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Abstract. Enhancing cut-free expressiveness through minimal struc-
tural additions to sequent calculus is a natural step. We focus on Åqvist’s
system F with cautious monotonicity (CM), a deontic logic extension of
S5, for which we define a sequent calculus employing (semi) analytic cuts.
The transition to hypersequents is key to develop modular and cut-free
calculi for F + (CM) and G, also supporting countermodel construction.

1 Introduction

Normative reasoning is crucial across various fields, including law and artifi-
cial intelligence. It is effectively formalized by deontic logic, the branch of logic
that deals with obligations and related concepts. Numerous deontic logics have
emerged, and they can be broadly classified into preference-based and norm-
based systems [11]. The latter analyse deontic modalities with reference to a set
of explicit norms, while the former employ possible world semantics. Preference-
based systems are particularly useful to model contrary to duty obligations (i.e.,
obligations that come into force when some other obligation is violated) and de-
feasible deontic conditionals. Åqvist’s landmark systems [1] E, F, and G, fall into
this category. Semantically, they are characterized by preference models using
relations to represent the betterness of states. They extend the modal logic S5
with a dyadic obligation ⃝(B/A) (“B is obligatory, given A”) which is true when
the best A-worlds are all B-worlds. A more recent addition to the family [27]
is F with the addition of cautious monotonicity (CM) from the non-monotonic
literature [12,18]. E, F, F + (CM), and G are modular systems with increasing
deductive strength w.r.t. the sets of theorems they derive. The last two systems
correspond to well-known conditional logics: G is VTA [13], one of Lewis’ logics,
while F + (CM) corresponds to Preferential Conditional Logic PCL [6] supple-
mented with the absoluteness axiom, that reflects the fact that the ranking is not
world-relative. PCL contains as a fragment the KLM preferential logic P [18]
for default reasoning.

Reasoning necessitates (finding) derivations and countermodels. The explo-
ration of the proof theory for these logics has only recently become a focal point.
Prior to that, the only available calculi for them were Hilbert systems, which
are unsuitable for the mentioned tasks. Since Gentzen’s introduction in 1935,
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sequent calculi in which the cut rule is admissible (or eliminable) have been em-
ployed for these purposes. Although crucial to simulate modus ponens, the cut
rule poses a hindrance to proof search. Cut-free sequent systems are not available
for Åqvist’s systems insofar as they contain an S5 modality which impedes their
formulation1. Many sequent calculus generalizations, like hypersequents, nested,
and labelled sequents, have been introduced to capture logics without cut-free
formulations. Notably, hypersequents are characterized by less complex objects
and expressiveness compared to nested sequents, which, in turn, are less com-
plex and expressive than labelled sequents, see e.g. [22]. Using hypersequents,
modular cut-free calculi have been introduced for E and F in [8,9]. The situation
for G and F + (CM) is less clear. Although G semantically arises by imposing
to F + (CM) totality on frames, this is not reflected in their calculi: (forms
of) labelled sequents [24,20] have been employed for PCL, and a hypersequent
calculus with blocks (incorporating a shallow form of nesting) [14] for G.

This leaves open the question whether modular and cut-free calculi, using a
simpler framework, can be defined for F + (CM) and G. Simplicity in the proof
formalism is advantageous for proving meta-logical results and streamlining the
proof search space. Indeed the introduction of additional structure in the basic
objects manipulated by the formalism often poses obstacles in these endeavors.

Our positive answer to the question relies on the use of an alternative seman-
tics (w.r.t. preference models) [28]. We first introduce a sequent calculus SFcm
for F + (CM). Like the calculus in [25] for S5, SFcm lacks completeness without
cuts. Nevertheless, we show that a restricted form of cuts, we call them semi-
analytic, suffices. We present a syntactic procedure, akin to cut-elimination, to
transform SFcm proofs with arbitrary cuts into proofs with semi-analytic cuts,
simplifying the method in [7]. Extending SFcm to encompass G would be hard, if
possible at all. Sequent calculi, are indeed known to be inadequate for capturing
modal logics with linear frames (Ch.9 in [15]). To achieve modular and cut-free
calculi for F + (CM) and G, we shift from the sequent to the hypersequent
framework. The use of hypersequents (which are sequents working in parallel)
enables the definition of structural rules operating across multiple sequents. In
particular, adapting the peculiar hypersequent rule for S5 from [4] simplifies
the rules for SFcm, resulting in a cut-free hypersequent calculus for F + (CM).
A calculus for G is obtained by adding (a version of) the communication rule
from [3], designed to capture Gödel logic [10]. We prove cut-elimination for both
calculi and modify them into proof-search oriented calculi, providing proofs of
decidability and countermodel construction from failed derivations.

Similarly to the calculi for E and F in [8,9] we encode maximality by a (S4-
type) modal operator. ⃝(B/A) can be indirectly defined as 2(A → ¬Bet¬(A ∧
Bet(A → B))). Bet is not part of the language of F + (CM) and G, but is used
at the meta-level in the calculi to define rules for the dyadic obligation.

1 The standard sequent calculus [25] for S5 is not cut-free but it is complete with
analytic cuts [30] (i.e. cuts whose cut-formula is a subformula of the conclusion [29]).
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2 F + (CM) and G in a nutshell

We present the logics F + (CM) and G both syntactically and semantically. Let
PropVar be a countable set of atomic formulas. Their language is defined by the
following BNF:

A ::= p ∈ PropVar | ¬A | A → A | 2A | ⃝(A/A)

2A is read as “A is settled as true”, and ⃝(B/A) as “B is obligatory, given A”.
The Boolean connectives other than ¬ and → are defined as usual.

Definition 1. F consists of any Hilbert system for S5 augmented with:
⃝(B → C/A) → (⃝(B/A) → ⃝(C/A)) (COK) ⃝(A/A) (Id)
⃝(C/A ∧ B) → ⃝(B → C/A) (Sh) 2A → ⃝(A/B) (O-Nec)
⃝(B/A) → 2 ⃝ (B/A) (Abs) 3A → ¬ ⃝ (⊥/A) (D⋆)
2(A ↔ B) → (⃝(C/A) ↔ ⃝(C/B)) (Ext)

F + (CM) and G extend F with axioms (CM) and (RM) respectively:
⃝ (B/A) ∧ ⃝(C/A) → ⃝(C/A ∧ B) (CM)
¬ ⃝ (¬B/A) ∧ ⃝(C/A) → ⃝(C/A ∧ B) (RM)

(COK) is the analogue of axiom K, (Sh) expresses a “half” of deduction theorem
(or residuation property). The absoluteness axiom (Abs) of [21] corresponds
to the removal of world-relative accessibility relations. (O-Nec) is the deontic
counterpart of the necessitation rule. (Ext) enables the substitution of necessarily
equivalent sentences in the antecedent of deontic conditionals. (Id) is the deontic
analogue of the identity principle. These axioms define the logic E.

F extends E with (D⋆) that rules out conflicts between obligations for possible
antecedents. (CM) and (RM) are cautious and rational monotony from the non-
monotonic literature [18]. Introduced in [12](CM) expresses a weakened form of
strengthening of the antecedent, while (RM) a stronger form: if B is permitted
given A, and C is obligatory given A, then C is obligatory given A ∧ B.

Semantics for the logics E, F, F + (CM) and G can be given in terms of
preference models, see [28]. This semantics was used in [8,9] to define cut-free
hypersequent calculi for E and F. With preference models, structures are easily
described, but they come with complex model theoretic conditions on the valua-
tion function. In this paper we adopt a different semantics. This semantics has a
more complex truth condition for the deontic operator, involving a ∀∃∀ nesting
of quantifiers [28], but simpler frame and valuation conditions.

The original language does not include the modality Bet, but we add it to
the semantic explanation of connectives for clarity.

Definition 2. A preference model for F + (CM) is a triple ⟨W, ≤, v⟩, where ≤
is a reflexive and transitive order on W and v : PropVar → P(W ) a valuation
function. The truth conditions for a formula in a world are defined as:

– x ⊩ P if and only if x ∈ v(P ).
– x ⊩ ¬A if and only if x ⊮ A.
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– x ⊩ A → B if and only if x ⊮ A or x ⊩ B.
– x ⊩ BetA if and only if ∀y(x ≤ y ⇒ y ⊩ A).
– x ⊩ □A if and only if ∀y(y ⊩ A).
– x ⊩ ⃝(B/A) if and only if ∀y(y ⊩ A ⇒ ∃z(y ≤ z & z ⊩ A & ∀u(z ≤ u ⇒

u ⊩ A → B))).

Models for G are obtained by imposing totality, i.e., ∀x∀y(x ≤ y ∨ y ≤ x).

Theorem 1 ([28]). F + (CM) (resp. G) is sound and complete with respect to
the semantics of (resp. total) preference models.

Note that the truth condition for the operator ⃝(B/A) can be rewritten, using
the conditions for □, →, ¬ and Bet, as:

x ⊩ ⃝(B/A) iff x ⊩ □(A → ¬Bet¬(A ∧ Bet(A → B)))

3 A sequent calculus for F + (CM)

We introduce a sequent calculus SFcm for F + (CM), whose completeness relies
on the use of cuts of a restricted form.

SFcm is obtained by adding the rules for the deontic modality and for the
betterness operator to a (slightly modified2 version of) the sequent calculus
in [25] for S5. The cuts required in SFcm are a generalization of analytic cuts
(arising from the calculus for S5 [30]), due to the shape of the rules for the
deontic modality3. We use Γ, ∆, Π, ... as metavariables for multisets of formulas.

Definition 3. The sequent calculus SFcm consists of a variant of Gentzen’s
calculus LK for classical logic, with axioms Γ, p ⇒ p, ∆, extended with the rules
below

Γ□⃝ ⇒ A, ∆□⃝

R□
Γ ⇒ □A, ∆

A, Γ ⇒ ∆
L□

□A, Γ ⇒ ∆

Γ□⃝, Γ b ⇒ A, ∆□⃝

RBet
Γ ⇒ ∆,BetA

A, Γ ⇒ ∆
LBet

BetA, Γ ⇒ ∆

Γ□⃝, A,Bet¬(A ∧ Bet(A → B)) ⇒ ∆□⃝

R⃝
Γ ⇒ ⃝(B/A), ∆

Γ ⇒ ∆, A Γ ⇒ ∆,Bet¬(A ∧ Bet(A → B))
L⃝

⃝(B/A), Γ ⇒ ∆

where Γ b = {BetA |BetA ∈ Γ} and Γ□⃝ = {□A |□A ∈ Γ} ∪ {⃝(B/A) | ⃝
(B/A) ∈ Γ}.

The notion of derivation, principal formulas and height of a derivation are as
usual. The derived rules for conjunction and disjunction are as in Genten’s LK
and the generalization of initial sequents to arbitrary formulas is provable. A
rule is (height-preserving) admissible if, whenever the premises are derivable, so
2 Our R□ rule derives the absoluteness axiom.
3 ⃝(B/A) could have been introduced as a defined operator. However, since our main

concern is the investigation of dyadic deontic logics we preferred to retain the obli-
gation connective as a primitive element, and generalize the notion of analytic cut.
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is the conclusion (with at most the same height). In SFcm the weakening rules
( Γ ⇒ ∆ LW

A, Γ ⇒ ∆
and Γ ⇒ ∆ RW

Γ ⇒ ∆, A
) are height-preserving admissible. The rules of

contraction ( A, A, Γ ⇒ ∆
LC

A, Γ ⇒ ∆
and Γ ⇒ ∆, A, A

RC
Γ ⇒ ∆, A

) are explicitly present.

Theorem 2 (Soundness). SFcm is sound for F + (CM).

Proof. By induction on the height of the SFcm derivation distinguishing cases
according to the last rule applied. Initial sequents are clearly sound. We discuss
only the cases of the right rules for the modal operator Bet and ⃝(A/B).

RBet: Let us assume that the sequent Γ□⃝, Γ b ⇒ ∆□⃝, A is valid. Let
x, y be worlds such that x ≤ y and we assume that x ⊩

∧
Γ . Hence we get

y ⊩
∧

Γ□⃝ ∧
∧

Γ b (by transitivity of ≤) which yields (i) y ⊩
∨

∆□⃝ or (ii)
y ⊩ A. In (i), we get x ⊩

∨
∆, in (ii) x ⊩ BetA, giving the desired conclusion.

R⃝: Assume that Γ□⃝, A,Bet¬(A ∧ Bet(A → B)) ⇒ ∆□⃝ is valid. We
argue by contradiction assuming that the conclusion Γ ⇒ ∆, ⃝(B/A) is not
valid. Hence there is a world x which satisfies every formula in Γ and falsifies
every formula in ∆ and ⃝(B/A). By definition there is y s.t.: y ⊩ A and there is
not a world z such that y ≤ z and z ⊩ A and z ⊩ Bet(A → B). Since x ⊩

∧
Γ□⃝,

we get that y ⊩
∧

Γ□⃝. We also have y ⊩ A and y ⊩ Bet¬(A ∧ Bet(A → B)).
As a consequence of the validity of Γ□⃝, A,Bet¬(A ∧ Bet(A → B)) ⇒ ∆□⃝,
we get that y ⊩

∨
∆□⃝, which entails x ⊩

∨
∆□⃝, a contradiction.

Theorem 3 (Completeness with cut). Each theorem of F + (CM) has a
proof in SFcm with the addition of the cut rule.

Proof. It suffices to show that all the axioms of F + (CM) are provable in SFcm.
Modus Ponens corresponds to the provability of A, A → B ⇒ B and two ap-
plications of cut. The necessity rule is a particular case of R□. The axioms of
classical logic are clearly derivable. In what follows, we omit to write trivially
derivable premises to increase the readability of the derivations.

– A derivation of (CM) is as follow (omitting trivially derivable premises)
A,Bet(A → C), A → B ⇒ A ∧ B ∧ Bet(A → C)

LBet, L¬
A,Bet(A → C), A → B,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒

LBet
A,Bet(A → C),Bet(A → B),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒

L∧
A ∧ Bet(A → C),Bet(A → B),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒

RBet, L¬
A,Bet(A → B),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒ Bet¬(A ∧ Bet(A → C))

L⃝
⃝(C/A), A,Bet(A → B),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒

L∧
⃝(C/A), A ∧ Bet(A → B),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒

RBet, L¬
⃝(C/A), A, B,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒ Bet¬(A ∧ Bet(A → B))

L⃝
⃝(C/A), ⃝(B/A), A, B,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒

L∧
⃝(C/A), ⃝(B/A), A ∧ B,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒

R⃝
⃝(C/A), ⃝(B/A) ⇒ ⃝(C/A ∧ B)

– The S4 axioms are trivially derivable. The characteristic axiom of S5 is
derivable using analytic cuts, as follows

A ⇒ A L¬
A, ¬A ⇒

L□
A,□¬A ⇒

R¬
A ⇒ ¬□¬A

□¬A ⇒ □¬A R¬⇒ ¬□¬A,□¬A
R□⇒ □¬□¬A,□¬A
L¬¬□¬A ⇒ □¬□¬A Cut

A ⇒ □¬□¬A
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The cut on ¬□¬A is analytic because it is a subformula of □¬□¬A.
– The axiom (D∗) ⃝(⊥/A) → □¬A is derivable in SFcm as follow

A ⇒ A

⃝(⊥/A), A, A → ⊥,Bet(A → ⊥) ⇒
LBet

⃝(⊥/A), A,Bet(A → ⊥) ⇒
L∧

⃝(⊥/A), A ∧ Bet(A → ⊥) ⇒
RBet, R¬

⃝(⊥/A),A ⇒ Bet¬(A ∧ Bet(A → ⊥))
L⃝

⃝(⊥/A), A ⇒
R¬

⃝(⊥/A) ⇒ ¬A
R□

⃝(⊥/A) ⇒ □¬A

– The axiom (Sh) ⃝(C/A ∧ B) ⇒ ⃝(B → C/A) is derivable in SFcm. We
construct the following derivation (the topmost sequent is clearly derivable).

A ∧ B ∧ Bet(A ∧ B → C),Bet¬(A ∧ Bet(A → (B → C))) ⇒
RBet,R¬

A, B,Bet¬(A ∧ Bet(A → (B → C))) ⇒ C,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)))
L⃝

⃝(C/A ∧ B), A, B,Bet¬(A ∧ Bet(A → (B → C))) ⇒ C
RBet, R→ (twice)

⃝(C/A ∧ B), A,Bet¬(A ∧ Bet(A → (B → C))) ⇒ Bet(A → (B → C))
R∧

⃝(C/A ∧ B), A,Bet¬(A ∧ Bet(A → (B → C)) ⇒ A ∧ Bet(A → (B → C))
LBet,L¬

⃝(C/A ∧ B), A,Bet¬(A ∧ Bet(A → (B → C))),Bet¬(A ∧ Bet(A → (B → C))) ⇒
LC

⃝(C/A ∧ B), A,Bet¬(A ∧ Bet(A → (B → C))) ⇒
R⃝

⃝(C/A ∧ B) ⇒ ⃝(B → C/A)

– The axiom (COK) ⃝(B → C/A), ⃝(B/A) ⇒ ⃝(C/A) is derivable in
SFcm. We construct the following derivation.

A,Bet(A → (B → C)),Bet(A → B),Bet¬(A ∧ Bet(A → C)) ⇒
RBet, R¬, L∧

A,Bet(A → B),Bet¬(A ∧ Bet(A → C)) ⇒ Bet¬(A ∧ Bet(A → (B → C)))
L⃝

⃝(B → C/A), A,Bet(A → B),Bet¬(A ∧ Bet(A → C)) ⇒
RBet, R¬, L∧

⃝(B → C/A), A,Bet¬(A ∧ Bet(A → C)) ⇒ Bet¬(A ∧ Bet(A → B))
L⃝

⃝(B → C/A), ⃝(B/A), A,Bet¬(A ∧ Bet(A → C)) ⇒
R⃝, L∧

⃝(B → C/A), ⃝(B/A) ⇒ ⃝(C/A)

The topmost sequent is clearly derivable.

The derivations in SFcm of axioms (Id) ⃝(A/A) and (Abs) ⃝(B/A) → □ ⃝
(B/A) are evident. Also the extensionality axiom □(A ↔ B) → (⃝(C/A) ↔
⃝(C/B)) is easy to derive.

3.1 From cuts to semi-analytic cuts

We provide a syntactic procedure to restrict cuts in SFcm to semi-analytic cuts,
where an instance of the cut rule

Γ ⇒ C, ∆ Σ, C ⇒ Π

Γ, Σ ⇒ ∆, Π
cut

is semi-analytic if C is a generalized subformula of the conclusion, i.e. C ∈
SUB(Γ ∪ Σ ∪ ∆ ∪ Π), where for any formula A, SUB(A) is inductively defined as

– A ∈ SUB(A); If B → C ∈ SUB(A), then B, C ∈ SUB(A)
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– If □B, ¬B,BetB ∈ SUB(A), then B ∈ SUB(A)
– ⃝(C/B) ∈ SUB(A), then Bet¬(B ∧ Bet(B → C)) ∈ SUB(A)

The notion of generalized subformula naturally extends to multisets of formulas.
To restrict the use of cuts to semi-analytic cuts we reformulate, simplify and

also broaden the applicability of the method in [7] to apply to rules more general
than so-called simple rules. Specifically, the inherent (almost) local structure
of the proof below could seamlessly accommodate rules having more than one
principal formula, as well as rules that do not obey the subformula property.
Prior to [7], proofs of restriction of cuts to analytic cuts, e.g., [30,26,17,31] were
all logic-tailored and, with the exception of [30], relied on semantic arguments.

Proof idea: We start considering an uppermost non semi-analytic cut (semi-
analytic cuts are left in the derivation). Cuts on boolean connectives are handled
using rule invertibilities (and reduced in the usual way). Non semi-analytic cuts
with cut-formulas 2A, Bet A and ⃝(B/A) need a different approach as their
rules are not invertible; we shift them upwards until their cut formulas are prin-
cipal (and then reduced). Notice that the rules RBet, R□ and R⃝ do not allow
to shift any cut upwards; however they permit to permute upward any cut in
which (∗) the other premise is a right rule introducing the cut formula BetA, □A
or ⃝(B/A) (because of the “good” contexts of these rules). To reach the scenario
(∗) we need to bring the considered cut beyond the rules that do not allow the
permutation, jumping directly to the point where the cut-formula is introduced.
We do that by tracing (bottom up) all the ancestors4 of the cut formulas on the
right hand side (RHS), and replacing the cut (actually we consider mix) by new
semi-analytic cuts. Following [7], the premises of these new semi-analytic cuts
are obtained by replacing the cut-formulas in the original derivation with the
contexts of the right rules introducing the cut-formulas (switching their side of
the sequent), taking care that the resulting proof is still a correct derivation.

Smaller cuts are cuts of lesser degrees, according to the following definition.

Definition 4. The degree of a formula A, dg(A) is inductively defined:

– dg(p) = 0 if A = p atomic; dg(B → C) = dg(B) + dg(C) + 1
– dg(¬B) = dg(□B) = dg(BetB) = dg(B) + 1
– dg(⃝(C/B)) = 3 · dg(B) + dg(C) + 7

Definition 5. The non-analytic cut rank σ(D) of a proof is the maximal degree
+1 of non-semi analytic cut formulas in D. The cut rank of a proof ρ(D) is the
the maximal degree +1 of cut formulas in D.

By An we denote n-repetitions of the formula A. As here we focus on the elimi-
nation of cuts that are non semi-analytic, we use the non-analytic cut rank.

Lemma 1. The rules for → and ¬ are height and (non-analytic) rank-preserving
invertible.
4 This is the familiar parametric ancestor relation of [5].
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Lemma 2. Given derivations D1 and D2 of Γ ⇒ ∆, X and X, Π ⇒ Σ with
σ(D1), σ(D2) ≤ dg(X) and with X principal in the last rule applied in D1 and
D2, there is a derivation D of Γ, Π ⇒ ∆, Σ with σ(D) ≤ dg(X).

Proof. Easy in case of the propositional connectives, Bet, and □.
If the cut formula is principal in applications of the rule for ⃝, we have:

Γ□⃝, A,Bet¬(A ∧ Bet(A → B)) ⇒ ∆□⃝
R⃝

Γ ⇒ ∆, ⃝(B/A)
Π ⇒ Σ, A Π ⇒ Σ,Bet¬(A ∧ Bet(A → B))

L⃝
⃝(B/A), Π ⇒ Σ

Cut
Γ, Π ⇒ ∆, Σ

We construct the following derivation:

Π ⇒ Σ,Bet¬(A ∧ Bet(A → B))
Π ⇒ Σ, A Γ□⃝, A,Bet¬(A ∧ Bet(A → B)) ⇒ ∆□⃝

Cut
Γ□⃝, Π,Bet¬(A ∧ Bet(A → B)) ⇒ Σ, ∆□⃝

Cut
Γ□⃝, Π2 ⇒ ∆□⃝, Σ2

LC,RC, LW,RW
Γ, Π ⇒ ∆, Σ

The modified version of the rules R□, R⃝ and RBet in the lemma below will be
used to simplify the presentation of case (B) in the proof of Th. 4: when shifting
upward a non semi-analytic cut over the right rules for 2, Bet or ⃝.

Lemma 3. The versions R′□, R′⃝ and R′Bet of the rules R□, R⃝ and RBet
with

∨
Σ□⃝

1 , . . . ,
∨

Σ□⃝
m (resp.

∧
Π□⃝

1 , . . . ,
∧

Π□⃝
n ) in their antecedent (resp.

consequent) are admissible.

Proof. (R′□): Given
∨

Σ□⃝
1 , . . . ,

∨
Σ□⃝

m , Γ□⃝ ⇒ ∆□⃝,
∧

Π□⃝
1 , . . . ,

∧
Π□⃝

n , B, we
first apply the invertibility of the derived rules for

∧
and

∨
(Lemma 1). The

R′□ conclusion
∨

Σ□⃝
1 , . . . ,

∨
Σ□⃝

m , Γ□⃝ ⇒ ∆□⃝,
∧

Π□⃝
1 , . . . ,

∧
Π□⃝

n ,□B is
obtained by multiple applications of R□, and of the logical rules. The proof for
R′⃝ and R′Bet is analogous.

Theorem 4. Given the derivations D1 of Γ ⇒ ∆, Xm and D2 of Xn, Π ⇒ Σ
containing only semi-analytic cuts, there is a derivation D of Γ, Π ⇒ ∆, Σ with
σ(D) ≤ dg(X).

Proof. We first replace all (analytic) cuts on X in D1 and D2, by applications of
contraction. The theorem’s claim is proved by induction on the sum of the height
of the derivations D1 and D2. If the cut-formula is a connective of classical logic
the claim follows by Lemmas 1 and 2. We consider D1 and distinguish two cases:
the cut formula is principal in the last rule applied or it is not.
(A) The cut formula is principal in the last rule applied in D1. We
consider cases according to the last rule (r) applied in D2:

– (r) is an initial sequent, hence the cut is analytic.
– (r) is a rule introducing the cut formula. We use Lemma 2 (with obvious

adjustments given by the use of mix).
– (r) is any rule different from R⃝, R□, and RBet. The cut can be

permuted upwards.
– (r) is RBet, R□ or R⃝. Note that these rules’ contexts permit moving

the cut upward in D2. As an example, consider the case in which the cut
formula is of the shape BetB and the last rule applied in D2 is RBet, as in:
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Γ b, Γ□⃝ ⇒ ∆□⃝, B
RBet

Γ ⇒ ∆,BetBn

BetBm, Πb, Π□⃝ ⇒ Σ□⃝, C
RBet

BetBm, Π ⇒ Σ,BetC
Cut

Γ, Π ⇒ ∆, Σ,BetC

We proceed as follows:

Γ b, Γ□⃝ ⇒ ∆□⃝, B
RBet

Γ b, Γ□⃝ ⇒ ∆□⃝,BetB BetBm, Πb, Π□⃝ ⇒ Σ□⃝, C
Cut

Γ b, Γ□⃝, Πb, Π□⃝ ⇒ ∆□⃝, Σ□⃝, C
RBet

Γ, Π ⇒ ∆, Σ,BetC

(B) The cut formula is not principal in the last rule applied in D1. We
distinguish sub-cases according to the last rule (r) applied in D1.

– (r) is an initial sequent, then the required derivation follows by weakening.
– (r) is any rule different from R⃝, R□, and RBet, then we simply

permute the cut upwards.
– (r) is R⃝, R□, or RBet. This is the key case, which requires peculiar

proof transformations and the introduction of new semi-analytic cuts. We
focus on cases where the cut formula is □A or ⃝(B/A), as other cases are
trivial due to the removal of formulas from the RHS with different shapes
by the application of (r). We detail the case □A (the case with cut formula
⃝(B/A) is analogous), assuming, for illustration purposes, that the last
applied rule is RBet. We trace the cut formula in D1, till it is introduced a
first time (in each branch), as in

Θ□⃝
i ⇒ Λ□⃝

i ,□Al−1, A
. . . R□ . . .

Θi ⇒ Λi,□Ali

...
Γ b, Γ□⃝ ⇒ ∆□⃝,□An, B

RBet
Γ ⇒ ∆,□An,BetB □Am, Π ⇒ Σ

Cut
Γ, Π ⇒ ∆, Σ,BetB

For the sake of simplicity we first consider the case in which the cut formula
is principal only in one branch of D1 (w.l.o.g. the one displayed above); the
general case is handled in the same way with an additional combinatorial
argument. The cut is replaced by (Θ□⃝

i ⇒
∧

Θ□⃝
i and

∨
Λ□⃝

i ⇒ Λ□⃝
i are

clearly derivable):
Θ□⃝

i ⇒
∧

Θ□⃝
i LW,RW

Θi ⇒ Λi,
∧

Θ□⃝
i

...
Γ b, Γ□⃝ ⇒ ∆□⃝, B,

∧
Θ□⃝

i R’Bet

Γ ⇒ ∆,BetB,
∧

Θ□⃝
i

∨
Λ□⃝

i ⇒ Λ□⃝
i LW,RW∨

Λ□⃝
i , Θi ⇒ Λi

...∨
Λ□⃝

i , Γ b, Γ□⃝ ⇒ ∆□⃝, B
R’Bet∨

Λ□⃝
i , Γ ⇒ ∆,BetB

Θ□⃝
i ⇒ Λ□⃝

i ,□Ali−1, A
R□

Θ□⃝
i ⇒ Λ□⃝

i ,□Ali □Am, Π ⇒ Σ
Cut

Θ□⃝
i , Π ⇒ Λ□⃝

i , Σ
L∧, R∨∧

Θ□⃝
i , Π ⇒

∨
Λ□⃝

i , Σ
Cut∗

Γ, Γ, Π ⇒ ∆, ∆, Σ,BetB
LC,RC

Γ, Π ⇒ ∆, Σ,BetB

The first derivation above, say D′
1 is obtained from D1 by substituting all oc-

currences of the cut formulas with
∧

Θ□⃝
i , and the second derivation D′′

1 by
removing the cut formula from the RHS and adding

∨
Λ□⃝

i to the LHS. The
correctness of the application of the rules in these sub-derivations is guaran-
teed by Lemma 3. The cut between Θ□⃝

i ⇒ Λ□⃝
i ,□Ali and □Am, Π ⇒ Σ

is handled by induction hypothesis. The rule Cut∗ can be replaced by new
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semi-analytic cuts (see Lemma 4 below, in the particular case n = 1). The
argument which ensures the semi-analyticity of the new cuts is at the end
of the proof.
In the general case, there may be k branches in which the cut formula is
principal, with the following conclusions of R□ rules introducing □A’s:

{Θ□⃝
j ⇒ Λ□⃝

j ,□Alj | j ∈ {1, . . . , k}}.

We now need to construct - following the pattern detailed for D′
1 and D′′

1
- derivations with all the possible combinations of length k of the con-
texts

∧
Θ□⃝

k1
and

∨
Λ□⃝

k2
, with k1 ̸= k2 and k1, k2 ∈ {1, . . . , k}, invert-

ing their polarities, i.e. their position w.r.t. the sequent arrow. To wit-
ness a concrete example, if k = 2, we construct the derivations of the
sequents:

∨
Λ□⃝

1 ,
∨

Λ□⃝
2 , Γ ⇒ ∆,BetB;

∨
Λ□⃝

1 , Γ ⇒ ∆,BetB,
∧

Θ□⃝
2 ;∨

Λ□⃝
2 , Γ ⇒ ∆,BetB,

∧
Θ□⃝

1 and Γ ⇒ ∆,BetB,
∧

Θ□⃝
1 ,

∧
Θ□⃝

2 .
In general, by suitably replacing all the occurrences of the cut formulas in D1
we obtain 2k derivations of Υ, Γ ⇒ ∆,BetB, Ξ, for any multiset Υ and Ξ s.t.
Cj ∈ Υ if and only if Cj =

∨
Λ□⃝

j and Cj ∈ Ξ if and only if Cj =
∧

Θ□⃝
j

for some j, |Υ ∪ Ξ| = k and if Cj , Cl ∈ Υ ∪ Ξ, then j ̸= l. The correctness
of the resulting derivations follows again by Lemma 3. The desired sequent
Γ, Π ⇒ ∆,BetB, Σ is obtained by using the derived rule Cut∗ (Lemma 4
below) also with the k derivations of Θ□⃝

j , Π ⇒ Λ□⃝
j , Σ obtained by the

induction hypothesis.
It remains to show that all cut-formulas of the newly introduced cuts are
generalized subformulas, i.e. that E ∈ SUB(Γ, ∆) for every E ∈ Θ□⃝

j ∪Λ□⃝
j ,

and hence that the newly introduced cuts are semi-analytic (by Lemma 4).
Indeed, by assumption every formula in D1 is in SUB(Γ, ∆, X). Therefore
the only case to be excluded is that E is □A. Assume by contradiction that
this is the case. The □A cannot change side of the sequent, and is not in
SUB(Γ, ∆) by hypothesis. As there is no cut on □A in D1 (being all these
cuts replaced by contractions), the only remaining possibility is that □A has
been removed by a cut on a formula containing □A as a subformula, but
this cannot be the case by hypothesis.

The lemma below shows that cuts on conjunctions and disjunctions of generalized
subformulas can be simulated by semi-analytic cuts.

Lemma 4. Let Θ = A1, ..., An, Λ = B1, ..., Bn be conjunctions and disjunctions
of formulas in SUB(Γ, Π, ∆, Σ), the rule, with Λj ⊆ Λ, Θj ⊆ Θ, |Λj ∪ Θj | = n:

{Λj , Π ⇒ Σ, Θj | for all Cl, Ct ∈ Λj ∪ Θj(l ̸= t)} {Ai, Γ ⇒ ∆, Bi}i=1,...,n
Cut∗

Π, Γ ⇒ ∆, Σ

is admissible in SFcm without using non semi-analytic cuts.

Proof. We first show that the rule Cut∗ is admissible using arbitrary cuts on the
formulas Ai, Bis and the contraction rules. The proof is by induction on n.

– If n = 1, then the proof follows applying twice the cut rule:
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Π ⇒ Σ, A1 A1, Γ ⇒ ∆, B1
Cut

Π, Γ ⇒ ∆, Σ, B1 B1, Π ⇒ Σ
Cut

Π, Π, Γ ⇒ ∆, Σ, Σ
LC,RC

Π, Γ ⇒ ∆, Σ

– Let n = k + 1 and assume that the claim holds for k. We have Θ =
A1, ..., Ak, Ak+1, Λ = B1, ..., Bk, Bk+1 and the 2k+1 left premises of the rule
can be rewritten as:

{Λj , Π ⇒ Σ, Θj , Ak+1 | for all Cl, Ct ∈ Λj ∪ Θj(l ̸= t)}∪
{Bk+1, Λj , Π ⇒ Σ, Θj | for all Cl, Ct ∈ Λj ∪ Θj(l ̸= t)}

with Θj ⊆ {A1, . . . , Ak} and Λj ⊆ {A1, . . . , Ak}. Hence we proceed as fol-
lows:

{Λj , Π ⇒ Σ, Θj , Ak+1 | for all Cl, Ct ∈ Λj ∪ Θj(l ̸= t)} {Ai, Γ ⇒ ∆, Bi}i=1,...,k
Cut∗

Π, Γ ⇒ ∆, Σ, Ak+1

the application of Cut∗ is admissible by induction hypothesis.
Analogously, we construct a derivation of Bk+1, Π, Γ ⇒ ∆, Σ:

{Bk+1, Λj , Π ⇒ Σ, Θj | for all Cl, Ct ∈ Λj ∪ Θj(l ̸= t)} {Ai, Γ ⇒ ∆, Bi}i=1,...,k
Cut∗

Bk+1, Π, Γ ⇒ ∆, Σ

applying the induction hypothesis.
The conclusion now follows from two applications of the cut rule with the
sequent Ak+1, Π ⇒ Σ, Bk+1 followed by contraction.

The claim of the lemma is now obtained observing that cuts on Ai and Bi can be
transformed into semi-analytic cuts by exploiting the invertibility of the derived
rules for ∧ and ∨, because by hypothesis Ai, Bj ∈ SUB(Γ, Π, ∆, Σ).

Theorem 5. Any SFcm proof with cuts can be transformed into a proof of the
same sequent that only uses semi-analytic cuts.

Proof. Let D be an SFcm proof with σ(D) > 0. We proceed by a double in-
duction on ⟨σ(D), nσ(D)⟩, where nσ(D) is the number of applications of cut
in D with non-analytic cut rank σ(D). Consider an uppermost application of
non-analytic (cut) in D with rank σ(D). By applying Theorem 4 to its premises
either σ(D) or nσ(D) decreases.

Remark 1. The above result can be adapted to define sequent calculi with re-
stricted cuts for the sequent calculus version of the calculi for E and F in [8,9].
These calculi would be obtained by replacing in SFcm the rules for Bet and
⃝(B/A) with the corresponding sequent rules for E and F.

4 A hypersequent calculus for F + (CM) and G

The calculus SFcm uses semi-analytic cuts, and is not easily extendable to
capture G5. Additionally, it would be challenging, if possible at all, to adapt
5 The totality conditions, is the same as for Gödel logic [4] and S4.3 [16].
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it into a proof-search-oriented calculus for F + (CM). Inspired by the transi-
tion in [23,4,19] from sequent calculus with analytic cuts [25] for the logic S5
to a cut-free hypersequent calculus, we shift from the sequent to the hyperse-
quent framework. Hypersequents are arguably the easiest generalization of se-
quents [2,3,4], consisting of multisets of sequents (called components) working in
parallel and separated by the symbol “|”. We introduce a cut-free hypersequent
calculus HFcm for F + (CM). HFcm incorporates the sequent calculus for the
logic S4 as a sub-calculus and adds an additional layer of information by consid-
ering a single sequent to live in the context of hypersequents. Axioms and rules
(including cut) of HFcm are obtained by adding to each sequent in SFcm a
context G or H, standing for a (possibly empty) hypersequent, and simplifying
the right rules for □, Bet and ⃝, as follows (with explicit weakening rules):

G | Γ□⃝ ⇒ A

G | Γ□⃝ ⇒ □A

G | Γ□⃝, Γ b ⇒ A

G | Γ□⃝, Γ b ⇒ BetA

G | Γ□⃝, A,Bet¬(A ∧ Bet(A → B)) ⇒
G | Γ□⃝ ⇒ ⃝(B/A)

To manipulate the additional structure w.r.t. sequents, any hypersequent calcu-
lus contains external structural rules that operate on whole sequents. Standard
rules are ext. weakening (ew) and ext. contraction (ec) (see below), which behave
like weakening and contraction over whole sequents. The hypersequent structure
opens the possibility to define new rules that allow the “exchange of informa-
tion” between different components. These rules increase the expressive power of
hypersequent calculi compared to sequent calculi, enabling the definition of cut-
free calculi for logics that escape a cut-free sequent formulation; in the case of S5
this is done using the rule (s5′) below (the ⃝ is added to deal with F + (CM))

G (ew)
G | Γ ⇒ Π

G | Γ ⇒ Π | Γ ⇒ Π
(ec)

G | Γ ⇒ Π

G | Γ□⃝, Γ ′ ⇒ Π ′

(s5′)
G | Γ ⇒ | Γ ′ ⇒ Π ′

Hence the crucial difference w.r.t. the calculus SFcm is that, due to the struc-
tural rules (ec) and (s5′), we can now restrict to single-succedent modal right
rules without impairing cut-free completeness.
Remark 2. A cut-free hypersequent calculus for F was introduced in [9] by
adding one rule to the calculus for E [8]. While F + (CM) extends F (and
E), our calculus is not a modular extension of these two. Indeed HFcm stems
from an alternative semantics definition. Note that the premise A,Bet¬A ⇒ B
of the right rule for ⃝ in these calculi would be trivially derivable in HFcm.

Given a hypersequent Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n, its interpretation ι is defined:
(Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n)ι := □(

∧
Γ1 →

∨
∆1) ∨ . . . ∨ □(

∧
Γn →

∨
∆n)

Theorem 6. HFcm is sound and complete with cuts w.r.t. F + (CM).

Proof. The soundness proof follows the pattern detailed for SFcm. Completeness
is ensured by the derivation of (CM).

A calculus for G is obtained in a modular way by adding an external structural
rule to the calculus HFcm for F + (CM). The additional rule is a slightly mod-
ified version of the well known communication rule, introduced by Avron [3] for
capturing Gödel logic, and used in [16] for the modal logic S4.3:
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G | Π□⃝, Πb, Γ ⇒ ∆ G | Γ□⃝, Γ b, Π ⇒ Σ
com

G | Γ ⇒ ∆ | Π ⇒ Σ

Theorem 7. HG is sound and complete in presence of cuts w.r.t. G

Proof. Soundness: By induction on the height of the derivation. We only consider
the case of the rule com. If the conclusion is not valid, then there are worlds x
and y where x (y) forces every formula in Γ (Π) and x (y) falsifies every formula
in ∆ (Σ). By totality x ≤ y or y ≤ x. If x ≤ y, then y forces all the □, ⃝ and
Bet formulas in Γ and thus, by the validity of the premise G | Γ□⃝, Γ b, Π ⇒ Σ,
we get an immediate contradiction. The other case is symmetrical.

Completeness in presence of cuts: follows by the derivability of axiom (RM)
(the topmost sequent is derivable).

A, B,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)),Bet(A → C) ⇒ Bet(A ∧ B → C)
R∧

A, B,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)), Bet(A → C) ⇒ A ∧ B ∧ Bet(A ∧ B → C)
LBet,L¬

A, B,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)),Bet(A → C) ⇒
R∧, RBet, R¬

A,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)), A,Bet(A → C) ⇒ A ∧ Bet(A → ¬B)
LBet,L¬

A,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)), A,Bet(A → C) ⇒
RBet, R¬,L∧

A,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒ Bet¬(A ∧ Bet(A → C))
L⃝

⃝(C/A), A,Bet¬(A ∧ Bet(A → ¬B)),Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒
com

⃝(C/A), A,Bet¬(A ∧ Bet(A → ¬B)) ⇒ | ⃝ (C/A), A ∧ B,Bet¬(A ∧ B ∧ Bet(A ∧ B → C)) ⇒
R⃝ (twice)

⃝(C/A) ⇒ ⃝(C/A ∧ B), ⃝(¬B/A) | ⃝ (C/A) ⇒ ⃝(C/A ∧ B), ⃝(¬B/A)
EC

⃝(C/A) ⇒ ⃝(C/A ∧ B), ⃝(¬B/A)
L¬

¬ ⃝ (¬B/A), ⃝(C/A) ⇒ ⃝(C/A ∧ B)

one premise of the rule com is omitted for space reasons.

5 Cut-elimination for HFcm and HG

We prove that the calculus HG (and hence HFcm) admits cut-elimination. The
strategy is the same as for the hypersequent calculus for E in [8].

Proof idea: As for the cut-reduction proof of SFcm, cuts on a formula of the
form ¬A or A → B are reduced using invertibility. In contrast with SFcm, we
can shift cuts with cut-formulas of the form 2A, Bet A and ⃝(B/A) upwards
until the cut formula is principal, using a specific order. First over the premise
containing the cut formula on the right hand side (Lemma 6), due to the change
made w.r.t. SFcm to the right rules of Bet, □, and ⃝. Afterwards, over the
other premise (Lemma 7). Note that when a rule introducing the cut formula on
the right hand side is reached, the context has a shape that matches with the
other premise of the cut and allows us to permute the cut upwards, similarly to
case (A) from Theorem 4. When the cut formula becomes principal also on the
left hand side, it can be replaced by cuts on smaller formulas.

Henceforth we use the same inductive measure of the degree of formulas as in
Section 3, while the rank of a derivation D is now ρ(D) (Def 5). The following
lemmas refer to derivations in HG (and hence in HFcm).

The invertibility of the hypersequent version of the rules for → and ¬ (Lm. 1)
also holds in HG and is rank-preserving.
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Lemma 5. Given derivations D1 of G | Γ ⇒ ∆, X and D2 of H | X, Π ⇒ Σ
with X principal in a logical, modal or deontic rule in both premises and ρ(Di) ≤
dg(X), there is a derivation D of G | H | Γ, Π ⇒ ∆, Σ with ρ(D) ≤ dg(X).

Proof. As in Lemma 2 (the hypersequent structure plays no role).

The following lemmas are formulated in order to prove the admissibility of
cuts on multiple occurrences of formulas taking into account the presence of
explicit rules for contraction, both internal and external.

Lemma 6 (Right shift). Given D1 of H | Π1 ⇒ Σ1, Xn1 | . . . | Πm ⇒ Σm, Xnm

in HG(HFcm) and D2 of G | X, Γ ⇒ ∆ with ρ(D1), ρ(D2) ≤ dg(X), there is a
derivation D, with ρ(D) ≤ dg(X), of

G | H | Γ n1 , Π1 ⇒ Σ1, ∆n1 | . . . | Γ nm , Πm ⇒ Σm, ∆nm

Proof. By induction on the height of D1. If it is an initial sequent or the last
applied rule acts on sequents in H, the proof is trivial. If the cut formula is
principal in a logical (modal, deontic) rule, then we use Lemma 7. Assume that
the cut formula is not principal. If the rule is R⃝, RBet and R□, then the claim
follows by internal and external weakening (because such rules permit a single
formula in the RHS). Otherwise, the cut is permuted and removed by induction
hypothesis (note that the RHS of the rules (s5′) and (com), if present, remains
unchanged in the premises, along with the associated context on the LHS).

Once we have reached the right rule introducing the cut formula BetA, ⃝(A/B),
or □A, we can shift the cut upward over the other premise of the cut, as shown
in the next lemma.

Lemma 7 (Left shift). Given D2 of G | Xn1 , Γ1 ⇒ ∆1 | . . . | Xnm , Γm ⇒ ∆m and
D1 of H | Π ⇒ Σ, X where X is principal in the last rule applied in D1 with
ρ(D1), ρ(D2) ≤ dg(X), there is a derivation D with ρ(D) ≤ dg(X) of

G | H | Πn1 , Γ1 ⇒ ∆1, Σn1 | . . . | Πnm , Γm ⇒ ∆m, Σnm

Proof. By induction on the height of the derivation D2. The proof is similar to
case (A) in Theorem 4. The hypersequent structure does not alter the proof,
the only additional cases to consider are those involving hypersequent structural
rules. See, e.g. [8] for (s5′). We consider the case of (com) where the cut formula
moves from a component to another. W.l.o.g. we show a case in which we have
two components in D2, as in:

G | Π□⃝, Πb ⇒ B
RBet

G | Π ⇒ Σ,BetB

Γ1,BetBn2 , Γ b
2 ⇒ ∆1 BetBn2 , Γ2, Γ b

1 ⇒ ∆2 com
Γ1 ⇒ ∆1 |BetBn2 , Γ2 ⇒ ∆2

Cut
G | Γ1 ⇒ ∆1 | Πn2 , Γ2 ⇒ ∆2, Σn2

assuming that one of the active components does not contain the cut formula
(the other case is analogous). We construct the following derivation:
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G | Π□⃝, Πb ⇒ B
RBet

G | Π□⃝, Πb ⇒ BetB Γ1,BetBn2 , Γ b
2 ⇒ ∆1

Cut
G | Γ1, (Π□⃝, Πb)n2 , Γ b

2 ⇒ ∆1
LC

G | Γ1, Π□⃝, Πb, Γ b
2 ⇒ ∆1

G | Π□⃝, Πb ⇒ B
RBet

G | Π□⃝, Πb ⇒ BetB G |BetBn2 , Γ2, Γ b
1 ⇒ ∆2

Cut
G | (Π□⃝, Πb)n2 , Γ2, Γ b

1 ⇒ ∆2
LC

G | Π□⃝, Πb, Γ2, Γ b
1 ⇒ ∆2 com

G | Π□⃝, Γ1 ⇒ ∆1 | Π□⃝, Πb, Γ2 ⇒ ∆2
LW,RW

G | Π□⃝, Γ1 ⇒ ∆1 | Πn2 , Γ2 ⇒ ∆2, Σn2

s5’
G | Π□⃝ ⇒ | Γ1 ⇒ ∆1 | Πn2 , Γ2 ⇒ ∆2, Σn2

LW,RW
G | Πn2 , Γ2 ⇒ ∆2, Σn2 | Γ1 ⇒ ∆1 | Πn2 , Γ2 ⇒ ∆2, Σn2

EC
G | Γ1 ⇒ ∆1 | Πn2 , Γ2 ⇒ ∆2, Σn2

where cuts are removed by induction hypothesis on the height of the derivation.

Theorem 8. Any HFcm (HG) proof with cuts can be transformed into a proof
of the same hypersequent that does not use cuts.

Corollary 1. HFcm and HG are cut-free complete w.r.t. F + (CM) and G.

6 Proof search oriented calculi for F + (CM) and G

We transform the hypersequent calculi HFcm and HG into proof-search ori-
ented calculi. The resulting systems feature reversible rules, with structural rules
absorbed into logical ones, allowing for the construction of countermodels. This
process follows the pattern established, e.g., for system E in [8].

Definition 6. The HFcmps calculus consists of the initial hypersequents of the
shape G | Γ, p ⇒ ∆, p, the (usual) rules for the propositional connectives that
repeat the introduced formulas in the premises, together with:

–
G | Γ ⇒ ∆, ⃝(B/A) | A,Bet¬(A ∧ Bet(A → B)) ⇒

R⃝
G | Γ ⇒ ∆, ⃝(B/A)

G | ⃝ (B/A), Γ ⇒ ∆, A G | ⃝ (B/A), Γ ⇒ ∆,Bet¬(A ∧ Bet(A → B))
L⃝1

G | ⃝ (B/A), Γ ⇒ ∆

G | ⃝ (B/A), Γ ⇒ ∆ | Π ⇒ Σ, A G | ⃝ (B/A), Γ ⇒ ∆ | Π ⇒ Σ,Bet¬(A ∧ Bet(A → B))
L⃝2

G | ⃝ (B/A), Γ ⇒ ∆ | Π ⇒ Σ

–
G | Γ ⇒ ∆,BetA | Γ b ⇒ A

RBet
G | Γ ⇒ ∆,BetA

G | A,BetA, Γ ⇒ ∆
LBet

G |BetA, Γ ⇒ ∆

– G | Γ ⇒ □A, ∆ | ⇒ A
R□

G | Γ ⇒ □A, ∆

G |□A, A, Γ ⇒ ∆
L□1

G |□A, Γ ⇒ ∆

G |□A, Γ ⇒ ∆ | A, Π ⇒ Σ
L□2

G |□A, Γ ⇒ ∆ | Π ⇒ Σ

The proof search oriented calculus HGps for G extends HFcmps with the rule:

G | Γ1, Γ b
2 ⇒ ∆1 | Γ2 ⇒ ∆2 G | Γ1 ⇒ ∆1 | Γ2, Γ b

1 ⇒ ∆2
com

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2

Notice the peculiar shape of the rules L⃝2 and L□2, designed to absorb the
hypersequent structural rule (s5′). The rule com acts only on Bet formulas.
This depends on the fact that ⃝ and □ are governed by rules which introduce
bottom-up formulas in every component.

Lemma 8. The rules of (internal and external weakening) and contraction are
height-preserving admissible in HFcmps. Every rule of the calculus is height-
preserving invertible in HFcmps.
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Proof. The height-preserving admissibility of internal and external weakening
follows from a straightforward induction on the height of the derivation. Invert-
ibility follows from weakening. The contraction rules are admissible due to the
repetition of every formula and component in each premise.

Theorem 9 (Soundness of HFcmps (HGps)). If a hypersequent G is deriv-
able in HFcmps (HGps), then so is in HFcm (HG).

Proof. Follows from the structural rules of HFcm.

6.1 Decidability and countermodel construction

We define a proof search procedure which terminates for every sequent. If the
proof search fails, we show how to extract a countermodel out of it.

Definition 7. A hypersequent H is saturated w.r.t. the system HFcmps if it is
not an initial sequent and for every component Γ ⇒ ∆ in H, whenever Γ ⇒ ∆
contains the principal formulas in the conclusion of a rule (r), then H also
contains the formulas introduced by one of the premisses of (r) for every rule
(r). For example, in the case of Bet, we have:

– (LBet). If Γ,BetA ⇒ ∆ ∈ H, then A ∈ Γ .
– (RBet). If Γ ⇒ ∆,BetA ∈ H, then Π, Γ b ⇒ Σ, A ∈ H for some Π, Σ.

The saturation condition w.r.t. HGps is defined adding the condition:

– (com). If Γ ⇒ ∆ ∈ H and Π ⇒ Σ ∈ H then either Πb in Γ or Γ b in Π.

Theorem 10. Given ⇒ A there is a derivation or a saturated hypersequent.

Proof. We start showing that the number of hypersequent components can be
bounded in any derivation D of ⇒ A. Indeed, the rules which introduce new
components are R□, R⃝ and RBet. Consider first R□: we show that this rule
is applied exactly once to each formula (say □B), occurring in the consequent of
a component and creates only one new component, no matter if □B appears in
the consequent of many components. To illustrate the situation, consider, e.g.,

H | Γi ⇒ ∆i,□B | Θ ⇒ B, Λ | . . . | Π, Γj ⇒ ∆j , Σ,□B | ⇒ B
R□

H | Γi ⇒ ∆i,□B | Θ ⇒ B, Λ | . . . | Π, Γj ⇒ ∆j , Σ,□B

...D
H | Γi ⇒ ∆i,□B | ⇒ B | . . . | Γj ⇒ ∆j ,□B

R□
H | Γi ⇒ ∆i,□B | . . . | Γj ⇒ ∆j ,□B

;

H | Γi ⇒ ∆i,□B | Θ ⇒ B, Λ | . . . | Π, Γj ⇒ ∆j , Σ,□B | ⇒ B
LW,RW

H | Γi ⇒ ∆i,□B | Θ ⇒ B, Λ | . . . | Π, Γj ⇒ ∆j , Σ,□B | Θ ⇒ B, Λ
EC

H | Γi ⇒ ∆i,□B | Θ ⇒ B, Λ | . . . | Π, Γj ⇒ ∆j , Σ,□B

...D
H | Γi ⇒ ∆i,□B | ⇒ B | . . . | Γj ⇒ ∆j ,□B

R□
H | Γi ⇒ ∆i,□B | . . . | Γj ⇒ ∆j ,□B

Hence the number of components created by R□ is bounded by the number of
boxed subformulas of A, whence it is O(n). The situation for R⃝ is similar.

RBet requires more care, being Bet an S4 modality. In this case, having
bounded the number of applications of R□ and R⃝, we assume that if there is
an infinite introduction bottom-up of components these are introduced by the
rule RBet. Hence, since the number of possible sequents is finite (in particular
2|2|SUB(A)||), there has to be a repetition. In this case, we have met the saturation
condition for the rule RBet. Thus the number of components is finite. Since we
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can rule out rule applications for which the saturation condition has already been
met (due to the admissibility of contraction), every rule introduces bottom-up
a new component or new formulas in the components, hence the length of every
branch of a putative derivation of A is bounded and the derivation is finite.
The next theorem ensures the completeness of our calculi and show how to
extract countermodels out of a failed proof search.

Theorem 11. If A is valid in F + (CM) (G), is derivable in HFcmps (HGps).

Proof. By contraposition. If A is not derivable, by Theorem 10 there is a satu-
rated hypersequent: Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n. We assign labels to the compo-
nents i : Γi ⇒ ∆i (i ∈ {1, . . . , n}) and consider the model: M = ⟨{1, . . . , n}, ≤, v⟩
with i ≤ j if and only if Γ b

i ⊆ Γj and i ∈ v(p) if and only if p ∈ Γi.
We have to check that the model is reflexive and transitive in the case of

HFcmps and total in the case of HGps. The relation ≤ is reflexive and transitive,
because set inclusion is reflexive and transitive. As regards totality, we observe
that the saturation condition for (com) ensures that for every i and j, Γ b

i ⊆ Γj

or Γ b
j ⊆ Γi which gives by definition i ≤ j or j ≤ i.

We now show that for every i in the model M we have i ⊩ B if B ∈ Γi and
i ⊮ B if B ∈ ∆i. We argue by induction on the degree of the formulas.

– If B is atomic, the claim stems from the definition of the valuation function
and by the saturation condition.

– If B is a compound formula, the proof follows from the use of the induction
hypothesis and saturation. We deal with the case in which B is BetC; the
other cases are handled similarly. If BetC ∈ Γi, suppose i ≤ j, then Γ b

i ⊆ Γj .
By the saturation condition for LBet, we get C ∈ Γj and by induction
hypothesis we have j ⊩ C, hence the desired conclusion. If BetC ∈ ∆i, then
by definition of saturation there is Γj ⇒ ∆j , C with Γ b

i ⊆ Γj so i ≤ j, and
by induction hypothesis i ⊮ C, so the desired conclusion follows.

Remark 3. The above countermodel construction can be adapted6 to define a
proof-search-oriented calculus for Gödel-Dummett logic [10].

Concluding remark: we demonstrated that for F + (CM) (and Åqvist systems
E and F), while it is possible to define sequent calculi that use semi-analytic cuts,
the hypersequent framework provides a modular and cut-free approach, enabling
the capture of F + (CM) and G, and supporting countermodel construction.
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 Lódź, 41(1-2):89–104, 2012.

17. T. Kowalski and H. Ono. Analytic cut and interpolation for bi-intuitionistic logic.
The Review of Symbolic Logic, 10(2):259–283, 2017.

18. S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential
models and cumulative logics. Artif. Intell., 44(1-2):167–207, 1990.

19. H. Kurokawa. Hypersequent calculi for modal logics extending S4. In New Frontiers
in Artificial Intelligence, volume 8417 of LNCS, pages 51–68. Springer, 2013.

20. S. L., P. D., and H. D. Optimal tableaux for conditional logics with cautious
monotonicity. In W. M. Coelho H., Studer R., editor, Proceedings of the 2010
conference on ECAI 2010: 19th European Conference on Artificial Intelligence,
pages 707–712, Amsterdam, 2010. IOS Press.

21. D. Lewis. Counterfactuals. Blackwell, Oxford, 1973.
22. T. S. Lyon, A. Ciabattoni, D. Galmiche, D. Larchey-Wendling, D. Méry,
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