Rt1, appears in the cut graph for R but is not one of the two endpoints,

then one of the adjacent nodes must be the other of the two rules, in this case Rt2, and a

formula (p� q) must appear in the principal formulae of both rules. But as is easy to check

the rule cut(Rt2,Rt1, (p� q)) is subsumed by the congruence rule and thus also by the rule

R1,1. This means that w.l.o.g. we may assume that if the rules Rt1 or Rt2 occur in the cut

graph G, then they occur as one of its two endpoints. Now suppose we have a contraction of

R on literals occurring in the principal formulae of the rules at the two endpoints of G. If the

literals are of the form (r 4 s), then the connective � does not occur at all in G, and we are

done using Proposition 5.3.1. If on the other hand the contracted formula is (r� s) for some

variables r and s, then the endpoints of G must be both Rt1 or both Rt2. We consider the

case that they are both Rt1, the other case is analogous. Let G1 be the cut graph constructed

from G by deleting the two endpoints, and let G2 be the one constructed from G by appending

nodes Rt2 to each of the endpoints of G (see Figure 5.5). Furthermore, let R1 and R2 be rules

such that G1 is the cut graph for the cut tree representing R1 and G2 is the cut graph for the

cut tree representing R2. Then again since the rule cut(Rt2,Rt1, (p� q)) is subsumed by R1,1

the rule R1 subsumes R2 and vice versa. Now if a contraction of the rule R1 on the literals

not occurring in the rule R is subsumed by a rule in our rule set, then obviously the original

contraction of R is subsumed. Furthermore, if the latter is the case, then the corresponding

contraction of rule R2 is subsumed. Since R2 subsumes R1 this means that the contraction of

R1 is subsumed by a rule in the rule set if and only if the original contraction of R is subsumed

by a rule in the rule set. But by the reasoning above the connective � does not occur in G1,

and thus using Proposition 5.3.1 we know that contractions of this rule are subsumed by rules

in our rule set. Therefore the original contraction of R is subsumed by a rule in our rule set

as well.
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Πn ⇒ Σm := (r1 � s1), . . . , (rn� sn)⇒ (p1 � q1), . . . , (pm� qm)

R′n,m := P ′n,m/Πn ⇒ Σm where

P ′n,m :=

{
(rk, sk, ~sI ⇒ ~r[n]rI , ~pJ , ~q[m]rJ ; C∅) | k ≤ n, I ⊆ [n], J ⊆ [m]

}
∪
{

(pk, ~sI ⇒ qk, ~r[n]rI , ~pJ , ~q[k−1]rJ ; C∅) | I ⊆ [n], k ≤ m,J ⊆ [k − 1]
}

T′m := P ′Tm/Π0 ⇒ Σm where

P ′Tm :=

{
(⇒ ~pJ , ~q[m]rJ ; Cid) | J ⊆ [m]

}
∪
{

(pk,⇒ qk, ~pJ , ~q[k−1]rJ ; C∅) | k ≤ m,J ⊆ [k − 1]
}

W′n,m := P ′Wn,m/Πn ⇒ Σm where

P ′Wn,m :=

{
(~sI ⇒ ~r[n]rI , ~pJ , ~q[m]rJ ; Cid | I ⊆ [n], J ⊆ [m]

}
∪
{

(pk, ~sI ⇒ qk, ~r[n]rI , ~pJ , ~q[k−1]rJ ; C∅) | I ⊆ [m], k ≤ n, J ⊆ [k − 1]
}

R′W2 := {(⇒ p; Cid), (q ⇒ ; Cid)}/(p� q)⇒
R′C2 := {(⇒ p; Cid), (p⇒ q; Cid)}/ ⇒ (p� q)

RV� :=
{
R′n,m | n ≥ 0,m ≥ 1

}
RVN� :=

{
R′n,m | n+m ≥ 1

}
RVW� :=

{
W′n,m | n+m ≥ 1

}
RVT� :=RV� ∪ {T′m | m ≥ 1} RVC� :=RV� ∪ {R′W2,R

′
C2}

Table 5.5: The rules and rule sets for strong conditional logics formulated using �.

While this yields decidability results analogous to the ones in Theorem 5.3.2, we can also

use this result to explicitly construct sequent calculi in the language with � as the only

connective. For the basic logic V this is done by explicitly computing the cut between a rule

Rm,n and m instances of the rule Rt1 as well as n instances of the rule Rt2. Similarly, if L is

one of the other logics we compute the cuts between rules in RL4 and the appropriate number

of instances of Rt1 and Rt2. This gives the rules described in the following definition.

Definition 5.4.4. For variables p1, . . . , pm and a set I ⊆ {1, . . . , n} of indices we write

~pI for the sequent consisting of all variables pi with i ∈ I, and for n ∈ N we abbreviate

{0, . . . , n} to [n]. Then the rules R′n,m,T
′
m,W

′
n,m,R

′
W2 and R′C2 as well as the rule sets RL for

L ∈ {V�,VN�,VT�,VW�,VC�} are defined as shown in Table 5.5.

Then while the rules are by construction sound, we can prove completeness similarly to the

proof of Theorem 5.3.6 by showing that all the rules in the cut closure of the respective rule

set are subsumed by the constructed rules. Since the calculus given by the cut closure has cut

elimination, this gives cut-free completeness of the calculus given by the constructed rules.

Theorem 5.4.5 (c). Let L be a logic in {V�,VN�,VT�,VW�,VC�}. Then the calculus

GcRLCon is sound and complete for L.
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Figure 5.6: Cutting with the translation rules in the proof of Theorem 5.4.5

Proof. For soundness we first check that indeed the rules of RV� arise by cutting on every

principal formula of a rule in RV4 with the translation rules. Such a situation is shown

schematically in Figure 5.6. Here some of the premisses of the translation rules have been

omitted for clarity. This is no problem, since the omitted premisses do not contribute to the

premisses of the resulting rule. It can be seen that when cutting on a negative literal (pk 4 qk)

this literal is replaced by a positive literal (p′k� q′k) and in every premiss d1 of Rm,n emerging

from the variable pk the latter is replaced by a tail emerging from p′k and a head pointing to

q′k. On the other hand, every premiss with a head pointing to qk is replaced by two premisses

pointing to p′k resp. q′k instead. Similarly for cuts on positive literals. Thus cutting on all

literals of Rm,n yields the rule R′n,m. Since the translation rules as well as the rules Rm,n are

sound for V4,� this gives soundness of R′n,m using Lemma 2.4.5. The reasoning for the other

rules is similar, where in the case of the rule R′C2 in the presence of the premisses (⇒ p; Cid)

and (p⇒ q; Cid) we may safely omit the premiss (⇒ q; Cid) since it is derivable from the other

two premisses using cut.

For completeness we make use of the fact that if for one of the logics under consideration

the set R is the corresponding set of modal rules as given in Proposition 5.4.2, and if a

sequent Γ ⇒ ∆ ∈ S(F(�)) is cut-free derivable in Gc cc
(
RV4RRt1Rt2

)
Con, then it has a

derivation in which the connective 4 does not occur. This holds since rules with restrictions

and therefore also cuts between rules with restrictions have the subformula property, and thus

if the connective 4 would occur in such a derivation, then it would also occur in the sequent

Γ⇒ ∆. Thus it suffices to show that the rules in cc
(
RV4RRt1Rt2

)
whose principal formulae

do not mention the connective 4 are derivable rules in RL� . This is straightforward for the
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rules with only one formula in the principal formulae. So let R be a rule in cc
(
RV4RRt1Rt2

)
with at least two formulae in the principal formulae and let GR be the cut graph for a cut

tree representing R. Then as in the proof of Lemma 5.4.3 if in GR we have a cut between the

rules Rt1 and Rt2 on a literal (p� q) we may replace this cut by the rule R1,1. Thus w.l.o.g.

we may assume that all cuts in the construction of R are on formulae with main connective

4. This means that nodes in GR which are labelled with a rule Rt1 or Rt2 must have degree

one. Omitting all these nodes yields a cut graph GQ for the cut tree representing a rule Q

from cc
(
RV4R

)
. But we know from the proof of Theorem 5.3.6 that such a rule is subsumed

by a rule Q′ in the rule set RL4 in case L 6= VC and a derivable rule in case L = VC. Thus

for L 6= VC we simply replace the subgraph GQ in GR by the cut graph GQ′ for a cut tree

representing the rule Q′. This yields a cut graph GR′ for a rule constructed from a rule in

RL4 by cutting on all principal formulae with the translation rules. Since this is exactly how

the rules in R′L� are constructed, this rule is subsumed by a rule in R′L� . In case L = VC
similar as in the case for 4 if the cut graph GQ involves a cut between a rule Rm,n and RC

the resulting rule is derivable using a number of applications of R′W2 followed by a number of

applications of R′C2. Thus in any case the original rule R is a derivable rule in R′L� , and thus

we obtain completeness of GcR′L�Con for L�.

Again this immediately yields complexity results for the logics under scrutiny.

Corollary 5.4.6 (c). For L ∈ {V�,VN�,VT�,VW�,VC�} the validity problem for L
is in Pspace.

Proof. Let L be such a logic. Inspection of the rules shows that the rule set R′L is contraction

closed and tractable. Thus using modified applications of the rules (Definition 2.6.1) and the

procedure from the proof of Theorem 2.7.8 we obtain the complexity bounds.

5.5 Interpolation

Given a cut-free sequent system which is sound and complete for a logic, we often can use this

system to establish interpolation results for this logic. This is the case for the calculi for the

conditional logics considered as well. We begin by recalling the basic notions.

Definition 5.5.1 (c). Let L be a logic based on classical propositional logic. Given two

formulae A,B a formula I is called an L-interpolant for A and B if

1. |=L A→ I and |=L I → B

2. I satisfies the variable condition, i.e., var (I) ⊆ var (A) ∩ var (B).

We say that the logic L has the Craig interpolation property (or interpolation property for short)

if whenever for two formulae A,B we have |=L A→ B, then there exists an L-interpolant for

A and B.
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One standard method of obtaining the interpolation property for a logic is by lifting the

notion of an interpolant to the level of sequents using so-called split sequents, and employ an

induction on the depth of the derivation in a cut-free sequent calculus, see e.g. [TS00] for the

propositional and first-order case.

Definition 5.5.2 (c). A split sequent is a tuple of sequents Γ1 ⇒ ∆1 and Γ2 ⇒ ∆2 which

we write as Γ1 | Γ2 ⇒ ∆1 | ∆2. We then say that Γ1 | Γ2 ⇒ ∆1 | ∆2 is a splitting of

Γ1,Γ2 ⇒ ∆1,∆2. If R is a set of rules with restrictions, we say that a formula I is an

R-interpolant for the split sequent Γ1 | Γ2 ⇒ ∆1 | ∆2 if

1. `RCon Γ1 ⇒ ∆1, I and `RCon I,Γ2 ⇒ ∆2

2. var (I) ⊆ var (Γ1 ⇒ ∆1) ∩ var (Γ2 ⇒ ∆2).

A sequent admits interpolation in R if all its splittings have an interpolant in R. An application

of a rule R from R supports interpolation in R if whenever all its premisses admit interpolation

in R, then so does its conclusion.

Note that we allow Contraction in clause 1 of the above definition. If all rules of a

sequent calculus admit interpolation it is possible to show that all derivable sequents admit

interpolation as well. Provided the calculus is sound and complete for a logic this then yields

the interpolation property for that logic.

Lemma 5.5.3 (c). Let R be a set of rules with restrictions. If all the rules in R support

interpolation in R, then every sequent derivable in RCon admits interpolation. Thus if

furthermore →R is an invertible rule in RCon and RCon is sound and complete for a logic L,

then L has the Craig interpolation property.

Proof. The first claim follows by a straightforward induction on the depth of the derivation in

R. The base cases are analogous to the propositional case [TS00] and the induction step follows

since Con and every rule in R support interpolation. The second claim follows since if RCon
is sound and complete for the logic L and we have |=L A → B we obtain `RCon ⇒ A → B

and thus with invertibility of the rule →R also `RCon A ⇒ B. Since by the first claim this

sequent admits interpolation there is a R-interpolant for the split sequent A | ∅ ⇒ ∅ | B. By

soundness of RCon this is also an L-interpolant for A and B.

We now use this method to show that almost all of the conditional logics considered in this

chapter have the interpolation property. The main difficulty lies in showing that the rules in

RV4 support interpolation.

Theorem 5.5.4 (c). The logic V4 has the Craig interpolation property.
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Proof. We need to show that all rules in GcRV4 support interpolation. For the propositional

rules this is standard [TS00]. For an application of a conditional rule Rm,n we need to construct

an interpolant for a splitting of the conclusion from the interpolants of the corresponding

splittings of the premisses. We first deal with the case n = 2. So suppose the application of

Rm,2 has the conclusion

(A1 4 B1), . . . , (Am 4 Bm)⇒ (C1 4 D1), (C2 4 D2)

and premisses

{D1 ⇒ B1, . . . , Bm, C1, C2} ∪ {D2 ⇒ B1, . . . , Bm, C1, C2}
∪ {Ak ⇒ B1, . . . , Bk−1, C1, C2 | 1 ≤ k ≤ m}

and furthermore suppose that we have a splitting of the conclusion. In a first step we assume

that the splitting separates the two positive formulae and alternates on the negative formulae,

i.e., that it has the form Γ1 | Γ2 ⇒ ∆1 | ∆2 with

Γ1 = {(Ai 4 Bi) | 1 ≤ i ≤ m, i odd} Γ2 = {(Ai 4 Bi) | 1 ≤ i ≤ m, i even}
∆1 = (C1 4 D1) ∆2 = (C2 4 D2)

(5.2)

Then for k with 1 ≤ k ≤ m let Ik be the interpolant for the corresponding splitting of the

premiss Ak ⇒ B1, . . . , Bk−1, C1, C2, i.e., for the split sequent

Ak | ∅ ⇒ {Bi | 1 ≤ i ≤ k − 1, i odd} , C1 | {Bi | 1 ≤ i ≤ k − 1, i even} , C2

if k is odd, and for the split sequent

∅ | Ak ⇒ {Bi | 1 ≤ i ≤ k − 1, i odd} , C1 | {Bi | 1 ≤ i ≤ k − 1, i even} , C2

if k is even. Similarly, for k ∈ {1, 2} let Jk be the interpolant for the corresponding splitting

of the premiss Dk ⇒ B1, . . . , Bm, C1, C2. Now for every odd k with 1 ≤ k ≤ m we define the

formulae Xk, Yk, Zk and Vk,Wk by

Xk :=
∨

1≤`≤k, ` odd I` Zk := J1 ∨
∨
k<`≤m, ` odd I`

Yk :=


¬Ik+1 ∨ ¬J2 if k = max{` | 1 ≤ ` ≤ m, ` odd} and k 6= m

¬J2 if k = m

¬Ik+1 otherwise

Vk := (Xk 4 Yk) Wk := (Yk 4 Zk)

Then we can show the following.

Claim 1: For every odd k with 1 ≤ k ≤ m we have `GcRV4Con Γ1,Wk ⇒ ∆1, Vk.
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This can be seen by inserting Wk instead of the literal (Ak+1 4 Bk+1) and Vk instead of the

literal (C2 4 D2) into the rule pattern, checking that all necessary premisses are derivable and

applying the rule. Thus e.g. in case k < m− 1 we derive the necessary premisses as follows.

For the premiss emerging from D1 we have

D1 ⇒ B1, B3, . . . , Bk, J1, Bk+2, . . . , Bm, C1

D1 ⇒ B1, B3, . . . , Bk, J1 ∨
∨
k<`≤m, ` odd I`, Bk+2, . . . , Bm, C1

W,∨R

D1 ⇒ B1, B3, . . . , Bk, J1 ∨
∨

k<`≤m, ` odd
I`︸ ︷︷ ︸

Zk

, Bk+2, . . . , Bm, C1, Xk

W

The premiss emerging from Yk is derived using

⇒ Ik+1, B1, B3, . . . , Bk, C1

¬Ik+1 ⇒ B1, B3, . . . , Bk, C1
¬L

¬Ik+1︸ ︷︷ ︸
Yk

⇒ B1, B3, . . . , Bk, Zk, Bk+1, . . . , Bm, C1, Yk
W

For odd i with i ≤ k the premiss emerging from Ai is derived as in

Ak ⇒ B1, B3, . . . , Bk−2, C1, Ik

Ak ⇒ B1, B3, . . . , Bk−2, C1,
∨

`≤k
I`︸ ︷︷ ︸

Xk

W,∨R

In order to derive the premiss emerging from the lower occurrence of Yk we use:

⇒ Ik+1, B1, B3, . . . , Bk, C1

¬Ik+1 ⇒ B1, B3, . . . , Bk, C1
¬L

¬Ik+1︸ ︷︷ ︸
Yk

⇒ B1,B3, . . . , Bk, C1, Xk
W

And finally for odd i with k < i ≤ m we derive the premiss emerging from Ai as in

Ak+2 ⇒ Ik+2, B1, B3, . . . , Bk, C1

Ak+2 ⇒ J1 ∨
∨
k<`≤m, ` odd I`, B1, B3, . . . , Bk, C1

W,∨R

Ak+2 ⇒ J1 ∨
∨

k<`≤m, ` odd
I`︸ ︷︷ ︸

Zk

, B1, B3, . . . , Bk, C1, Xk

W

Thus we may apply rule Rdm
2
e+1,2 to derive Γ1, (Yk 4 Zk)⇒ ∆1, (Xk 4 Yk). The cases that

k ∈ {m− 1,m} are similar. This proves Claim 1.

Claim 2: For every partition (F, S) of {k | 1 ≤ k ≤ m, k odd} we have `GcRV4Con Γ2, {Vk |
k ∈ F} ⇒ ∆2, {Wk | k ∈ S}.

This is shown similar to above by inserting for k ∈ F the Vk instead of the (Ak 4 Bk)
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and for k ∈ S the Wk as positive literals in place of (C1 4 D1) into the rule pattern. Then

again we check that all necessary premisses are derivable and apply the rule R|F |+bm
2
c,|S|+1.

So suppose we have an odd k with k ∈ F . Then we derive the premiss emerging from Xk by

I1 ⇒ C2

I1 ⇒ {Bi | 1 ≤ i ≤ k − 1, i even}, C2
W

. . . Ik ⇒ {Bi | 1 ≤ i ≤ k − 1, i even}, C2∨
1≤`≤k, ` odd I` ⇒ {Bi | 1 ≤ i ≤ k − 1, i even}, C2

∨L∨
1≤`≤k, ` odd

I`︸ ︷︷ ︸
Xk

⇒ {Bi | 1 ≤ i ≤ k − 1, i even}, C2, {Y` | ` ∈ S}
W

Moreover, for every even k < m we derive the premiss emerging from Ak by

Ak ⇒ B2, B4, . . . , Bk−2,

Yk−1︷︸︸︷
¬Ik , C2

Ak ⇒ B2, B4, . . . , Bk−2, {Yi | i ≤ m, i odd}, C2
W

and in case m is even we have

Am ⇒ B2, B4, . . . , Bm−2,¬Im, C2

Am ⇒ B2,B4, . . . , Bm−2, {Yi | i < m− 1, i odd},¬Im ∨ ¬J2︸ ︷︷ ︸
Ym−1

, C2
W,∨R

For the premiss emerging from D2 in case max{i | i ≤ m, i odd} 6= m we have

D2 ⇒ {Bi | 1 ≤ i ≤ m, i even}, C2,¬J2

D2 ⇒ {Bi | 1 ≤ i ≤ m, i even}, C2,¬Im ∨ ¬J2
W,∨R

D2 ⇒ {Bi | 1 ≤ i ≤ m, i even}, C2, ¬Im ∨ ¬J2︸ ︷︷ ︸
Ymax{i|i≤m, i odd}

, {Yi | i ≤ m− 2, i odd} W

The case max{i | i ≤ m, i odd} = m is similar. Finally, we have for every odd k ∈ S:

J1 ⇒ {Bi | 1 ≤ i ≤ m, i even}, C2 . . . I3 ⇒ B2, C2 I1 ⇒ C2

J1 ∨
∨
k<`≤m, ` odd I` ⇒ {Bi | 1 ≤ i ≤ m, i even}, C2

W,∨L

J1 ∨
∨

k<`≤m, ` odd
I`︸ ︷︷ ︸

Zk

⇒ {Bi | 1 ≤ i ≤ m, i even}, C2, {Y` | ` ∈ S}
W

Thus we have all the necessary premisses to apply the rule R|F |+bm
2
c,|S|+1 and obtain the

sequent Γ2, {Vk | k ∈ F} ⇒ ∆2, {Wk | k ∈ S}. This shows Claim 2.

Now we define the interpolant I by

I :=
∧

1≤k≤m, k odd

(¬Wk ∨ Vk) .
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Then using the propositional rules from Claim 1 we get `GcRV4Con Γ1 ⇒ ∆1, I and from

Claim 2 we obtain `GcRV4Con I,Γ2 ⇒ ∆2. Moreover, since the formulae Ik for k ≤ m and J`

for ` = 1, 2 were interpolants, their variables occur both in Γ1 ⇒ ∆1 and Γ2 ⇒ ∆2, and since

the formula I is constructed from these formulae, it satisfies the variable condition as well.

Hence it indeed is an interpolant.

In the next step, assume that (still for an application of Rm,2 with principal formulae as

above) the splitting is Γ2 | Γ1 ⇒ ∆2 | ∆1 with Γ1,Γ2,∆1,∆2 as in (5.2) on p. 171 above. Then

we simply compute the interpolant I ′ of the splitting Γ1 | Γ2 ⇒ ∆1 | ∆2 as before and set

I := ¬I ′.
In the case that n = 1 this procedure only needs to be slightly adapted. Suppose we again

have a splitting Γ1 | Γ2 ⇒ ∅ | ∆2 of the principal formulae with Γ1 and Γ2 as in (5.2). Then

there is no interpolant J1, since the corresponding premiss does not exists. Instead we simply

use the formula ⊥. In case the splitting is Γ2 | Γ1 ⇒ ∅ | ∆1 the premiss A1 ⇒ C1 does

not mention any formulae in Γ2, so omitting I1 and exchanging the roles of odd and even

numbers in the construction of the interpolant as above gives the correct formula. In case we

have a splitting Γ1 | Γ2 ⇒ ∆ | ∅, then again we compute the interpolant I ′ for the splitting

Γ2 | Γ1 ⇒ ∅ | ∆ and set I := ¬I ′.
In the most general case in the splitting Γ1 | Γ2 ⇒ ∆1 | ∆2 we have alternating blocks of

negative literals, i.e., for some s we have 1 = k0 ≤ k1 < · · · < ks = m and

Γ1 =
⋃

1≤i≤s, i odd

Σi and Γ2 =
⋃

1≤i≤s, i even

Σi

where for 1 ≤ i ≤ s we define

Σi := (Aki−1
4 Bki−1

), . . . , (Aki 4 Bki)

and two blocks of positive literals, i.e.,

∆1 = (C1 4 D1), . . . , (C` 4 D`) and ∆2 = (C`+1 4 D`+1), . . . , (Cn 4 Dn) .

For 1 ≤ k ≤ m we write I ′k for the interpolant of the corresponding splitting of the premiss

Ak ⇒ {B` | 1 ≤ ` < k}, {C` | ` ≤ n} and for 1 ≤ k ≤ n we write J ′k for the one for the premiss

Dk ⇒ {B` | 1 ≤ ` ≤ m}, {C` | 1 ≤ ` ≤ n}. Then in the construction of the interpolant above

we replace the formula J1 by
∨

(C`4D`)∈∆1
J ′` and the formula ¬J2 by

∨
(C`4D`)∈∆2

¬J ′`. The

formulae I` in Xk and Zk are replaced by
∨
k`−1≤j≤k` I

′
j , and the formulae ¬I`+1 in Yk are

replaced by
∨
k`≤j≤k`+1

¬I ′j . Then in the proofs of the claims the formulae W` and V` are

inserted instead of the blocks Σ` = {(Ai 4 Bi) | k`−1 ≤ i < k`}.

The proof of Theorem 5.5.4 is also readily adapted to cover most extensions of V4 as well.
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Corollary 5.5.5. The logics VN4,VW4,VC4,VA4 and VNA4 have the Craig interpolation

property.

Proof. For VN4 we need to consider the additional case of a rule Rm,0. Similar to the case of

n = 1 in the procedure given above we replace the missing interpolants I1 and J1 by ⊥ and

J2 by the interpolant for the premiss ⇒ B1, . . . , Bn. For the rules Wm,n of RVW4 we modify

the construction by replacing the interpolants J1, J2 with the interpolant J of the contextual

premiss resp. its negation. The case that n = 0 does not cause any problems. For the rule

RW2 we simply use the interpolant of the contextual premiss. For RC2, if the splitting of the

conclusion is Γ1 | Γ2, (A 4 B)⇒ ∆1 | ∆2 and the interpolants of the corresponding splittings

of the premisses are I1 and I2 we use I := I1 ∧ I2. In case the splitting of the conclusion is

Γ1, (A 4 B) | Γ2 ⇒ ∆1 | ∆2, then we use I1 ∨ I2. In each case it is easy to check that the

formula I is an interpolant. Finally, for the rules Am,n of RVA4 and RVNA4 the proof carries

over almost verbatim, we only need to add the context to the premisses.

Remark 5.5.6. The problem with adapting this proof to the case of VT4 is that in order to

prove Claim 2 for S = ∅ we would need to apply rule Tm. For this the second argument of one

of the Vk would need to contain the interpolant for the contextual premiss. But then showing

Claim 1, in particular the case Γ1,Wk ⇒ ∆1, Vk becomes problematic, since then the second

argument of Vk does not entail the disjunction of the Bi anymore. It is not clear whether this

problem can be avoided.

Since the weak and the strong counterfactual implication can be defined in terms of the

comparative plausibility operator, the interpolation results can also easily be transferred to

the logics formulated using these connectives.

Corollary 5.5.7. Let ∗ ∈ {�,�}. Then the logics V∗,VN∗,VW∗,VC∗,VA∗ and VNA∗
have the Craig interpolation property.

Proof. Let ∗ be one of �,� and let L be one of the logics specified. Furthermore, write

τ : F(∗)→ F(4) and σ : F(4)→ F(∗) for the translation functions given by extending the

translations

(p� q)→ ¬((p ∧ ¬q) 4 (p ∧ q)) resp. (p� q)→ (⊥ 4 p) ∨ ¬((p ∧ ¬q) 4 (p ∧ q))

and

(p 4 q)→ ¬(p ∨ q� ¬p) resp. (p 4 q)→ (p ∨ q� ¬(p ∨ q)) ∨ ¬(p ∨ q� ¬p)

from Table 5.1 on p. 144 in the obvious way. Then it is not too difficult to check that for every

formula A ∈ F(∗) we have |=L∗ A ↔ σ ◦ τ(A). Thus for a L∗-valid implication A → B we

construct an interpolant I using the interpolant I ′ for the L4-valid implication τ(A)→ τ(B)
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by setting I := σ(I ′). Then we have:

|=L∗ A→ B ⇐⇒ |=L4 τ(A)→ τ(B)

=⇒ |=L4 τ(A)→ I and |=L4 I → τ(B)

=⇒ |=L∗ σ ◦ τ(A)→ σ(I) and |=L∗ σ(I)→ σ ◦ τ(B)

⇐⇒ |=L∗ A→ σ(I) and |=L∗ σ(I)→ B

Also it is clear that var (σ(I)) ⊆ var (A) ∩ var (B). Thus I indeed is an interpolant for the

implication A→ B.

5.6 Notes

Conditional Logics The formulation of conditional logics in terms of sphere semantics was

introduced in [Lew73b, Lew73a]. In particular [Lew73a] contains a thorough discussion of

the philosophical motivation and can only be recommended. A slightly earlier formulation of

counterfactual implications in terms of closest or most similar worlds can be found in [Sta68]

with many of the technical details in [ST70]. Good overviews over the general problem and

the history of conditional logics are also given in [NC01] and [AC09]. The article [GGOS09]

includes a good and compact introduction to the various semantics. Due to the plethora of

proposed systems for conditional logics and the often slightly different axiomatisations by

different authors the task of navigating the conditional logic landscape can be a bit daunting.

The article [Nej91] provides welcome comparisons between the different formulations. The

original semantically driven proofs for the complexity results considered in this chapter can

be found in [FH94]. They are obtained using small model theorems and also give rise to

complexity results for fragments of the logics obtained by bounding the modal nesting depth.

Finally it should be noted that decidability for most of the systems of conditional logic also

follows from the generic decidability results for logics axiomatised by non-iterative axioms

provided in [Lew74].

Sequent calculi for conditional logics. The constructed calculi for strong systems of

conditional logics along with the results about interpolation were presented in [LP12b]. In

the case of VC4, our construction of a principal-cut and contraction closed rule set yielded

the sequent analogue of the tableau calculus for the same logic introduced in [dS83] and

subsequently corrected in [Gen92]. These works also presented a calculus for the logic VCS4,

an extension of the logic VC4 with Stalnaker’s Axiom (S) (p∧ q 4 p∧¬q)∧ (p∧¬q 4 p∧ q)→
(⊥ 4 p). Furthermore, these systems were used to give a decision procedure for the logics VC4
and VCS4. Most of the other approaches towards proof theory for conditional logic concentrate
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on the formulation with the weak counterfactual implication as the main connective. Labelled

tableau calculi for conditional logics in the language with� extending the slightly weaker logic

PCL including the here considered logics V�,VW�,VC� and extensions with the axiom

(CEM) (p� q)∨ (p� ¬q) or the universality axioms are considered in [GGOS03, GGOS09].

Since in these calculi each additional semantic property corresponds to a single rule, they have

the very desirable property of being modular. On the other hand they make essential use of

labels and only yield decision procedures of slightly sub-optimal NExptime-complexity. This

work also contains a very readable discussion of other approaches towards calculi for these

logics. An unlabelled system for the weakest of the logics considered there, the logic PCL,

was also given in [SPH10], where it is called S. The calculus gives rise to a Pspace-decision

procedure, but is slightly complicated.

Interpolation No interpolation results for stronger systems of conditional logic seem to

have been established before our [LP12b]. A stronger form of the Craig interpolation property,

the uniform interpolation property, states that the interpolant for derivable implications

A→ B is the same for all formulae B with the same common variables with A. The uniform

interpolation property for the logics V and VN follows from recent results in [Pat13] where

using coalgebraic semantics the very general result that every logic axiomatised in rank-1

enjoys the uniform interpolation property is established.
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6.1 Summary

Let us briefly summarise what we have achieved in this work. Motivated by the desire to

develop generic proof theoretic methods for the treatment of possibly non-normal modal

logics which might be based on non-classical propositional logics we found that we needed to

specify a format of sequent rules first. This led to the introduction of the formats of rules

with context restrictions and as a weaker version shallow rules, both extensions of the earlier

considered format of one-step rules. A closer investigation of sequent calculi given by sets of

rules with restrictions yielded a generic cut elimination theorem for rule sets satisfying the

criteria of principal-cut, mixed-cut, context-cut and contraction closure, which can be checked

by considering single rules or pairs of rules from the rule set. For rule sets which in addition

are tractable we were able to show a generic Exptime-decidability result and noted that the

complexity can be lowered to (optimal) Pspace in case all the rules are shallow.

We then investigated the connections between rules with context restrictions and axioms

for Hilbert-style proof systems and developed a syntactic characterisation of a class of axioms,

the translatable clauses, which very closely corresponds to the class of rules with context

restrictions. This correspondence was established by explicit and automatic translations

between axioms and rules making use of the concepts of ω-sets of axioms and proto rules.

Limiting the rule format to shallow rules resulted in a correspondence between shallow rules

and non-iterative translatable clauses, which for modal logics based on classical propositional

logic gives a correspondence between shallow rules and non-iterative axioms in general. We

then used these correspondences to derive a number of results stating amongst others that

modal logic T cannot be captured by one-step rules, that K4 cannot be captured by shallow

rules and that the logics B,GL and S5 cannot be captured by mixed-cut closed sets of rules

with context restrictions.

While the translation from rules to axioms gave us mainly negative results the translation

from axioms to rules provided the starting point for an automatic construction of sequent

calculi from finite sets of Hilbert axioms. In order to produce cut-free sequent calculi we

investigated the concept of the cut closure of a rule set and found a representation of the rules

in the cut closure in terms of cut trees. Closing the original rule set under cuts with small rules

in a preprocessing step allowed us to limit the size and depth of the necessary cut trees and

thus to show that the cut closure of a finite set of rules is tractable. Using this we saw that
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contraction closure of the cut closure of finite sets of shallow rules entails Pspace-decidability

of the corresponding logic. For cases where the cut closure of a rule set cannot be seen to

be contraction closed or where for other reasons the manual construction of a principal-cut

closed set of rules with context restrictions is desired we introduced a graphical representation

of sequents as doodles and sequent rules as rule doodles. This tool allows us to manually

perform the operations of cuts between rules and contractions of rules in a very intuitive way

by simply connecting heads and tails of doodles. As simple examples for this technique we

considered Elgesem’s logic of agency and ability and weaker systems of conditional logic.

Finally, we applied the earlier introduced techniques and considered the extended example

of strong systems of conditional logic. The main results here were the construction of cut-free

sequent calculi for Lewis’ conditional logic V and extensions in the language of the comparative

plausibility operator 4 using rule doodles and the adaption of these calculi to the strong

counterfactual implication � as the main connective. In the case of VC we recovered the

sequent analogue of a previously known tableau calculus in a systematic and purely syntactic

way. Using the generic decision procedures developed earlier these systems yielded purely

syntactic decision procedures which, except for the logics VA and VNA, are complexity optimal.

As a further application we used the calculi to derive interpolation results for all of the logics

under consideration apart from the logic VT.

6.2 Applications and Alternative Approaches

It is to be hoped that the methods and results developed in this work will provide a toolkit for

the proof-theoretical treatment of non-classical logics in the spirit of logic engineering. Ideally

they should on the one hand enable a researcher interested in a particular logic to evaluate

whether this logic can be captured proof-theoretically in the framework of standard sequent

calculi. The methods for proving the limitative results of Section 3.4 provide some tools for

this purpose. On the other hand, if the logic at hand can be captured in the framework

of standard sequent calculi, then the main difficulty lies in the construction of a cut-free

sequent calculus for this logic. Here the generic cut elimination result of Section 2.4 provides a

guidance towards which kinds of logical rules should be constructed. Moreover, the translation

results of Chapter 3 together with the results about saturating a rule set under cuts using

the graphical representation of sequents as doodles and sequent rules as rule doodles provide

some tools to actually construct a calculus with logical rules satisfying the criteria for cut

elimination. Of course ultimately we would like to provide a fully automatic construction

of cut-free sequent calculi and (perhaps more importantly) decision procedures for suitable

modal logics given as a set of Hilbert-style axioms. While the tools presented here do not

yet give rise to such a fully automatic construction, they can be used to identify the crucial

property of contraction-closure of the rule set, and thus for some logics give rise to proofs of
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decidability and complexity results via establishing this property for a set of sequent rules.

The methods and results presented here are mainly theoretical, but in particular from the

engineering point of view it would also be desirable to have an implementation of these results

which given a number of axioms for a logic produces a cut-free sequent calculus or preferably

even a decision procedure for this logic. A similar implementation based on a different theory

exists in the Paralyzer system [CLSZ13] which transforms axioms of a certain form into rules

of a cut-free sequent calculus based on positive propositional logic. Such an implementation

would be especially powerful when combined with an implementation of the generic decision

procedures from Section 2.7 similar to the CoLoSS system [CMPS09] which implements a

generic decision procedure for rank-1 modal logics. If these methods are to be used as tools in

this general sense, it would of course be important to have a very high degree of confidence in

both the theoretical results and the implementations. On the implementation side for this

purpose it might prove beneficial to make use of e.g. a programming language supporting

functional programming with dependent types and its type checking feature. Since correct

programs in such a language need to pass type checking we would have a higher confidence in

the correct implementation of the compilations. On the theoretical side on the other hand

this could be ensured by using proof assistants such as Coq or Isabelle to formalise and verify

the main results of the theory, in particular the generic cut elimination theorem. Since the

proof of this theorem relies on the analysis of a variety of different cases it would lend itself to

such a formalisation.

Depending on which kinds of logics we are interested in and which applications we have in

mind we might also consider frameworks different from that of standard sequents considered

in this work. Thus for example if we are interested in modal logics based only on classical

propositional logic we might modify the theory presented here and develop it on the basis

of one-sided sequents in the style of Schütte-Tait [TS00] instead of two-sided sequents. This

would arguably lead to a more streamlined and elegant formulation of the theory, in particular

if for each modality we also have a dual modality allowing us to push negations all the way

inside the formulae. An approach particularly suitable for dealing with modal logics based

on intuitionistic propositional logic on the other hand would be to consider the more general

framework of hypersequents [Avr96] instead of sequents. This approach has already been

employed successfully e.g. in the treatment of substructural logics [CGT08, CGT12] and

intermediate logics [CMS13]. It is to be expected that the additional structure provided by

hypersequents would allow for a treatment of some occurrences of non-invertible connectives

in the axioms, in particular of disjunctions. On the other hand we might lose some of the nice

properties and applications provided by the standard sequent framework: decision procedures

based on hypersequents in general seem to be of higher complexity compared to those based

on standard sequents, and the hypersequent framework seems not to facilitate proofs of the

interpolation property. We might also be willing to trade in even more of the tractability and
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applications of the standard sequent framework for the even further increased expressivity

allowed by the framework of display calculi [Bel82]. This framework is particularly convenient

for logics with pairs of connectives satisfying some kind of residuation property such as the

forward and backward looking modalities of temporal modal logic. The results from [Kra96]

and [CR13] on the connection between axioms and structural rules in this framework would

provide a benchmark for the theory and moreover a very interesting opportunity to merge

different approaches.

On the other hand, if the considered modalities are normal and in particular if we have

a Kripke-style semantics, we could also move to more semantically motivated frameworks

such as those of nested sequents [Brü09] or tree-hypersequents [Pog09, Pog11]. Since in these

frameworks the tree-like structure of (unravellings of) Kripke frames is matched by the tree-like

structure of nested sequents resp. tree-hypersequents, they might be better suited for the

construction of sequent calculi from semantical properties, although no generic treatment seems

to have been developed yet. Finally, when starting from such semantical characterisations of a

logic we might also consider internalising the Kripke semantics in the sequent framework by

moving to labelled sequents. This would also allow us to build on and combine our methods

with the extensive theory for this kind of sequent calculi developed in [NvP01, Neg05].

6.3 The Future

Concerning further research apart from the above mentioned modifications to incorporate

different frameworks there are two linked albeit slightly different major directions. From the

point of view of classification it would be very interesting to extend the limitative results

of Section 3.4 to formally establish the need for additional machinery beyond the standard

sequent framework for certain modal logics. From a more constructive point of view the

further development of the generic methods for the construction of cut-free sequent calculi is

well worth investigating. The most pressing concrete problem from the latter point of view

is the hole in the construction of contraction closed rule sets for non-iterative modal logics

via cut trees. We conjecture that it should be possible to close this hole by establishing a

polynomial upper bound on the number of duplicate formulae needed to derive a sequent, but

a proof for this has eluded all our efforts so far.

Problem 6.3.1. Extend the method of cut trees to produce also contraction closed rule sets.

From the classification point of view the most promising concrete problem is that of extending

the methods for showing limitative results by relaxing the condition of mixed-cut closure of

the rule set. While the relatively general form of context restrictions might make it difficult

to restrict the precise form of the corresponding axioms, it might still be possible to exploit

the fact that context formulae do not share variables with each other or with the principal

formulae.
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Problem 6.3.2. Show limitative results for rules with restrictions in general.

As a more general direction of further research it would be very interesting to extend the

format of rules with context restrictions to include more logics such as B or GL. A promising

way to do this seems to be the extension of context restrictions towards the notion of context

relations from [AL11]. An extension of the correspondence results of Chapter 3 to such

rules would serve to further classify modal logics and to better understand the strengths and

limitations of the different variants of sequent calculi. As a long term goal the resulting theory

should also incorporate extensions of the sequent format such as hypersequents, nested or

labelled sequents.

Research Programme 6.3.3. Develop an extensive classification of modal logics according

to the strength of logical rules necessary to capture them in a cut-free sequent calculus.

Finally, concerning the example of conditional logics, since the weak counterfactual im-

plication is usually taken to be the main connective, it would be very nice to have explicit

formulations of the sequent calculi presented in terms of this connective.

Problem 6.3.4. Find simple standard cut-free sequent calculi for the strong systems of

conditional logic extending V in the language of the weak counterfactual implication �.
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Brünnler and George Metcalfe, editors, TABLEAUX 2011, volume 6793 of LNAI,

pages 43–57. Springer-Verlag Berlin Heidelberg, 2011.

[AOP12] Régis Alenda, Nicola Olivetti, and Gian Luca Pozzato. Nested sequent calculi for

conditional logics. In Luis Fari nas del Cerro, Andreas Herzig, and Jérôme Mengin,
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