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Abstract. We modify the restraining bolt technique, originally designed for safe
reinforcement learning, to regulate agent behavior in alignment with social, ethi-
cal, and legal norms. Rather than maximizing rewards for norm compliance, our
approach minimizes penalties for norm violations. We demonstrate in case studies
the effectiveness of our approach in capturing benchmark challenges in normative
reasoning like contrary-to-duty obligations, exceptions, and temporal obligations.
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1. Introduction

The rapid expansion of AI applications, from self-driving cars to elder care robots, has
highlighted the growing importance of autonomous agents, which operate independently,
performing complex tasks and adapting to unpredictable environments. Reinforcement
Learning (RL) [1] has proven to be an effective tool for implementing such agents, and as
they become more deeply entrenched in human society, it is crucial to ensure their behav-
ior aligns with legal, ethical, and social norms, while still fulfilling the tasks they were
designed to carry out. This paper focuses on enabling RL agents to adhere to normative
systems while enacting optimal behaviour within those bounds.

We are particularly interested in the case where the agent operates without a model
of its environment (model-free RL), relying on exploration to learn optimal behaviour.
An effective technique introduced in this context is the restraining bolt2 [2]. Given an
agent with its own objective, this technique facilitates the shaping of its behaviour to fur-
ther conform with a set of LTLf (Linear Temporal Logic (LTL) over finite traces) specifi-
cations with corresponding rewards. The core idea is to provide additional rewards when
the agent satisfies the LTLf specifications. Introduced for safe RL, this approach suc-
ceeds at ensuring reasonable agent performance while adhering to a wide variety of con-
straints — but it is not tailored to deal with norms. Norms differ from regular constraints
in that they define ideal, not necessarily actual, behavior; they can be violated, restrict
or permit actions, be triggered or overridden by other norms, and arise from compliance
or violation of other norms (e.g. contrary-to-duty (CTD) obligations). LTL (and by ex-
tension LTLf) is known to struggle with these dynamics [3,4], which require specialized
formal systems like deontic logics [5]. However, effectively integrating deontic logics

1Corresponding Author: Emery A. Neufeld, emeric.neufeld@tuwien.ac.at.
2A device from the Star Wars universe used to enforce obedience in droids.
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into reinforcement learning agents remains an open challenge. Fortunately, the way LTLf
constraints are utilized in the restraining bolt technique mitigates some of the limitations
of temporal logics in handling normative reasoning, though significant issues still persist.

In this paper, we modify and re-purpose the restraining bolt technique in De Gia-
como, et al. [2] to specifically address normative systems. Our variant of the technique,
which we call normative restraining bolts, is inspired by the Andersonian approach to
modelling norms which reduces deontic logic to alethic logic [6]. Instead of maximiz-
ing the rewards attributable to a specification of compliant behaviour, we characterize
norms with violation specifications and seek to minimize the punishments (i.e., the mag-
nitude of the negative rewards) associated with violating them. By doing so, we avoid
rewarding the agent for compliance even when no norms are triggered, and instead only
administer punishments when a norm is explicitly violated. This approach helps us cir-
cumvent some pitfalls of the original technique that arise when used with LTLf formulas
specifying compliance with conditional norms, namely a tendency for the agent to try to
extend its runtime in order to continue reaping rewards for compliance. We also allow
for exceptions to obligations, and make accommodations for sequential violations (mul-
tiple violations occurring over a period of time). Moreover, we permit restraining bolt
specifications to reference an agent’s actions, as well as state labels; techniques utilizing
LTL(f) constraints usually only consider state labels. We present case studies showcasing
our technique’s ability to deal with key challenges in normative reasoning [7], including
contrary-to-duty (CTD) obligations, exceptions, and temporal obligations [8].

Related Literature. Over the last decade, various approaches to normative (usually pre-
sented as ethical) RL have emerged, many of which use human feedback or behavior to
guide learning [9,10,11,12,13]. However, gathering enough human demonstrations and
ensuring that they do indeed depict ethical or legal behaviour is no easy task. Along with
such bottom-up approaches, there are top-down approaches, where we start with a set of
agreed-upon norms or values and, e.g., design a reward function that reflects them. Much
of the literature [14,15,16] relies to some degree on the manual creation of a reward
function, which will be inadequate for complex systems of norms.

Beyond the above approaches are the techniques of Kasenberg and Scheutz [17],
Neufeld [18], and Riveret et al. [19], which use logical formulas to specify rewards. Em-
ploying a module introduced in previous work [20,21], [18] inserts a theorem prover for
defeasible deontic logic [22] into the RL process, but the technique is computationally
expensive and neglects temporal norms. Similarly, [19] faces a higher complexity due
to a more elaborate learning process than classic RL; indeed both [19,18] involve run-
ning a complex algorithm each time the agent transitions to a new state during training.
Kasenberg and Scheutz [17] contributes to a large body of work that discusses using
RL-like planning algorithms to learn behaviour that satisfies LTL formulas, which of-
ten formalize safety specifications. One approach to learning under LTL constraints is
known as shielding, originating in Alshiekh et al. [23], and later expanded to model-free
RL [24]; inspired by this approach and partially based on the framework in De Giacomo
et al. [2] is Varricchione et al. [25]. Another approach (closer to learning with restraining
bolts [2]) involves learning to maximize the probability of satisfying an LTL(f) formula,
starting with Ding et al. [26,27]. Though the work of Ding et al. [26,27] is not capable
of handling norms [4], Kasenberg and Scheutz [17], which modifies the technique, is
to an extent; the paper deals with norm conflict, but does not mention CTDs or permis-
sions. Subsequent approaches also include Kasenberg et al. [28] and Li et al. [29], which,
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like [17], only accommodate model-based RL; moreover they do not directly address
norms. Kasenberg et al. [28] learns adherence to safe/cosafe LTL constraints over which
there is a preference ordering, and Li et al. [29] accommodates a preference ordering
over formulae as well as a relation over formulae similar to the compensation operator
of Governatori et al. [30]. Our approach aims to accommodate a broader array of norms
than previous work [17,28,29], as well as model-free RL.

2. Background

LTLf. Linear Temporal Logic (LTL) [31] extends classical propositional logic with tem-
poral operators. The language of LTL is given by the grammar:

φ :=⊤ | ⊥ | p ∈ AP | ¬φ | φ ∧φ | ◦φ | φUφ

where AP the set of atomic propositions, ◦ the “next” operator (if ◦φ , φ is true in the
next state), and U the “until” operator (if φUψ , φ is true until ψ is true). We can also
define the “finally” operator ♢φ := ⊤Uφ (φ is eventually true), the “globally” operator
□φ := ¬♢¬φ (φ is always true), and the “release” operator φRψ := ¬(¬φU¬ψ) (φ
releases ψ , or ψ is true up until φ is true, if ever). ∨, →, and ↔ are derived as usual.

LTL formulas are interpreted over infinite traces σ = ⟨σ0,σ1, ...⟩ (where each σi ∈
2AP). LTLf [32] differs from LTL only in that the traces that formulae are interpreted
over are finite, of length λ ; therefore, we can define the last state of a trace last := ¬◦⊤.
We say σ |= φ when σ satisfies φ .

Deterministic Finite Automata (DFAs) are tuples A = ⟨Σ,Q,δ ,q0,F⟩ consisting of
a finite set of states Q, a finite input alphabet Σ, a transition function δ : Q × Σ →
Q, an initial state q0 ∈ Q, and a set of final states F ⊆ Q. LTLf formulas over AP
can be transformed into corresponding DFAs [33,34] such that σ |= φ (where Aφ =
⟨2AP,Q,δ ,q0,F⟩ is the DFA associated with φ ) if and only if it is the case that for the
run q0, ...,qn (where each qi ∈Q) induced by the input σ , qn ∈ F (that is, Aφ accepts σ ).
We will leverage these DFAs in order to integrate LTLf formulas into our framework.

Reinforcement Learning (RL). The underlying environment of a reinforcement learn-
ing problem is formalized as a Markov decision process (MDP):

Definition 1 (MDP). An MDP is a tuple ⟨S,A,Pr,R⟩ where S is a set of states, A is a
function A : S → 2Act from states to sets of possible actions (where Act is the set of all
actions available to the agent), Pr : S×Act × S → [0,1] is a probability function that
gives the probability Pr(s,a,s′) of transitioning from state s to state s′ after performing
action a, and R : S×Act → R is a scalar reward function over states and actions.

We can furthermore define a labelled MDP by adding to the above tuple a function
L : S → 2AP from states to subsets of a set of atomic propositions AP.

The goal of RL is to find a policy π : S → Act which designates optimal behaviour;
this optimality is determined with respect to a value function defined as:

V π(s) = E

[
∞

∑
t=0

γ
tR(st+i,π(st+i))

∣∣∣si = s

]
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which represents the expected accumulated value onward from state s if policy π is
followed (i.e., each si+1 is a state transitioned into after performing π(si) in si). In the
above function, γ ∈ [0,1] is a discount factor (so that rewards in the future do not have as
much weight as the current reward). We can similarly define a Q-function Qπ(s,a) which
predicts the same expected cumulative reward from R given that the agent is in state s
and is performing action a. The goal of RL is to find an optimal policy π∗ such that:

∀s ∈ S : V π∗
(s) = max

π∈Π
V π(s)

where Π is the set of all policies over the MDP. This is accomplished by learning a Q-
function Qπ∗

such that π∗(s) ∈ argmaxa∈A(s)Q
π∗
(s,a). Throughout this paper we will be

using the predominant model-free RL technique, Q-learning, to learn Qπ∗
.

NMRDPs. Non-Markovian reward decision processes (NMRDPs) differ from regular
(labelled) MDPs in that instead of attaching single state-action pairs to a specific re-
ward, rewards are attributed to partial traces. A convenient way to represent the re-
ward function of an NMRDP is with LTLf formulas ϕi and associated rewards ri, given
as a set of pairs: {(ϕi,ri)}n

i=1. The NMRDP M = ⟨S,A,Pr,L,{(ϕi,ri)}n
i=1⟩ has a re-

ward function that associates a trajectory ⟨s0,a0, ...,sm,am⟩ with corresponding trace
σ = ⟨L(s0)∪{a0}, ...,L(sm)∪{am}⟩ with a reward:

RΦ(⟨s0,a0, ...,sm,am⟩) = ∑
i: σ |=ϕi

ri (1)

Brafman et al. [35] proposes a reformulation of NMRDPs as regular MDPs in such a
way that the MDP is equivalent to the NMRDP, where equivalence is defined in Bacchus
et al. [36] with the existence of a map to and from the states of the NMRDP and the states
of the equivalent MDP. This map facilitates a direct correspondence from the probability
function and reward function of the NMRDP to those of the MDP. Bacchus et al. [36]
proves the following:

Theorem 1. Given an NMRDP M and an equivalent MDP M ′, if π ′ is the optimal
policy for M ′, the equivalent policy π is optimal for M .

Regulative Norms. In this paper we consider regulative norms [37]; these include
obligations Oα (where α is an arbitrary formula in propositional logic), prohibitions
Fα :=O¬α (we will sometimes refer to obligations and prohibitions collectively as obli-
gations), and permissions Pα which for us act solely as exceptions3 to obligations or
prohibitions. Norms are often conditional; e.g., O(α|β ) stands for “α is obligatory when
β”. We refer to a set of regulative norms as a normative system.

LTL formulae (and by extension LTL(f) formulae) cannot be used to represent norms
explicitly (see, e.g., the discussion in Governatori [3] or Neufeld et al. [4]); that is, there
is no LTL(f) formula ϕ that faithfully expresses the notion of obligation. LTL(f) formulas
can instead be used to implicitly represent norms as compliance specifications4. This lat-
ter approach also permits us to express temporal obligations (see problem 4 in Broersen

3This is the only form of permission in the Sanskrit philosophical school of Mimamsa [38], as it is for us.
4Formulas that are true if and only if the corresponding obligation is complied with.
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Figure 1. The yellow (blue) square is home (market), pink squares are dangerous, green squares have trees,
and grey squares rocks. Squares are labelled E (extract), F (fight), and U (unload) based on the agent’s action.

and van der Torre [7]). Following Governatori et al. [8], we address three types of tempo-
ral obligations. Punctual obligations O(α|β ) are standard, atemporal obligations which
can be implicitly modelled with the LTLf formula □(β → α). Maintenance obligations
OM

δ
(α|β ) are triggered when β is true, and must be fulfilled by maintaining α until the

deadline δ occurs. These can be implicitly represented as □(β → δRα). Achievement
obligations OA

δ
(α|β ) are also triggered when β occurs, but in order for them to be ful-

filled, α must become true at least once before the deadline δ arrives. These can be
modelled similarly with the compliance specification □(β → αR¬δ ).

3. Case Study Environment

We showcase our normative restraining bolts within an environment that highlights how
the agent can prioritize adherence to a normative system, even when doing so conflicts
with its primary objective. Despite these constraints, the agent should maintain optimal
behavior within the prescribed limits. We utilize as a case study the ‘Travelling Mer-
chant’ environment, first introduced in Neufeld et al. [4]. This environment is an elabo-
rate adaptation of the resource-gathering game from [39] (seen again in, e.g. [40]), which
is in turn inspired by various strategy games. It entails an RL agent, a merchant, travers-
ing a map and collecting resources to sell at a market on the other side of the map. The
available resources are wood (extracted from trees) and ore (extracted from rocks); to
collect a resource, the agent must perform the action extract in a cell where a resource
is situated. “Dangerous” areas on the map exist where the agent will be attacked by ban-
dits, at which point the agent has three choices: it can f ight and end the attack, nego-
tiate (giving up its inventory by using unload, also ending the attack), or try to escape
(which fails with a certain probability; for the sake of simplicity we have set this to 1).
The agent is rewarded based on how many resources it gathers, and how many items it
unloads at the market; it is punished when it unloads its resources elsewhere. The agent
cannot backtrack, and states are labelled with the cell type (e.g., at danger), whether or
not the agent is being attacked (attack), whether or not the sun is down (sundown), and
what it has in its inventory (e.g., has ore). The optimal behaviour in this environment
(after 3000 episodes of training, by which point the learning curve had been flat for some
time, and we were sure the algorithm had converged) is depicted in Fig. 1; note that this
involves taking the route with the most resources and fighting in the dangerous areas.

4. Restraining Bolts

De Giacomo et al. [2] introduces the restraining bolt, a mechanism that enables the
modification of an RL agent’s behavior — originally driven solely by its own objective,
formalized in a regular MDP — to further conform with a set of LTLf specifications, ϕi,
each associated with a reward, ri. We define a slightly modified restraining bolt below.
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Definition 2 (Restraining Bolt). A restraining bolt is a tuple Φ = ⟨L,{(ϕi,ri)}n
i=1⟩,

where L : S → 2AP is a labelling function from states to sets of atomic propositions and
{(ϕi,ri)}n

i=1 is a set of ordered pairs in which each ϕi ∈ LLT L f is a restraining specifi-
cation, and ri is the associated reward signal.

A restraining bolt, combined with a regular MDP M = ⟨S,A,Pr,R⟩, can be used to
curb the behavior of the agent learning in M in order to satisfy restraining specifications.
This combination can be modeled as an NMRDP with LTLf objectives {(ϕi,ri)}n

i=1 and
{(ϕs,a,R(s,a))}(s,a)∈S×A(s), where ϕs,a = ♢(s∧a∧ last) (i.e., (s,a) is true at the end of
the partial trace). This NMRDP can then be converted into an extended MDP (which
we will use Q-learning to learn over), as initially introduced in Brafman et al. [35] and
further developed in De Giacomo et al. [2]. Below, we present a somewhat modified
version tailored to our specific needs.

Definition 3 (Extended MDP). Let Φ = ⟨L,{(ϕi,ri)}n
i=1⟩ be a restraining bolt and M =

⟨S,A,Pr,R⟩ an MDP. Then MΦ = ⟨S,A,Pr,L,{(ϕi,ri)}n
i=1 ∪{(ϕs,a,R(s,a))}(s,a)∈S×A(s)⟩

is the NMRDP associated with this MDP and restraining bolt. Furthermore, let Aϕi =
⟨2AP∪Act ,Qi,qi,0,δi,Fi⟩ be the DFA corresponding to each ϕi in Φ. Then the extended
MDP of MΦ is M ′

Φ
= ⟨S′,A′,Pr′,L′,R′⟩, where:

• S′ = Q1 × ...×Qn ×S
• A′(q1, ...,qn,s) = A(s)

• Pr′(q1, ...,qn,s,a,q′1, ...,q
′
n,s

′) =

{
Pr(s,a,s′) if ∀i ∈ [1,n] : δi(qi,L(s)∪{a}) = q′i
0 otherwise

• L′(q1, ...,qn,s) = L(s)
• R′(q1, ...,qn,s,a) = R(s,a)+∑i: δi(qi,L(s)∪{a})∈Fi ri

This definition of an extended MDP differs from the one by De Giacomo et al. [2]
in that the automaton transitions (impacting the reward function and transition function)
consider the action taken by the agent. This modification reflects the fact that norms
often require or forbid specific actions, regardless of the resulting state (as mentioned
in problem 5 of Broersen and van der Torre [7]). Brafman et al. [35] shows that the
original extended MDP is equivalent to the associated NMRDP with LTLf rewards; it is
not difficult to attain an analogous result for our formulation and its direct consequence:

Theorem 2. The NMRDP MΦ = ⟨S,A,Pr,L, {(ϕi,ri)}n
i=1 ∪{(ϕs,a,R(s,a))}(s,a)∈S×A(s)⟩

is equivalent to the extended MDP M ′
Φ
= ⟨S′,A′,Pr′,L′,R′⟩.

Corollary 1. If π ′ is the optimal policy of the extended MDP M ′
Φ

, the equivalent policy
π is optimal for the NMRDP MΦ.

4.1. Limitations in addressing conditional norms

Recall that our compliance specifications are conditional, being formalized as □(β → φ),
where φ is either just the obligatory propositional formula α or a temporal formula such
as δRα . For any trace σ , a compliance specification will of course be satisfied if the
obligation is fulfilled, but it will also be satisfied as long as the trigger β is not true (i.e.,
the norm is not in force). Thus the following holds for the corresponding DFA:
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Figure 2. A small environment with one dangerous area (pink), a tree (green), and a rock (grey).

Proposition 1. Let σ |=□¬β (σ is of length λ ), then for the run q0, ...,qλ−1 generated
by inputting σ into the DFA A□(β→φ) = ⟨2AP,Q,q0,δ ,F⟩, qi ∈ F for i ∈ {0, ...,λ −1}.

This means that as long as β remains false, the corresponding automaton will always
be in a final state. Thus, when we use the restraining bolt for implicitly represented
norms, the agent is rewarded both when fulfilling the norm, and when the norm is not in
force; the agent is rewarded in every step, provided it is not explicitly violating the norm.
In our experiments, we observed that this dynamic led the agent to extend its runtime in
order to increase its accumulated rewards, causing it to get stuck in cycles.

Let us walk through a small example demonstrating how using a restraining bolt with
a simple conditional punctual obligation can backfire. Suppose we have the environment
in Figure 2. The agent receives 50 points for extracting a resource, and 100 points for
each resource it unloads at the market. For simplicity, we assume that the agent can
fight and move or extract and move in the same step. Suppose we have the compliance
specification: ϕ := □(at tree → ¬extract), forbidding extracting wood from trees. We
want now to find an optimal policy within the bounds of the restraining bolt with the
specification (ϕ,r). Several potential policies could emerge in this environment, such as:

• π1: the policy where the merchant obeys the compliance specification and other-
wise exhibits optimal behaviour by extracting ore from the rock and bringing it to
the market. Starting from s3 (the dangerous area, which it fights to get out of), this
policy has the following value: V π1(s3) = 50γ2 +100γ10 + r ∑

9
i=0 γ i

• π2: the policy where the agent ignores the compliance specification and displays
optimal behaviour by extracting both ore and wood and bringing them to the mar-
ket. This policy, assuming we fight to get out of the dangerous area, has the value:
V π2(s3) = 50γ2 +50γ4 +200γ10 + r ∑

9
i=0 γ i − rγ4

• π3: the policy where the agent gives up on its main objective and decides instead
to to remain in the dangerous area and keep trying to fruitlessly escape until its
damage points max out (after 15 attempts, at which point it is punished -50 points).
This policy has the value: V π3(s3) = r ∑

14
i=0 γ i −50γ15

Now, in order for the agent to follow the policy π1 over the policy π2 at s3, it must be
the case that V π1(s3)−V π2(s3) > 0, which in turn implies that r > 50+ 100γ6. And in
order for the agent to complete its task instead of stay in the dangerous area, it must be
the case that V π1(s3)−V π3(s3)> 0, which means that (50+50γ13+100γ8)

γ8 ∑
4
i=0 γ i > r.

Now, suppose γ takes a typical value, 0.9. Then it must be the case that r > 103.1441
and r < 59.9930, which is of course impossible. One might argue that the answer, then,
is to select a different γ; however, if we were in an environment where this parameter has
already been fine-tuned to accommodate the agent’s learning of its main objective, this
might not be possible. This tendency to get stuck or procrastinate can be very problematic
if we are trying to both adhere to a set of conditional norms and accomplish a pre-defined
objective efficiently. This issue prompted us to explore the alternative approach below.
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5. Normative Restraining Bolts

Our alternative strategy is founded on historical approaches to normative reasoning.
Namely, instead of maximizing the (positive) rewards attributable to a compliance spec-
ification ϕ , we minimize the magnitude of the (negative) rewards associated with a vi-
olation specification ψ; this aligns with the well-known Andersonian approach to rep-
resenting norms, which reduces deontic operators to alethic modalities [6], positing that
the failure to fulfill an obligation necessarily results in a sanction; similarly, we represent
norms through their violation conditions, along the lines of, e.g., Ciabattoni et al. [41].

The first step is to define the violation specification; assuming a compliance spec-
ification exists, we can simply negate it. As an example, take the punctual obligation
O(α|β ), whose compliance specification is □(β → α). Then we can derive the violation
specification by taking ¬□(β → α) ≡ ♢(¬(β → α)) ≡ ♢(β ∧¬α); that is, the viola-
tion condition of O(α|β ) is that eventually, β and ¬α occur simultaneously. Meanwhile,
maintenance obligations OM

δ
(α|β ) have the violation specification: ¬□(β → δRα) ≡

♢(β ∧¬δU¬α). Achievement obligations such as OA
δ
(α|β ) can be modelled with the

violation specification: ¬□(β → αR¬δ )≡♢(β ∧¬αUδ ). Next, utilizing such violation
specifications we can define normative restraining bolts:

Definition 4 (Normative Restraining Bolt). A normative restraining bolt Ψ = ⟨L,{(ψi,
−ri)}n

i=0⟩ (where ri ∈R+) is a restraining bolt for which each ψi has a negative reward.

With these negative rewards, the agent learning in the extended MDP M ′
Ψ

is
no longer aiming to maximize R(s,a) + ∑i: δi(qi,L(s)∪{a})∈Fi ri (i.e., both R(s,a) and
∑i: δi(qi,L(s)∪{a})∈Fi ri) for each step. Rather, it attempts to maximize

R(s,a)+ ∑
i: δi(qi,L(s)∪{a})∈Fi

(−ri) = R(s,a)− ∑
i: δi(qi,L(s)∪{a})∈Fi

ri

that is, maximize R while minimizing ∑i: δi(qi,L(s)∪{a})∈Fi ri, which increases each time a
final state of the automaton corresponding to some ψi is reached (i.e., when ψi is satis-
fied). Normative restraining bolts can be seen as an inversion of the restraining bolt tech-
nique, as they are used to disincentivize behaviours defined by violation specifications.
To further expand the reach of our technique (accommodating exceptions and environ-
ments in which more than one violation is possible), we make two more amendments.

Exceptions. We show how to simulate permissions as exceptions to more general obli-
gations. For the permission P(α|β1 ∧β2), an exception to the obligation O(¬α|β1) (for
which we have added to the normative restraining bolt the pair (♢(α ∧ β1),−r)), we
would append to the normative restraining bolt (♢(α ∧β1 ∧β2),r). This allows the ex-
ception specification ♢(α ∧β1 ∧β2) to counteract the violation specification, effectively
nullifying the corresponding punishment when the condition β2 is met in addition to β1.

Sequential Violations. Once met, violation specifications, as they occur in the scope
of the eventually operator ♢, remain satisfied indefinitely, as the automaton transitions
into a sink state (a state out of which, regardless of input, it is impossible to transition).
Moreover, it would be undesirable to keep on punishing the agent once it has ceased
its violation. For achievement and punctual obligations (or permissions), if the violation
(or permission) specification is satisfied we “reset” the automaton; thus, anytime we
transition into a final state, we immediately return to the initial state without requiring any
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input. For maintenance obligations we adopt a strategy similar to the norm “suspension”
in [17], and anytime we transition into a final state (from state q with input l we witness
the transition δi(q, l) = q′ for some q′ ∈ Fi), we go immediately to the previous state q.

5.1. Case Studies: Selected Challenges

We show how our approach effectively handles learning different normative dynamics,
with examples illustrating contrary-to-duty obligations (CTDs), permissions acting as
exceptions, and temporal obligations. The agent is trained by exploring the environment
under a given set of norms for some number of episodes (5000 for each of our cases).5

Contrary-to-Duties (CTD). CTD obligations (problem 2 of Broersen and van der
Torre [7]) are obligations that are triggered when a primary obligation is violated. The
foremost aim is to fulfill the primary obligation; however, when this is impossible, we at
least comply with the CTD. CTD obligations were one of the main challenges discussed
in [4]; they show that if the compliance specifications of a primary and CTD obligations
are taken as conjuncts in an LTL specification, the primary obligation subsumes the CTD
obligation. The (normative) restraining bolt instead separates the violation specifications
of each norm into individual incentives with unique rewards. So, while a single specifica-
tion including a primary obligation and its CTD will only guide the agent to comply with
the primary obligation, splitting the norms up allows us to invoke a punishment when the
agent disobeys the primary obligation, and an additional one when it violates the CTD.

We will now demonstrate this dynamic by enriching the Merchant environment from
Section 3 with a normative system we call “pacifist”. It should guide the agent to avoid
dangerous areas, when possible, and to negotiate by unloading its inventory during at-
tacks. We therefore have the norms: F(at danger) and O(unload|at danger ∧ attack).
The violation specification for the first norm is ψ1 := ♢at danger, while for the sec-
ond norm it is ψ2 :=♢(at danger∧attack∧¬unload). Note that this specification refer-
ences the action unload, and it would not have been possible to express this specification
precisely without incorporating actions into our framework.

The corresponding normative restraining bolt will then be: Ψpaci f ist = ⟨L,{(ψ1,−5),
(ψ2,−120)}⟩, where L is the labelling function for the merchant environment. We can
see in Figure 3(a) how the agent, when forced to travel through a dangerous area6, un-
loads according to the CTD obligation, but when it is given a choice between entering
and avoiding the second dangerous area (and thus retrieving more resources), it obeys
the primary obligation and chooses not to pass through this second dangerous area; it
is worth noting that without accommodations for sequential violations, the agent would
not have obeyed the primary obligation when faced with the second dangerous area, as
it would be punished either way after the first violation.

Permissions-as-exceptions. Suppose extraction of wood is banned (yet another specifica-
tion that references an action), F(extract|at tree), which has the violation specification
ψ3 := ♢(at tree∧extract). We can define a permission P(extract|at tree∧¬has wood),
having the exception specification: ψ4 := ♢(extract ∧at tree∧¬has wood).

5The code can be found at https://github.com/lexeree/normative-restraining-bolt.
6For this case we configured the environment to compel the agent to continually move toward the market,

forcing it to go through the first dangerous area.

https://github.com/lexeree/normative-restraining-bolt
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Figure 3: Trajectories for: (a) “pacifist”, (b)
“environmentally friendly”, and (c) “early”.

Now we have an “environmentally friendly” normative system with a restraining
bolt: Ψenv = ⟨L,{(ψ3,−100),(ψ4,100)}⟩ which yields the behaviour in Fig.3(b); note
that the agent only extracts wood once, both obeying the norms and acting optimally.

Temporal Obligations. Let us consider the “early” normative system consisting of the
achievement obligation OA

sundown(at market|at home), stating that starting from when it
is at home, the agent must visit the market before sunset. The violation specification is
ψ5 := ♢(at home∧¬at marketUsundown). This normative system corresponds to the
restraining bolt Ψearly = ⟨L,{(ψ5,−50)}⟩, and yields the behaviour in Fig. 3(c), where
the agent takes a shorter, less profitable route in order to reach the market by sunset.

6. Conclusion and Future Work

We have presented a variant of the restraining bolt technique from De Giacomo et al. [2]
which allows RL agents to learn how to pursue their own goals while conforming to a
normative system. This variant allows us to deal with norms formalized in a logic lan-
guage without requiring complex reasoning in every step (as in [19,18]), as each automa-
ton’s transition function can be stored in tabular form. Instead of maximizing rewards at-
tributed to compliance specifications, we invert the technique to minimize the magnitude
of punishments corresponding to violation specifications. In addition, we allow specifi-
cations to reference actions, introduce exceptions (which can be used to simulate per-
missions), and accommodate sequential violations. These modifications accommodate a
wide variety of norms, as is shown in our game environment.

Further analysis reveals that the restraining bolt technique is amenable to adaptation
as a multi-objective RL (MORL) problem; this would allow us to leverage MORL tech-
niques, such as those described in Rodriguez-Soto et al. [15,16,42], to algorithmically
determine the minimum necessary rewards ri for each ψi to ensure compliant behavior,
as opposed to the trial-and-error method used in this paper and in De Giacomo et al. [2].
The use of MORL also has the potential to better accommodate norm revision (problem
3 of Broersen and van der Torre [7]). We also plan to implement a natural extension
of this work by resolving potential norm conflicts using a lexicographic ordering of the
norms as in Rodriguez-Soto et al. [42], and furthermore adapt this technique to incorpo-
rate function approximation, eventually accommodating a deep RL implementation that
would allow us to explore more complex environments (such as driving simulators).
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