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Intended semantics of Fuzzy Logic



Why Fuzzy Logic?

Consider propositions involving vague predicates, e.g.

”X is tall”, ”X is old”, ”X is young”

• Not easy to assign classical truth values ”true”(1) or
”false”(0)

• Need of more degrees of truth, e.g. over [0, 1].



Origins of Fuzzy Logic

• Fuzzy sets v : S → [0, 1] (v(x) degree of membership of x to
S). (Zadeh 1965)

• Engineering and computer science applications.



Mathematical Fuzzy Logic

(Hajek 1998) Introduction of formal, Hilbert-style systems for
Fuzzy Logic.

• BL Basic Logic, logic of continuous t-norms and their residua.

Evaluation v : Propositions → [0, 1]

v(A⊙ B) = v(A) ∗ v(B), ∗ continuous t-norm
v(A → B) = v(A) →∗ v(B) →∗ residuum of ∗



Mathematical Fuzzy Logic

(Hajek 1998) Introduction of formal, Hilbert-style systems for
Fuzzy Logic.

• BL Basic Logic, logic of continuous t-norms and their residua.

Evaluation v : Propositions → [0, 1]

v(A⊙ B) = v(A) ∗ v(B), ∗ continuous t-norm
v(A → B) = v(A) →∗ v(B) →∗ residuum of ∗

• Most important examples of continuous t-norm:
•  Lukasiewicz: x ∗ y = max(0, x + y − 1)
• Gödel x ∗ y = min(x , y)
• Product x ∗ y = x ⊙ y



A growing family of logics

Often described by adding or removing axioms to already known
logics.
Example

• UL = FLe with ((α → β) ∧ e) ∨ ((β → α) ∧ e) (prelinearity)

• MTL = UL with (α → e) ∧ (f → α) (weakening/integrality)

• BL = MTL with divisibility (α ∧ β) → (α ⊙ (α → β))

• Gödel logic = MTL with contraction α → α⊙ α

• Classical logic = MTL with excluded middle α ∨ ¬α

• . . .



A growing family of logics



The Problem

Let L be a logic, obtained e.g. by extending UL with additional
axioms.

Question Is L standard complete?
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The Problem

Let L be a logic, obtained e.g. by extending UL with additional
axioms.

Question Is L standard complete?

Our aim Provide uniform and systematic answers.



Our logics: a syntactic view

• A Hilbert-style systems for FLe, Intuitionistic linear logic
without exponentials.

• Two different kind of conjunctions: ∧ and ⊙
• Constants e, f ,⊤,⊥

• UL = FLe + (α → β) ∧ e) ∨ ((β → α) ∧ e) (lin)

• MTL = UL + (f → α) ∧ (α → e) (w)
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Our logics: algebraic semantics

• Bounded FLe-algebras A = (A,∧,∨,⊙,→,⊥,⊤, f , e)
• (A,∧,∨,⊥,⊤) bounded lattice.
• (A,⊙, e) commutative monoid
• x ⊙ y ≤ z ⇔ x ≤ y → z for any x , y , z ∈ A (residuation)
• f ∈ A ¬a := a → f
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• Bounded FLe-algebras A = (A,∧,∨,⊙,→,⊥,⊤, f , e)
• (A,∧,∨,⊥,⊤) bounded lattice.
• (A,⊙, e) commutative monoid
• x ⊙ y ≤ z ⇔ x ≤ y → z for any x , y , z ∈ A (residuation)
• f ∈ A ¬a := a → f

• UL-algebras: FLe-algebras satisfying

e ≤ ((x → y) ∧ e) ∨ ((y → x) ∧ e) (prelinearity)

• MTL-algebras: UL-algebra satisfying

e ≤ (x → e) ∧ (f → x) (weakening)

• L-algebras: UL-algebras satisfying e ≤ α (for any L = UL + α)



The way to Standard Completeness

Given an axiomatic extension L of UL

(a) Completeness w.r.t. linearly ordered L-algebras ( L-chains).

(b) Completeness w.r.t countable dense L-chains (rational
completeness).

(c) Standard Completeness (via Dedekind-MacNeille completion)
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The way to Standard Completeness

Given an axiomatic extension L of UL

(a) Completeness w.r.t. L-chains.

(b) Rational completeness

Proof-theoretic Algebraic

• Prove the
admissibility of a rule
in L

• Find an embedding
from any countable
L-chain into a dense
countable L-chain.

(c) Standard Completeness (via Dedekind-MacNeille completion)



(b) Rational completeness: Proof theoretic
approach

• (Metcalfe, Montagna JSL 2007)
Add the density rule to L (p eigenvariable)

(α → p) ∨ (p → β) ∨ γ

(α → β) ∨ γ
(density)

L + (density) is rational complete.
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approach

• (Metcalfe, Montagna JSL 2007)
Add the density rule to L (p eigenvariable)

(α → p) ∨ (p → β) ∨ γ

(α → β) ∨ γ
(density)

L + (density) is rational complete.

• Find a suitable calculus HL for L

• Show Density-Elimination in HL

L = L + (density).
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Chosen formalism: Hypersequent Calculi

(Avron JSL ’89)
Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn

where for all i = 1, . . . n, Γi ⇒ Πi is an ordinary sequent
’ | ’ denotes a meta-level disjunction



Density rule

Density rule (p eigenvariable)

(α → p) ∨ (p → β) ∨ γ

(α → β) ∨ γ



Density rule

Density rule (p eigenvariable)

(α → p) ∨ (p → β) ∨ γ

(α → β) ∨ γ

Natural formalization in hypersequent calculi (p eigenvariable)

G | Γ ⇒ p | p ⇒ ∆

G | Γ ⇒ ∆
(D)



Hypersequent Calculus for UL

This calculus is obtained

• embedding sequent into hypersequent rules

α, Γ ⇒ β

Γ ⇒ α → β
(→ r)

i.e.
G |α, Γ ⇒ β

G | Γ ⇒ α → β
(→ r)



Hypersequent Calculus for UL

This calculus is obtained

• embedding sequent into hypersequent rules

• adding suitable rules to manipulate the additional layer of
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Hypersequent Calculus for UL

This calculus is obtained

• embedding sequent into hypersequent rules

• adding suitable rules to manipulate the additional layer of
structure.

G
G | Γ ⇒ α

(ew)
G | Γ ⇒ α | Γ ⇒ α

G | Γ ⇒ α
(ec)

• adding a rule corresponding to (α → β) ∧ e) ∨ ((β → α) ∧ e)

G | Γ1, Γ2 ⇒ Π1 G |Σ1,Σ2 ⇒ Π2

G | Γ1,Σ1 ⇒ Π1 | Γ2,Σ2 ⇒ Π2
(com)



Hypersequent Calculus for UL

G |Γ ⇒ α G |α,∆ ⇒ Π

G | Γ,∆ ⇒ Π
(cut)

G |α ⇒ α
(id)

G | f ⇒
(fl)

G |Γ ⇒ α G |∆ ⇒ β

G |Γ,∆ ⇒ α⊙ β
(⊙ r)

G |α, β, Γ ⇒ Π

G |α⊙ β,Γ ⇒ Π
(⊙ l)

G | Γ ⇒ Π

G | e,Γ ⇒ Π
(el)

G |Γ ⇒ α G |β,∆ ⇒ Π

G |Γ, α → β,∆ ⇒ Π
(→ l)

G |α, Γ ⇒ β

G |Γ ⇒ α → β
(→ r)

G |Γ ⇒

G |Γ ⇒ f
(fr)

G |Γ ⇒ α G |Γ ⇒ β

G |Γ ⇒ α ∧ β
(∧r)

G |αi , Γ ⇒ Π

G |α1 ∧ α2,Γ ⇒ Π
(∧l)i={1,2}

G | ⇒ e
(er)

G |α, Γ ⇒ Π G |β, Γ ⇒ Π

G |α ∨ β,Γ ⇒ Π
(∨l)

G |Γ ⇒ αi

G |Γ ⇒ α1 ∨ α2

(∨r)i={1,2}
Γ,⊥ ⇒ Π

(⊥l)

G |Γ ⇒ Π |Γ ⇒ Π

G | Γ ⇒ Π
(ec)

G

G |Γ ⇒ Π
(ew)

Γ ⇒ ⊤
(⊤r)

G | Γ2,Σ1 ⇒ Π1 G |Γ1,Σ2 ⇒ Π2

G |Γ1,Σ1 ⇒ Π1 | Γ2,Σ2 ⇒ Π2
(com)



Hypersequent calculi for extensions of UL

• The calculus for UL admits cut elimination.
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Hypersequent calculi for extensions of UL

• The calculus for UL admits cut elimination.

• Cut elimination is not preserved when axioms are added to UL

• Many axioms can be transformed into good structural rules
(analytic), preserving cut-elimination.



Algorithmic introduction of analytic calculi

(Ciabattoni, Galatos and Terui, LICS 2008)

Classes Pn,Nn of positive and negative

axioms/equations :

P0, N0 := Atomic formulas

Pn+1 := Nn | Pn+1 ⊙ Pn+1 | Pn+1 ∨ Pn+1 | e | ⊥

Nn+1 := Pn | Pn+1 → Nn+1 | Nn+1 ∧ Nn+1 | f | ⊤
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Algorithmic introduction of analytic calculi
(Ciabattoni, Galatos and Terui, LICS 2008), (Jěrábek, 2015)

Algorithm to transform (almost all)

• axioms within N2 into good
structural rules in sequent calculus

• axioms within P3 into good
structural rules in hypersequent
calculus

Correspondingly:

• algebraic equations within N2 are
preserved under DM-completion

• algebraic equations within P3 are
preserved under DM-completion
when applied to chains
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(b) Rational completeness

Proof-theoretic Algebraic

• Find a suitable
calculus HL for L

• Show
Density-Elimination in
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• Find an embedding
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Our results

1. General proof of density elimination for extensions of MTL

2. General proof of density elimination for extensions of UL

3. A new algebraic approach: finding dense embeddings using
the techniques of density elimination.



1. Density Elimination for MTL

MTL = UL + weakening/integrality

G | Γ ⇒ Π

G | Γ, α ⇒ Π
(wl)

G | Γ ⇒

G | Γ ⇒ Π
(wr)



1. Density Elimination for MTL

MTL = UL + weakening/integrality

G | Γ ⇒ Π

G | Γ, α ⇒ Π
(wl)

G | Γ ⇒

G | Γ ⇒ Π
(wr)

State of the art:

• Proved for MTL + structural sequent rules/ N2 axioms.
(Ciabattoni, Metcalfe 2008).



Density Elimination: Counterexample

Consider MTL + (α ∨ ¬α) (Classical logic)
Corresponding rule:

G | Γ,Σ ⇒ ∆

G | Γ ⇒ |Σ ⇒ ∆
(em)



Density Elimination: Counterexample

Consider MTL + (α ∨ ¬α) (Classical logic)
Corresponding rule:

G | Γ,Σ ⇒ ∆

G | Γ ⇒ |Σ ⇒ ∆
(em)

The density rule (D) in MTL + (em) allows to derive a
contradiction

p ⇒ p
(em)

p ⇒ | ⇒ p
(D)

⇒

Density elimination does not hold, as expected!



Density vs Cut

•
G | Γ ⇒ p | p ⇒ ∆

G | Γ ⇒ ∆
(D)

(p eigenvariable).

•
G | Γ ⇒ α G |Σ, α ⇒ ∆

G | Γ,Σ ⇒ ∆
(cut)



Density elimination

• Similar to cut-elimination

• Proof by induction on the length of derivations
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in

··· d
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Density elimination

(Ciabattoni, Metcalfe 2008) Given a density-free derivation, ending
in

··· d
′

G | Γ ⇒ p | p ⇒ ∆
(D)

G | Γ ⇒ ∆

• Asymmetric substitution: p is replaced
• With ∆ when occurring on the right
• With Γ when occurring on the left

··· d
′

G | Γ ⇒ ∆ | Γ ⇒ ∆
(ec)

G | Γ ⇒ ∆



Problem with (com)

p ⇒ p

·
·
·

Σ ⇒ Ψ
(com)

Σ ⇒ p | p ⇒ Ψ
·····
d

G | Γ ⇒ p | p ⇒ ∆
(D)

G | Γ ⇒ ∆



Problem with (com)

p ⇒ p

·
·
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·····
d

G | Γ ⇒ p | p ⇒ ∆
(D)

G | Γ ⇒ ∆

Γ ⇒ ∆

·
·
·

Σ ⇒ Ψ
(com)

Σ ⇒ ∆ | Γ ⇒ Ψ
·····
d∗

G | Γ ⇒ ∆ | Γ ⇒ ∆
(ec)

G | Γ ⇒ ∆

• p ⇒ p axiom

• Γ ⇒ ∆ not an axiom
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Problem with (com)

The premise Σ ⇒ Ψ actually suffices to restructure the derivation

p ⇒ p

·
·
·

Σ ⇒ Ψ
(com)

Σ ⇒ p | p ⇒ Ψ
·····
d

G | Γ ⇒ p | p ⇒ ∆
(D)

G | Γ ⇒ ∆

·
·
·

Σ ⇒ Ψ
·
·
·

(∗)

Σ ⇒ ∆ | Γ ⇒ Ψ
·
·
·
·
·
d∗

G | Γ ⇒ ∆ | Γ ⇒ ∆
(ec)

G | Γ ⇒ ∆

(∗) contains suitable applications of (com), (cut) and (wl)



Our Generalization

What happens for other hypersequent rules?

·
·
·

Σ1, p ⇒ p . . . Σn, p ⇒ p Σn+1 ⇒ Ψn+1 . . .Σm ⇒ Ψm
(r)

H
·····
d

G | Γ ⇒ p | p ⇒ ∆
(D)

G | Γ ⇒ ∆



Our Generalization

The same problem arises :

·
·
·

Σ1, Γ ⇒ ∆ . . . Σn, Γ ⇒ ∆ Σn + 1 ⇒ Ψn+1 . . .Σm ⇒ Ψm
(r)

H∗

·····
d∗

G | Γ ⇒ ∆ | Γ ⇒ ∆
(ec)

G | Γ ⇒ ∆



Our generalization

Similarly, we would like to obtain

·
·
·

Σn + 1 ⇒ Ψn+1 . . .Σm ⇒ Ψm
·
·
·

(∗)

H∗

·
·
·

G | Γ ⇒ ∆ | Γ ⇒ ∆
(ec)

G | Γ ⇒ ∆

(∗) contains suitable applications of (r), (cut) and (wl)
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• Includes all sequent structural rules and (com).
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1. Our results : Axiomatic extensions of MTL

Theorem
The hypersequent calculus for MTL + any semi-anchored rule
admits density elimination

• Includes all sequent structural rules and (com).

Theorem
Any P3 semianchored extension of MTL is standard complete.

• Include all known results on P3 extensions of MTL

• Infinitely many new logics, e.g. MTL + :

¬(α⊙ β)n ∨ ((α ∧ β)n−1 → (α ⊙ β)n)

¬(αn) ∨ (αn−1 → αn)



An Automated Check

We developed a program which takes as input an axiom α and:

• If α is within the class P3, it converts it into an equivalent
hypersequent rule,

• checks whether this rule is semianchored,

• outputs a paper on standard completeness for MTL + α,
based on the result of the check.

http://www.logic.at/people/lara/axiomcalc.html



2. Density Elimination for extensions of UL

The proof is more complicated due to the absence of

G | Γ ⇒ Π

G | Γ, α ⇒ Π
(wl)

G | Γ ⇒

G | Γ ⇒ Π
(wr)

Algebraically, we do not have integrality (the constants e, f and
⊤,⊥ do not necessarily coincide)



2. Density Elimination for extensions of UL

State of the art:

• UL with contraction α → α2 and mingle α2 → α (Metcalfe
and Montagna, JSL 2007)

• UL with n-contraction αn−1 → αn and n-mingle αn → αn−1

(n > 2) (Wang, FSS 2012)
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2. Our results: axiomatic extensions of UL

Theorem
The hypersequent calculus for UL + any nonlinear rule and/or
mingle admits density elimination.

Theorem
Any N2 nonlinear extension of UL is standard complete.

• Include all known results on N2 extensions of UL

• Infinitely many new logics, e.g. for UL +

αk → αn

f ⊙ αk → αn



The way to Standard Completeness

Given an axiomatic extension L of UL

(a) Completeness w.r.t. L-chains.

(b) Rational completeness

Proof-theoretic Algebraic

• Find a suitable
calculus HL for L

• Show
Density-Elimination in
HL

• Find an embedding
from any countable
L-chain into a dense
countable L-chain.

(c) Standard Completeness (via Dedekind-MacNeille completion)



3. A new method for algebraic embeddings

Question How does the proof-theoretic methods relate to the
embedding method ?



3. A new method for algebraic embeddings

Question How does the proof-theoretic methods relate to the
embedding method ?

Our result. We construct embeddings into dense algebras,
translating the techniques of Density Elimination.

• More interesting and understandable for algebraists

• The approach easily extends to the noncommutative case.



Densifiability

A

a

b



Densifiability

Definition. A subvariety V of FL-algebras is densifiable, if for any
chain A in V and a, b ∈ A such that a < b and for no c ∈ A we
have a < c < b (a, b form a “gap”, a ≺ b), there is a chain B in
V , p ∈ B and an embedding v : A → B such that v(a) < p < v(b)

A

a

b

B

v(a)

v(b)
p



From densifiability to dense embeddings

Theorem. Let V be a densifiable variety. Then every (nontrivial)
finite or countable chain in V is embeddable into a countable
dense chain in V .



Our tools: Preframe - Residuated Frames

(Galatos-Jipsen 2013)

• A preframe is a structure (W ,W ′,N, ◦, ε, ǫ) such that
• (W , ◦, ε) is a monoid.
• N ⊆ W ×W ′

• ǫ ∈ W ′



Our tools: Preframe - Residuated Frames
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Our tools: Preframe - Residuated Frames

(Galatos-Jipsen 2013)

• A preframe is a structure (W ,W ′,N, ◦, ε, ǫ) such that
• (W , ◦, ε) is a monoid.
• N ⊆ W ×W ′

• ǫ ∈ W ′

• A residuated frame is a preframe with additional operations
\\ and // satisfying

x ◦ yNz ⇔ yNx\\z ⇔ xNz//y

for any x , y ∈ W , z ∈ W ′ .

• There is a canonical way to extend any preframe to a
residuated frame.



Key Construction: The dual algebra

From any residuated frame W = (W ,W ′,N, ◦, ε, ǫ) we can build a
complete FL-algebra, the dual algebra of W+.

• Based on the relation N on W, we can define a closure
operator γN (a nucleus, in fact).

• Closed sets of γN are the elements of the dual algebra W+.
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Case study: Densifiability for MTL-chains

Let A = (A,∧,∨,⊙,→, e, f ) be an MTL-chain which is not dense.
Assume a, b ∈ A form a “gap”, a ≺ b. We want to add an element
p in between a and b, hence we require:

xNp ⇔ x ≤ a pNy ⇔ b ≤ y pNp

• Preframe: ((A ∪ {p})∗,A ∪ {p},N, ◦, ε, f ), with ◦ string
concatenation, N defined as:

• x [p]Nc ⇔ x [b] ≤ c .
• xNp ⇔ x ≤ a .
• x [p]Np always holds.

• We call W̃p
A the corresponding residuated frame and W̃p+

A its
dual algebra.
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Residuated frame Density Elimination

• x [p]Nc ⇔ x [b] ≤ c .

• xNp ⇔ x ≤ a.

• x [p]Np always
holds.

··· d
′

G | Γ ⇒ p | p ⇒ ∆
(D)

G | Γ ⇒ ∆

• p is replaced
• With ∆ on the right
• With Γ on the left

··· d
∗

G | Γ ⇒ ∆ | Γ ⇒ ∆
(ec)

G | Γ ⇒ ∆



Case study: Densifiability for MTL-chains

Theorem. MTL-chains satisfying any semianchored equation
e ≤ α are densifiable.



Case study: Densifiability for MTL-chains

Theorem. MTL-chains satisfying any semianchored equation
e ≤ α are densifiable.

Proof Idea. Let A be an MTL chain satisfying e ≤ α with a, b ∈ A
such that a ≺ b, W̃p

A residuated frame. We show the following



Case study: Densifiability for MTL-chains

Theorem. MTL-chains satisfying any semianchored equation
e ≤ α are densifiable.

Proof Idea. Let A be an MTL chain satisfying e ≤ α with a, b ∈ A
such that a ≺ b, W̃p

A residuated frame. We show the following

1. A is an MTL-chain sat. e ≤ α −→ W̃p+
A is a complete

MTL-chain sat. e ≤ α.

2. There is an embedding

v : A → W̃p+
A

3. W̃p+
A “fills the gap” between a and b, i.e.

v(a) < p < v(b)
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Densifiability for MTL-chains

1. A is an MTL chain sat. e ≤ α W̃p+
A is an MTL chain sat. e ≤ α

W̃p
A satisfies (q)



From Densifiability to Dense embeddings

• (Noncommutative) MTL-chains satisfying any semi-anchored
equation e ≤ α are densifiable.

• We can embedd any (noncommutative) MTL-chain satisfying
e ≤ α into a dense, complete (noncommutative) MTL-chain
satisfying e ≤ α.



3. Our results: A new algebraic method

We developed a new algebraic method, based on the
proof-theoretical ideas.

• We translated the proof-theoretic results for axiomatic
extensions of UL and MTL in the algebraic framework.

• We showed standard completeness for axiomatic extensions of
the noncommutative version of MTL



Conclusions

• Uniform results on standard completeness for
• Nonlinear extensions of (first-order) UL.
• Semi-anchored extensions of (first-order) MTL and its

noncommutative version.

• An algebraic counterpart of the proof theoretical approach to
standard completeness.
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Further Research Directions

• Find a necessary condition for standard completeness for P3

axiomatic extensions of MTL.

• Prove that any N2 axiomatic extension of UL is standard
complete.

• Logics with involutive negation. Long standing open problem:
standard completeness of IUL.

• Extend the method of residuated frames. So far used for
showing:

• Cut admissibility and completions
• Finite embeddability property
• Density elimination and dense embeddings
• ...?
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• (Γ,Π) be a pair in the cartesian product L(C ) × R(C ), with
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• (Γ,Π) anchored if (Γ,Π) ∈ L(Cs) × R(Cs), for some conclusion
component Cs

• (Γ,Π) unanchored otherwise.
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Semianchored rules
An analytic structural rule:

G | S1 . . . G | Sm

G |C1 | . . . |Cq

(r)

is semianchored iff for any set of unanchored pairs {(Γ1,Π), . . . , (Γn,Π)}
contained in a premise

G | Si = G |Θ, Γi1
1 , . . . , Γin

n ,Σi ⇒ Πi

there is a premise G | Sj such that one of the following holds:

1. Sj = Θ,∆i1
1 , . . . ,∆in

n ,Σi ⇒ Πi and (∆1,Πi ), . . . , (∆n,Πi) are
anchored pairs ( ∆1, . . . ,∆n not necessarily distinct).

2. Sj = Θ, Γi1
1 , . . . , Γin

n ,Σj ⇒ Πj and (Γ1,Πj), . . . , (Γn,Πj) are anchored
pairs.

3. Sj = Θ,∆i1
1 , . . . ,∆in

n ,Σj ⇒ Πj and
(Γ1,Πj), . . . , (Γn,Πj), (∆1,Πi ), . . . , (∆n,Πi) are anchored pairs
(∆1, . . . ,∆n not necessarily distinct).



Nonlinear rules

Sequent structural rules (= acyclic N2 axioms)

G |S1 . . .G |Sm
(r)

G |Σ, Γ1, . . . , Γn ⇒ Ψ

s.t. if R(Si) 6= ∅ , none of Γ1, . . . , Γn appears only once in L(Si).



Mingle

Our approach works also for the rule mingle, which violates
nonlinearity.

G |Π, Γ1 ⇒ Ψ G |Π, Γ2 ⇒ Ψ
(r)

G |Π, Γ1, Γ2 ⇒ Ψ


