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Standard Completeness

Completeness of axiomatic systems with respect to algebras over
the real interval [0, 1].
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Intended semantics of Fuzzy Logic ‘




Why Fuzzy Logic?

Consider propositions involving vague predicates, e.g.

"Xis tall”, "Xis old”, "X is young”

¢ Not easy to assign classical truth values "true” (1) or
"false” (0)

e Need of more degrees of truth, e.g. over [0, 1].



Origins of Fuzzy Logic

o Fuzzy sets v: S — [0,1] (v(x) degree of membership of x to
S). (Zadeh 1965)

e Engineering and computer science applications.



Mathematical Fuzzy Logic

(Hajek 1998) Introduction of formal, Hilbert-style systems for
Fuzzy Logic.

e BL Basic Logic, logic of continuous t-norms and their residua.

Evaluation v : Propositions — [0, 1]

v(A® B) = v(A) *x v(B), x* continuous t-norm
v(A— B) =v(A) =, v(B) —, residuum of x



Mathematical Fuzzy Logic

(Hajek 1998) Introduction of formal, Hilbert-style systems for
Fuzzy Logic.

e BL Basic Logic, logic of continuous t-norms and their residua.
Evaluation v : Propositions — [0, 1]

v(A® B) = v(A) *x v(B), x* continuous t-norm
v(A— B) =v(A) =, v(B) —, residuum of x

e Most important examples of continuous t-norm:
e tukasiewicz: x * y = max(0,x +y — 1)
e Godel x *x y = min(x,y)
e Product x*xy =x0y



A growing family of logics

Often described by adding or removing axioms to already known
logics.
Example

e UL = FLe with ((a = B) Ae) V ((B — a) A e) (prelinearity)
e MTL = UL with (a — e) A (f = a) (weakening/integrality)
BL = MTL with divisibility (a A 8) = (a ® (a — B))

Godel logic = MTL with contraction a - a ® «

Classical logic = MTL with excluded middle a V —«



A growing family of logics
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The Problem

Let L be a logic, obtained e.g. by extending UL with additional
axioms.

Is L standard complete?
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The Problem

Let L be a logic, obtained e.g. by extending UL with additional
axioms.

Is L standard complete?
Provide uniform and systematic answers.



Our logics: a syntactic view

e A Hilbert-style systems for FLe, Intuitionistic linear logic
without exponentials.

e Two different kind of conjunctions: A and ®
e Constants e, f, T, L

e UL=Fle+ (a— p)Ne)V((B— a)Ae) (lin)
e MTL= UL+ (f - a)A(a—e) (w)



Our logics: a syntactic view

A Hilbert-style systems for FLe, Intuitionistic linear logic
without exponentials.

e Two different kind of conjunctions: A and ®
e Constants e, f, T, L

UL= FLe+ (aa— B)Ne)V((B— a)Ae) (lin)
MTL = UL+ (f - a) A (o — e) (w)
L L=UL+«



Our logics: algebraic semantics

e Bounded FlLe-algebras A = (A,A,V,®,—, L, T,f,e€)

(A, AV, L, T) bounded lattice.

(A, ®, €) commutative monoid

xOy<ze x<y—zforany x,y,z € A (residuation)
feEA —a=a—f
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o (A,A,V, L, T) bounded lattice.
e (A, ©®,e) commutative monoid
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e feA —a=a—>f

e UL-algebras: FlLe-algebras satisfying
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e MTL-algebras: UL-algebra satisfying

e<(x —e)A(f > x) (weakening)



Our logics: algebraic semantics

Bounded FlLe-algebras A = (A, A, V,®,—, L, T,f,e€)
o (A,A,V, L, T) bounded lattice.
e (A, ©®,e) commutative monoid
e xOy<z& x<y— zforany x,y,z € A (residuation)
e feA —a=a—>f

UL-algebras: FLe-algebras satisfying
e<((x—=y)Ae)V((y = x)Ae) (prelinearity)
MTL-algebras: UL-algebra satisfying

e<(x —e)A(f > x) (weakening)

L-algebras: UL-algebras satisfying e < « (for any L = UL+ «)



The way to Standard Completeness

Given an axiomatic extension L of UL
(a) Completeness w.r.t. linearly ordered L-algebras ( L-chains).
(b) Completeness w.r.t countable dense L-chains (rational

completeness).
(c) Standard Completeness (via Dedekind-MacNeille completion)
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The way to Standard Completeness

Given an axiomatic extension L of UL
(a) Completeness w.r.t. L-chains.

(b) Rational completeness

Proof-theoretic Algebraic
e Prove the e Find an embedding
admissibility of a rule from any countable
in L L-chain into a dense

countable L-chain.

(c) Standard Completeness (via Dedekind-MacNeille completion)



(b) Rational completeness: Proof theoretic
approach

¢ (Metcalfe, Montagna JSL 2007)
Add the density rule to L (p eigenvariable)

(a—=p)V(p—=B)Vy
(= B)Vry

(density)

L + (density) is rational complete.
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(b) Rational completeness: Proof theoretic
approach

¢ (Metcalfe, Montagna JSL 2007)
Add the density rule to L (p eigenvariable)

(a—=p)V(p—=B)Vy
(= B)Vry

(density)

L + (density) is rational complete.
e Find a suitable calculus HL for L

e Show Density-Elimination in HL
L =L + (density).
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Chosen formalism: Hypersequent Calculi

(Avron JSL '89)
F1:>I'I1| |F,,:>I'I,,

where for all i =1,...n, [; = [; is an ordinary sequent
"|" denotes a meta-level disjunction



Density rule

Density rule (p eigenvariable)

(a=p)Vip—=B)Vy
(a—= B)V~y




Density rule

Density rule (p eigenvariable)

(a=p)Vip—=B)Vy
(a—= B)V~y

Natural formalization in hypersequent calculi (p eigenvariable)

GIT=plp=A
D
GIFr'=A (D)




Hypersequent Calculus for UL

This calculus is obtained
e embedding sequent into hypersequent rules
a,lN=0
Foaop ")
Gla,lT =4 (1)
—_ r
GIlr'=a—p
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Hypersequent Calculus for UL

This calculus is obtained
e embedding sequent into hypersequent rules
e adding suitable rules to manipulate the additional layer of
structure.
GIT=all =«
(ec)
G|l =«

_ G
G|r:>a(ew)

e adding a rule corresponding to (a« — ) Ae) V ((8 — a) Ae)

G|F1,F2:>I'I1 G|21722:>|_|2
G|F1,21:>I'I1|F2,)Z2:>I'I2

(com)



Hypersequent Calculus for UL

GIT=a Gla,A=T

t - (i S
GILA=nN (cut) Glasa () crs M
GIlr'=a G|A=p Gla,8,T =1 G|'=n
| 225 (@0 L oY B ALy
GILA=a0g Gla®B,T=n Gle,r=n
GIFr=a G|BA=T Gla,T =8 GIT =
(= 1) Sl R A = ()
GINa—p,A=T1 GIFr'=a—p GIT=f
GIFr'=a GIIT=p Gla;, =N
(Ar) ——— (ADi=(1,2} —— (er)
GIT'=aAp GlaiAap, T =1 G| =e
Glor=n Glgr=n GIr=ai B
_— r)i— _—
Glav s, =0 (v) GIT = a1 Vas a2 o )
GIFr'=n|r=n G
“Gir=n_ Gir=n ER

G|F2,)21:>ﬂ1 G\F1,22$ﬂ2
G“—l,zl :>|_|1||—2,22 :>|_|2

(com)



Hypersequent calculi for extensions of UL

e The calculus for UL admits cut elimination.
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Hypersequent calculi for extensions of UL

e The calculus for UL admits cut elimination.
e Cut elimination is not preserved when axioms are added to UL

e Many axioms can be transformed into good structural rules
(analytic), preserving cut-elimination.



Algorithmic introduction of analytic calculi

(Ciabattoni, Galatos and Terui, LICS 2008)

Classes P,,, N, of positive and negative
‘ axioms/equations ‘:

Po, Np := Atomic formulas
Pn1 = Nn | Prt1 © Pt | Prs1 V Prs1 | e | 1
Nn+1 = Pn | Pn+1 _>Nn+1 |Nn+1 /\NnJrl | f | T



Algorithmic introduction of analytic calculi

(Ciabattoni, Galatos and Terui, LICS 2008), (Jetabek, 2015)

Ny

[ Classes P, N, of positive and negative

Ps ‘ axioms/equations ‘:
/
P
N

Po, Np := Atomic formulas

S

Ni Pot1 = No | Pos1 © Poy1 | Prsa V P €| L
T Nn+1 ::Pn|7)n+1 _>Nn+1|Nn+1 /\Nn+1|f|T

Py = J\-'ir =P



Algorithmic introduction of analytic calculi
(Ciabattoni, Galatos and Terui, LICS 2008), (Jetabek, 2015)

Ny Algorithm to transform (almost all)
[ e axioms within N> into good
P structural rules in sequent calculus

e axioms within P3 into good
structural rules in hypersequent
calculus

SN,
NS

A

I

Po=Ny="P



Algorithmic introduction of analytic calculi
(Ciabattoni, Galatos and Terui, LICS 2008), (Jetabek, 2015)

Ny Algorithm to transform (almost all)
I e axioms within N> into good
P structural rules in sequent calculus

e axioms within P3 into good
structural rules in hypersequent

S \
\/

" calculus

I Correspondingly:

L . e algebraic equations within N> are
Po=M =P

preserved under DM-completion

e algebraic equations within P3 are
preserved under DM-completion
when applied to chains
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calculus HL for L from any countable
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(c) Standard Completeness (via Dedekind-MacNeille completion)
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Given an axiomatic extension L of UL
(a) Completeness w.r.t. L-chains.

(b) Rational completeness

Proof-theoretic Algebraic
e Find a suitable e Find an embedding
calculus HL for L from any countable
e Show L-chain into a dense
Density-Elimination in countable L-chain.
HL

(c) Standard Completeness (via Dedekind-MacNeille completion)



Our results

1. General proof of density elimination for extensions of MTL
2. General proof of density elimination for extensions of UL

3. A new algebraic approach: finding dense embeddings using
the techniques of density elimination.



1. Density Elimination for MTL

MTL = UL + weakening/integrality

G|IF=n (w)) G|II= (wr)
GIT,a=n " GIr=n "



1. Density Elimination for MTL

MTL = UL + weakening/integrality
G|If'=n (w)) GIT= (wr)
Gla=n"" GIr=n'"

State of the art:

e Proved for MTL + structural sequent rules/ A, axioms.
(Ciabattoni, Metcalfe 2008).



Density Elimination: Counterexample

Consider MTL + (« V =) (Classical logic)
Corresponding rule:
GIT,X = A (em)
GIT= [z=A




Density Elimination: Counterexample

Consider MTL + (« V =) (Classical logic)
Corresponding rule:
GIILE=A
GIF'= |Z=A

The density rule (D) in MTL + (em) allows to derive a
contradiction

(em)

p=p

—— (em)
p=|=pr

(D)
=

Density elimination does not hold, as expected!



Density vs Cut

GIT=plp=A
GIT=A

(D)
(p eigenvariable).

GIF'=a GlX,a=A
GIT,= A

(cut)



Density elimination

e Similar to cut-elimination

e Proof by induction on the length of derivations



Density elimination

e Similar to cut-elimination
e Proof by induction on the length of derivations
(Ciabattoni, Metcalfe 2008) Given a density-free derivation, ending
in
D!
GIFT=plp=A
— (D
GIF'=A



Density elimination

(Ciabattoni, Metcalfe 2008) Given a density-free derivation, ending
in

L
GIT=plp=A
—F (D

GIF'=A

e Asymmetric substitution: p is replaced

e With A when occurring on the right
e With I when occurring on the left

S
GIFT=A|l=A

(ec)
GIfr'=A



Problem with (com)

p=p Z:‘\U

(com)
Y=plp=V

-d
GIT=plp=A

GIF'=A (P)



Problem

p=p Z:.\U

(com)
Y=plp=V

- d
GIT=plp=A

GIF'=A (P)

e p = p axiom

e [ = A not an axiom

with (com)

[=A Y=

Y=>All=>V
d*

GIFT=A|l=A
GIl'=A

(com)

(ec)



Problem with (com)

The premise ¥ = W actually suffices to restructure the derivation

p=p TV [=A =W

(com) (com)
Y=plp=>V Y= A=V
. d D d*
GIT=plp=A GIT=A|T=A
(D) (ec)
GIF'=A GIfr'=A

e p = p axiom
e [ = A not an axiom



Problem with (com)

The premise ¥ = W actually suffices to restructure the derivation

Yo w

p=0p Ziw(com) (*)
I=plp=>V Y= A=

éd L
CIT=rlp=4 GIT= Al =A
GIl'=A Glr=a (ec)

(%) contains suitable applications of (com), (cut) and (wl/)



Our Generalization

What happens for other hypersequent rules?

TIPS P T p=p T = Vo = Vo,
H
L d
GIlT=plp=A
GIT=A

(r)

(D)



Our Generalization

The same problem arises :

ST = A Ty T =A Tptbl=Vog...

H.*
- d*
GIlT=Al=A
GIT=A

(ec)



Our generalization

Similarly, we would like to obtain

ot 1o V. Ty = W,
- (%)
.H*
GIFT=Al=A
GIIT'=A

(%) contains suitable applications of (r), (cut) and (wl/)

(ec)
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Theorem
The hypersequent calculus for MTL + any semi-anchored rule
admits density elimination

e Includes all sequent structural rules and (com).
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1. Our results : Axiomatic extensions of MTL

Theorem
The hypersequent calculus for MTL + any semi-anchored rule
admits density elimination

e Includes all sequent structural rules and (com).

Theorem
Any P3 semianchored extension of MTL is standard complete.

e Include all known results on P53 extensions of MTL

e Infinitely many new logics, e.g. MTL + :
~(a® )"V ((@AB)"™! = (a®B))

—(a") Vv (a”_l —a)



An Automated Check

We developed a program which takes as input an axiom « and:

e If « is within the class Ps, it converts it into an equivalent
hypersequent rule,

e checks whether this rule is semianchored,

e outputs a paper on standard completeness for MTL + «,
based on the result of the check.

AxiomCalc Web Interface

Use AxiomCalc

Axiom:
(@a->b)vib->a) -
& Check for Standard Completeness | Submit |

http://www.logic.at/people/lara/axiomcalc.html



2. Density Elimination for extensions of UL

The proof is more complicated due to the absence of
G|F=n G|II=
— 7 (wl i
Grasn™  Gron W)

Algebraically, we do not have integrality (the constants e, f and
T, L do not necessarily coincide)



2. Density Elimination for extensions of UL

State of the art:

e UL with contraction o — a2 and mingle a? — « (Metcalfe
and Montagna, JSL 2007)

e UL with n-contraction a"~! — " and n-mingle a” — a"~
(n > 2) (Wang, FSS 2012)

1
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2. Our results: axiomatic extensions of UL

Theorem
The hypersequent calculus for UL + any nonlinear rule and/or
mingle admits density elimination.

Theorem
Any N> nonlinear extension of UL is standard complete.

e Include all known results on N> extensions of UL

e Infinitely many new logics, e.g. for UL +

ak = an

foak = an



The way to Standard Completeness

Given an axiomatic extension L of UL
(a) Completeness w.r.t. L-chains.

(b) Rational completeness

Proof-theoretic Algebraic
e Find a suitable e Find an embedding
calculus HL for L from any countable
e Show L-chain into a dense
Density-Elimination in countable L-chain.
HL

(c) Standard Completeness (via Dedekind-MacNeille completion)



3. A new method for algebraic embeddings

How does the proof-theoretic methods relate to the
embedding method ?



3. A new method for algebraic embeddings

How does the proof-theoretic methods relate to the
embedding method ?

We construct embeddings into dense algebras,
translating the techniques of Density Elimination.
e More interesting and understandable for algebraists

e The approach easily extends to the noncommutative case.



Densifiability




Densifiability

Definition. A subvariety V of FL-algebras is densifiable, if for any
chain A'in V and a, b € A such that a < b and for no ¢ € A we
have a < ¢ < b (a, b form a “gap”, a < b), there is a chain B in
V, p € B and an embedding v: A — B such that v(a) < p < v(b)




From densifiability to dense embeddings

Theorem. Let V be a densifiable variety. Then every (nontrivial)
finite or countable chain in V is embeddable into a countable
dense chain in V.



Our tools: Preframe - Residuated Frames

(Galatos-Jipsen 2013)
o A preframe is a structure (W, W’ N, o, e, €) such that
e (W,o0,¢) is a monoid.
e NC W x W
e cec W
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Our tools: Preframe - Residuated Frames

(Galatos-Jipsen 2013)
o A preframe is a structure (W, W’ N, o, e, €) such that
e (W,o0,¢) is a monoid.
e NC W x W
e cec W

e A residuated frame is a preframe with additional operations
\\ and // satisfying
xoyNz < yNx\\z < xNz//y

for any x,y e W,ze W'.

e There is a canonical way to extend any preframe to a
residuated frame.



Key Construction: The dual algebra

From any residuated frame W = (W, W’ N, o, ¢, €) we can build a
complete FL-algebra, the dual algebra of W™,

e Based on the relation N on W, we can define a closure
operator vy (a nucleus, in fact).

e Closed sets of yy are the elements of the dual algebra W™,
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Let A= (AA,V,®,—, e, f) be an MTL-chain which is not dense.
Assume a, b € A form a “gap”, a < b.
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Case study: Densifiability for MTL-chains

Let A= (AA,V,®,—, e, f) be an MTL-chain which is not dense.
Assume a, b € A form a “gap”, a < b. We want to add an element
p in between a and b, hence we require:

xNp&x<a pNy<sb<y pNp

e Preframe: ((AU{p})*,AU{p}, N,o,¢,f), with o string
concatenation, N defined as:
o x[p]Nc < x[b]<c.
o xNp & x<a.
e x[p]Np always holds.
e We call VNV,’; the corresponding residuated frame and \INV,’;Jr its
dual algebra.



Residuated frame and Density Elimination

Residuated frame Density Elimination
e x[p]Nc < x[b] <c. . d’
o xNp & x<a G|F:>p|p:>AD)
e x[p]Np always GIIT=A
holds.

e pis replaced

e With A on the right
e With I on the left



Residuated frame and Density Elimination

Residuated frame Density Elimination
e x[p]Nc < x[b] <c. . d
o xNp & x<a G|F:>p|p:>AD)
e x[p]Np always GIIT=A
holds.

e pis replaced

e With A on the right
e With I on the left

L d”
GIT=A|lT=A
— |€éC

GIIT'=A
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Case study: Densifiability for MTL-chains

Theorem. MTL-chains satisfying any semianchored equation
e < « are densifiable.

Proof Idea. Let A be an MTL chain satisfying e < a with a,b € A
such that a < b, W,’; residuated frame. We show the following

1. Ais an MTL-chain sat. e < o — W} is a complete
MTL-chain sat. e < o

2. There is an embedding
. AP+
viA— Wq
3. \IMV",J;r “fills the gap” between a and b, i.e.

v(a) < p < v(b)



1.

Case study: Densifiability for MTL-chains

A is an MTL chainsat. e<a ---> \INV"L’\+ is an MTL chain sat. e < «



1.

Densifiability for MTL-chains

Ais an MTL chainsat. e<a ---> \INV"L’\+ is an MTL chain sat. e < «

WA, satisfies (q)



From Densifiability to Dense embeddings

¢ (Noncommutative) MTL-chains satisfying any semi-anchored
equation e < « are densifiable.

e We can embedd any (noncommutative) MTL-chain satisfying
e < « into a dense, complete (noncommutative) MTL-chain
satisfying e < av.



3. Our results: A new algebraic method

We developed a new algebraic method, based on the
proof-theoretical ideas.

e We translated the proof-theoretic results for axiomatic
extensions of UL and MTL in the algebraic framework.

e We showed standard completeness for axiomatic extensions of
the noncommutative version of MTL



Conclusions

e Uniform results on standard completeness for
o Nonlinear extensions of (first-order) UL.
e Semi-anchored extensions of (first-order) MTL and its
noncommutative version.
e An algebraic counterpart of the proof theoretical approach to
standard completeness.
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Further Research Directions

Find a necessary condition for standard completeness for P3
axiomatic extensions of MTL.

Prove that any N> axiomatic extension of UL is standard
complete.

Logics with involutive negation. Long standing open problem:
standard completeness of IUL.

Extend the method of residuated frames. So far used for
showing:

Cut admissibility and completions

Finite embeddability property

Density elimination and dense embeddings
22



Semianchored rules
Definition
Let (r) be any analytic structural rule:

G|Si ... G|Sm .
GGl |G

Let L(C) = L(G)U---UL(Cy) and R(C) = R(G)U---UR(Cy).
e (I',M) be a pair in the cartesian product L(C) x R(C), with

n=0.

e (', M) anchored if (I',N) € L(Cs) x R(Cs), for some conclusion
component C

e (I, M) unanchored otherwise.



Semianchored rules
Definition
Let (r) be any analytic structural rule:

G|Si ... G|Sm .
GGl |G

Let L(C) = L(G)U---UL(Cy) and R(C) = R(G)U---UR(Cy).
e (I',M) be a pair in the cartesian product L(C) x R(C), with

n=0.

e (', M) anchored if (I',N) € L(Cs) x R(Cs), for some conclusion
component C

e (I, M) unanchored otherwise.

e A premise S; contains a set of unanchored pairs
{(T1, M) (T, M} iffTq,..., T, € L(S;),N € R(S))



Semianchored rules
An analytic structural rule:

G|Si ... G|Sm
GlG| ... |G

(r)

is semianchored iff for any set of unanchored pairs {(I'1, ), .

contained in a premise

G|Si=G|O,r . .. Iy, =1,

sl no

there is a premise G | S; such that one of the following holds:

s (T M}



Semianchored rules
An analytic structural rule:

GISi ... GlSw
GIGl... |G

is semianchored iff for any set of unanchored pairs {(1,M),...,(y, M)}
contained in a premise

G|Si=G|O,r . .. Iy, =1,

there is a premise G | S; such that one of the following holds:

1. §=0,A ... A Y, =T;and (A1, T),..., (A, ;) are

anchored pairs ( Ay, ..., A, not necessarily distinct).
2. §=0,r, ..., 5= and (M, MN;),..., (T, MN;) are anchored
pairs.

3. S,=0,A},...,AY; =N and
(M1, M), (T, 1), (A1, 1), ... (Ap, T1;) are anchored pairs
(Ag, ..., A, not necessarily distinct).



Nonlinear rules

Sequent structural rules (= acyclic N, axioms)

G|Si ...G|Sm
G|IZ,l1,....Tp=>V

(r)

s.t. if R(S;) # 0, none of I'y,..., [, appears only once in L(S;).



Mingle

Our approach works also for the rule mingle, which violates
nonlinearity.

GINH=v G|IMNMHh=Vv
G|I'I,F1,F2:>\U

r



