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Abstract: We present a graphical representation of sequents and sequent rules, which aids in the discovery
of cut-free sequent systems for non-iterative modal logics permitting backwards proof search in polynomial
space. The technique is used to construct sequent systems for conditional logic V and KLM rational logicR.

1 Introduction

Backwards proof search is one of the main techniques in
theorem proving. The systems used for this usually are se-
quent systems which have cut elimination and admissibility
of contraction. In this context the emergence of ever more
specialised modal logics in computer science gives rise to
the question of how to construct such systems.

One method of constructing cut-free sequent systems for
modal logics is the method of cut elimination by satura-
tion, previously used e.g. in [3]. As the name suggests, the
method is based on saturating the rule set under the addition
of rules which are necessary for the standard cut elimination
proof to go through. Unfortunately, in the standard notation
for sequent rules the construction of these new rules quickly
becomes very tedious and prone to error. In this work we in-
troduce a graphical representation of sequents and sequent
rules, which makes the operations needed for saturating a
rule set very simple and intuitive. Furthermore, we apply
the method to Lewis’ conditional logic V from [4] in the
entrenchment language, yielding a sequent system suitable
for backwards proof search in polynomial space. This se-
quent system moreover witnesses that deciding the flat frag-
ment of V is in the class ΠP

3 of the polynomial hierarchy.
By translation this yields a purely syntactical ΠP

3 -decision
procedure for the KLM rational logicR, which although of
suboptimal complexity might still be of interest.

2 Cut Elimination by Saturation and Backwards
Proof Search

We consider formulae over the propositional connectives,
the unary modality� and the binary entrenchment modality
4. The results easily generalise to other signatures as well.
Furthermore we assume the presence of the rules G3p of [5]
for the underlying classical propositional logic. Let’s recall
some notions and facts from [3]. The general rule format
considered is that of a shallow rule. Such a rule is given by

{Γ,Σi ⇒ ∆,Πi | i ≤ n} ∪ {Ξj ⇒ Ωj | j ≤ m}
Γ,Φ⇒ ∆,Υ ,

where the Σi ⇒ Πi and Ξj ⇒ Ωj are sequents (i.e. pairs
of multisets) of propositional variables, the contextual and
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noncontextual premisses respectively, and Φ ⇒ Υ is a se-
quent of modalised propositional variables, the principal
formulae of the rule. The sequent Γ ⇒ ∆ is the context.
Since axioms without nested modalities can always be con-
verted into equivalent sets of shallow axioms, this format
suffices for all logics axiomatised by (finitely many) non-
nested axioms. For two rules R1, R2 with principal formu-
lae Φ1 ⇒ Υ1, (A 4 B) and (A 4 B),Φ2 ⇒ Υ2 the rule
cut(R1, R2, (A 4 B)) is the rule with principal formulae
Φ1,Φ2 ⇒ Υ1,Υ2, whose premisses are built by cutting the
combined premisses of R1 and R2 first on A and then on B.
Here exactly those premisses are labelled contextual, whose
construction involved at least one contextual premiss of R1

or R2. The definition for cuts on formulae of the form �A
is analogous. It can be shown that the so constructed rules
are still sound. A set R of shallow rules is cut closed if
for every two rules R1, R2 ∈ R with principal formulae
Φ1 ⇒ Υ1, C and C,Φ2 ⇒ Υ2 the rule cut(R1, R2, C) is
derivable in G3pR without using the cut rule. Similarly,
the rule set is contraction closed, if for every rule R with
principal formulae Φ ⇒ Υ, C, C there is a rule R′ ∈ R
with principal formulae Φ ⇒ Υ, C, whose premisses are
derivable from the premisses of R using only contraction
and weakening (and similarly for contractions on the left of
⇒). The method of cut elimination by saturation is based
on the fact that in cut and contraction closed rule sets based
on G3p the cut rule can be eliminated, and proof search (in
a slightly modified system) can be implemented in polyno-
mial space. Thus the missing cuts between rules and con-
tractions of rules are added until the rule set is saturated.

3 The Graphical Representation

In order to make the process of computing cuts between
rules more intuitive we now introduce a graphical represen-
tation of sequents. The main idea is to represent a sequent
Γ ⇒ ∆ by a multiarrow with tails emerging from the for-
mulae in Γ and heads pointing to the formulae in ∆. Thus
for example the sequents A,B ⇒ C,D and D,A⇒ E are
represented by the multiarrows

A B C D D A E .
An application of the cut rule to these two sequents with
cut formula D now evidently is represented by connecting



{ Bk ⇒ A1, . . . , An, D1, . . . , Dm | k ≤ n } ∪ { Ck ⇒ A1, . . . , An, D1, . . . , Dk−1 | k ≤ m }
Γ, (C1 4 D1), . . . , (Cm 4 Dm)⇒ ∆, (A1 4 B1), . . . , (An 4 Bn)

Rn,m

Figure 1: The general rule scheme for the setRV := {Rn,m | n ≥ 1,m ≥ 0}.

the head of the left multiarrow pointing do D to the tail of
the right multiarrow emerging from D, “yanking the wire”,
and omitting the superfluous instances of the cut formula,
resulting in the multiarrow

A B C A E .
Similarly, the sequent resulting from now contracting the
two instances of A is represented by the multiarrow

A B C E .
Rules are represented by writing the formulae as parse trees
and drawing the multiarrows representing the premisses on
top, the multiarrow representing the conclusion on the bot-
tom. To mark contextual premisses we add an additional
end to the arrows, marked as a. This is to be read as an
abbreviation for tails emerging from the formulae on the
left side of the context and heads pointing to those on the
right side of the context. Thus for example the left and right
conjunction rules of G3p and an instance of the K rule of
normal modal logic are represented by

∧
A B

Γ,∆ ∧
A B

Γ,∆ �

A1

�

A2

�

B

Γ,∆

Now the operation of cutting two instances of e.g. the K
rule is visualised by performing cuts on the conclusion as
well as on the corresponding elements of the premisses re-
sulting in the dashed arrows in the diagram below

�

A1

�

A2

�

B

Γ,∆ �

C

�

D

If we wanted to saturate the set of K rules, we would now
have to add the rule represented by the dashed arrows above
to our rule set. On the other hand, if we cut the left and right

Γ1,∆1 ∧
A B

Γ2,∆2

conjunction rules we get the
rule represented by the dashed
arrows on the right. Since
this is simply an application of
contraction, we do not need to
add any rules to our rule set. In
a similar way we get contrac-
tions of rules by contracting their conclusions as well as the
corresponding formulae in their premisses.

4 Conditional Logic V and KLM LogicR

This method can be applied to construct a cut- and con-
traction closed set of sequent rules for the conditional logic
V in the entrenchment language. After turning the rules
and axioms from [4, p.123,124] into shallow rules using

the method mentioned in Section 2 and cutting and con-
tracting rules, we arrive at the set RV of sequent rules,
whose traditional representation is given in Figure 1. By
construction this set is guaranteed to be sound, and since
it subsumes the original rules it is also complete. Cut and
contraction closure can be seen by considering the graph-
ical representation of the rules. Thus by the results of
Section 2 the sequent system G3pRV has cut elimination
and admissibility of contraction and is suitable for back-
wards proof search in polynomial space. The translation
(A � B) ≡ (⊥ 4 A) ∨ ¬(A ∧ ¬B 4 A ∧ B) of
the more commonly used counterfactual � into the en-
trenchment connective 4 from [4] unfortunately yields a
blowup exponential in the nesting depth of �, but still
can be used to show a PSPACE upper bound for the right
nested fragment of V in the counterfactual language, thus
syntactically reproducing the corresponding result from [2].
Also, since the translation is only linear for formulae with-
out nested modalities, and since the alternation depth in the
algorithm for backwards proof search is determined by the
nesting depth of the modalities, we get a purely syntactical
ΠP

3 decision procedure for the flat fragment of V , and by
the correspondence from [1] also for KLM rational logicR.
Whether this procedure can be pushed down to the optimal
complexity CONP is subject of ongoing research.

5 Concluding Remarks

The described method of cut elimination by saturation us-
ing the graphical representation has also successfully been
used to construct sequent systems for several extensions of
V . Furthermore, by incorporating restrictions on the con-
text it is also possible to treat certain nested axioms such as
the axioms responsible for absoluteness in V and some ex-
amples of intuitionistic modal logics. A more thorough ex-
ploration of these issues will be subject of further research.
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