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Abstract. Adopting a generalised notion of connectives as ptime-computable
symmetric boolean functions, for finite sets C of such connectives the
classes W[P](C) are defined via the parameterised weighted satisfiabil-

ity problem for circuits with C-gates. This note will prove the following
dichotomy result: for all finite sets C of connectives W[P](C) = FPT or
W[P](C) = W[P].
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1 Introduction

One of the most important parameterised complexity classes is the class W[P].
It can be considered a natural parameterised analogue of the class NP and was
originally defined in [3] via the parameterised weighted satisfiability problem for
boolean circuits. What happens, if we change the computational power of the
underlying circuits? One possibility is to allow other than the boolean gates,
such as majority gates, which output 1 (true) if the majority of the inputs is 1
(true), and 0 (false) otherwise, or parity gates, which output 1 if the number of
inputs set to 1 is odd, and 0 otherwise. Notice that these gates are symmetric
in the sense that their output is invariant under permutations of the inputs. In
the parameterised setting of [3] this amounts to the question of how difficult
it is to solve the parameterised weighted satisfiability problem for circuits with
symmetric gates of unbounded fan-in. In the following we will call such a family
of symmetric gates which in addition is ptime-computable a connective. For a
finite set C of such connectives the class of problems, which are fpt-reducible
to the parameterised weighted satisfiability problem for C-circuits, will be called
WIP](C). Of course now an interesting question is the relationship between these
classes and W[P]. This note proves that a full dichotomy holds, i.e. that for every
finite set C of connectives W[P](C) = FPT or W[P](C) = W|[P]. The proof will
also give characterisations of the connectives for both alternatives.

Yet, the study of W[P](C) is not just interesting in its own right. These classes
were first defined in [5], where the authors also defined the W (C)-hierarchies via
the notion of weft and showed that for sufficiently strong bounded C the levels of
the W (C)-hierarchy and the W-hierarchy coincide. Unfortunately for unbounded
C there are only a few exemplary (although very interesting) results. When trying
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to show such results for unbounded connectives it is vital to first have a look at
the class W[P](C), which contains the W (C)-hierarchy. Using the dichotomy, the
connectives with W[P](C) = FPT can be omitted from such an analysis straight
away.

2 Preliminaries

In the following N denotes the set of natural numbers. As usual for a finite
alphabet X' the set X* consists of the finite strings over X. If Z is a string in
X* then |Z| denotes the length of Z, and we write Z" for the concatenation of n
copies of Z. The weight of a binary string Z € {0,1}* is the number of 1’s in Z.

A parameterised problem P is a subset of 2* x N for a finite alphabet Y. Here
N is encoded in unary. Given an instance (Z, k) € 2* x N of the problem, Z is the
input, and k is the parameter. The problem P is fized-parameter-tractable, if there
are a computable function h : N — N and a polynomial p, such that for every
instance (Z, k) membership in P can be decided in time h(k)-p(|Z|). The class of
fixed-parameter-tractable problems is denoted by FPT. Given two parameterised
problems P C X* x N and @ C (X')* x N a mapping f: 2* x N — (X)* x N
is an fpt-reduction of P to @, if the following holds:

— for all (z,k) € X* x N: (z,k) € Piff f(z,k) € Q

— there are a computable function h : N — N and a polynomial p such that f
is computable in time h(k) - p(|Z|)

— there is a computable function g : N — N such that for all (Z, k) and (&', k)
with f(Z, k) = (Z’, k") we have k' < g(k).

If there is such an fpt-reduction, then P is fpt-reducible to @ and we write
P </Pt Q. For detailed information on parameterised complexity see [4,7, 8].

3 The general framework

Arguably the most important property of boolean connectives is that they are
symmetric, that is that the output depends only on the number of the inputs,
which are set to "1’ (true) respective 0’ (false). Thus we generalise the notion of
a boolean connective in the following way (following [5]).

Definition 1. A connective C is a function C : Nx N — {0,1} computable in
time polynomial in the sum of its arguments.

For m,n € N we interpret the value C'(m, n) as the truth value of the connec-
tive C' when its input consists of m ones and n zeros. For n € N and z € {0,1}"”
with weight k& we write C[z] for C'(k,n — k). For £ € N it will be convenient to
write C' [, for the connective C restricted to tuples (m,n) with m +n = £.
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Ezample 1. The standard connectives A, \/, Maj, ® fit in this framework via:

I
—
3
5
o
o
o

Substituting boolean gates in a boolean circuit by gates labelled with a con-
nective in C, we get the obvious notion of a C-circuit as follows: Let C be a finite
set of connectives. A C-circuit is a finite directed acyclic graph with multiple
edges and with labelled vertices, which we will call gates. There are two kinds of
gates with in-degree 0: the input-gates, which are labelled with distinct consecu-
tive natural numbers starting with 1, and the constant-gates, which are labelled
with one of the constants 0 and 1, or a connective C' € C. Gates with in-degree
> 0 are labelled with a connective C' € C each. The gates with out-degree 0 are
called the output-gates of the circuit. In the following all circuits are assumed to
have exactly one output-gate. A C-circuit D with ¢ input gates and one output
gate computes a function fp : {0,1}* — {0,1} in the obvious way. As usual
we say that the C-circuit D is satisfiable, if there is a & € {0,1}¢, such that
fp(Z) = 1. The circuit is k-satisfiable, if there is a z € {0,1}* with weight &,
such that fp(z) = 1.

Notice that boolean circuits are a special case of C-circuits for C = {—,\/, A},
where - is the connective defined by —(m,n) =1 < m = 0. Analogously to the
parameterised weighted satisfiability problem for boolean circuits (see [4,7]), the
parameterised weighted satisfiability problem for C-circuits is defined as:

p-WSaAT(CIrc(C))
Input: a C-circuit and k € N
Question: Is the circuit k-satisfiable?

Definition 2. Let C be a set of connectives. A parameterised problem is in the
class W[P](C) iff it is fpt-reducible to the parameterised problem p-WSAT(CIRC(C)).

If the set C contains only one connective C' we write W[P](C) instead of
WIP|({C?}). Since every ptime-computable boolean function with domain {0, 1}*
is computed by a family of boolean circuits computable in polynomial time in
the length of the input [9, Theorem 11.5], we immediately get

Proposition 1. W[P](C) C W[P] for all finite sets C of connectives.

Proof. Replacing the C-gates with the corresponding subcircuits yields an fpt-
reduction to W[P)]. O
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4 The Dichotomy Theorem

Lemma 1. Let C be one of the connectives \/, \,®. Then W[P](C) C FPT.

Proof. Let C be one of the connectives @, \/, A. Then for all Z,7 € {0,1}* we
have C[C[Z]g] = C[Z¥], and thus every C-circuit is equivalent to a C-circuit
consisting of a single C-gate, which receives (possibly multiple) edges from the
old input-gates and possibly from constant-gates. If C' € {\/, A} we further
simplify the circuit by substituting every multiple edge by a single edge. If C' =
@, we substitute every multiple edge of odd cardinality by a single edge and
delete every multiple edge of even cardinality. The resulting circuit is equivalent
to the original circuit. As this clearly can be done in fpt-time, and as the k-
satisfiability of the simplified circuit easily can be checked in polynomial time,
we have p-WSAT(CIirc(C)) € FPT and thus W[P](C) C FPT. O

Theorem 1 (Dichotomy Theorem). Let C be a finite set of connectives. Then
WIP|(C) = W[P] or W[P](C) = FPT.

Proof. By Proposition 1, closure of W[P](C) under fpt-reductions and availabil-
ity of constant gates we have FPT C W[P](C) C W[P]. Call a connective C

— V-closed if there are n,m € N with C(m,n+2) =0and C(m+1,n+1) =
Cm+2,n)=1

— A-closed if there are n,m € N with C(m,n+2)=C(m+1,n+1) =0 and
Cm+2,n)=1

— monotone, if for all m,n € N we have C(m,n+ 1) < C(m + 1,n).

If the connectives C, Cy, C3 are V- and A-closed and not monotone respectively,
they simulate the boolean connectives via

VY= Cill™ 2y 0] 1)
x Ay = Co[1™2 zy0"?] (2)
-z = C3[1™3 0™ (3)

A set C of connectives is monotone, if every connective in C is monotone, and
V-closed (respective A-closed), if there is a V-closed (A-closed) connective in C.
For monotone C we have four cases.

Case 1: C is V-closed and A-closed. As then C is able to simulate small disjunc-
tions and conjunctions according to equivalences (1) and (2) above, the parame-
terised weighted satisfiability problem for boolean circuits without negation gates
p-WSAT(CIrc™) is fpt-reducible to p-WSAT(CIRC(C)). Since p-WSAT(CIrc™)
is W[P]-complete [1] we have W[P] C W[P](C).

Case 2: C is V-closed, but not A-closed. For all C' € C and for all £ € N we then
have C [y= const or C [;=\/ |¢, because otherwise the connective C' would be
A-closed as well. But then we have p-WSAT(CIrc(C)) <Pt p-WSaT(Circ(V/))
via the following reduction: Given a C-circuit we compute for every gate v with
¢, inputs and label C' € C the values C[0%] and C[10%~!]. This can be done in
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polynomial time as a connective is ptime-computable. If both values are the same
we replace the gate by a gate labelled with the respective constant 0 or 1 and
delete the incoming edges. If the values differ, we know that C [,, =\ l¢, and
thus replace the gate by a gate labelled with \/. Then we delete all gates from
which there is no path to the output-gate. The resulting circuit is equivalent to
the original circuit. By Lemma 1 we have W[P](\/) C FPT and thus W[P](C) C
FPT

Case 3: C is NA-closed, but not V-closed. Similar to Case 2 we get a reduction
p-WSAT(Circ(C)) <Pt p-WSAT(CIrc(A)) and therefore W[P](C) C FPT.

Case 4: C is neither V-closed nor A-closed. Then every connective in C must
be constant on inputs of length ¢ > 1, and on inputs of length 1 either constant
or identity. But then the problem p-WSAT(CIrRC(C)) is in FPT: for every gate v
in the C-circuit with ¢, > 1 inputs and label C' € C we compute the value C[1%]
and replace the gate by the according constant gate. For C-gates with one input
we compute C[1] and C[0], and delete the gate if it is equivalent to identity,
or replace it with an apropriate constant-gate otherwise. The parameterised
weighted satisfiability problem for the resulting circuit clearly is in FPT.

If C on the other hand is not monotone, we know by equivalence (3), that C
is able to simulate negation. Now if there is a C € C and m,n € N, such that
C(m,n+2)#Cm+1,n+1)=C(m+2,n) or C(m,n+2) =C(m+1,n+1) #
C(m + 2,n), then either C(m,n + 2) = 0 and C is V- respectively A-closed, or
C(m,n+2) =1 and —C is A- respectively V-closed. Thus substituting the gates
in a boolean circuit by constant size C-subcircuits, we get W[P] C W[P](C).

If there are no such m,n as above, then for all £ € N and for all C € C we
have that C' [, is constant or C(¢ —t,t) # C(£— (t+1),t+1) for all ¢t < £. In the
non-constant case the values of C' [, alternate between 0 and 1. Thus C' [,= & [,
or C [y= (=®) [,. But then we have p-WSAT(CIRC(C)) </P* p-WSAT(CIRC(D))
via the following reduction: For every gate v with ¢, inputs and label C' compute
the values C'(0,4,) and C(1,¢, — 1) and replace the gate by

— a gate labelled with ¢, if C(0,¢,) = C(1,4, — 1) =¢
— a gate labelled with @, if C(0,¢,) =0 and C(1,4, —1) =1
— two gates computing ®[1 &[X; ... X ]],if C(0,4,) =1and C(1,4,—-1) =0

Thus with Lemma 1 we have W[P](C) C FPT. O

Corollary 1 (Characterisation). Let C be a finite set of connectives. If C has
at least two of the properties of being V-closed, A-closed, or not monotone, then
WIP|(C) = WIP]. Otherwise W[P](C) = FPT. O

5 Conclusion

We saw that for every finite set C of connectives the class W[P](C) is equal
to W[P] or collapses to FPT. The proof also yielded characterisations of the
connectives for both alternatives. A question left open is whether we get a similar
dichotomy for the classes W[SAT](C), which are defined via the parameterised
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weighted satisfiability problems for C-formulas (C-circuits where all gates except
for the input-gates have fan-out < 1). Although there are results which settle
the issue for connectives with bounded fan-in [2, Theorem 5.2.2], it is unclear
how to handle connectives with unbounded fan-in. It is also not clear, whether
for the dichotomy theorem to hold it is necessary to presuppose the constant
gates 0 and 1.
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