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Abstract

In this thesis, we employ logic to increase our understanding of normative reasoning. We
do this by including agents in our formal analysis. Norms are inextricably linked to agents:
they provide reasons to act and influence how we shape our world. Nevertheless, agentive
aspects are often abstracted away, yielding oversimplified formalisms and understudied
themes. Furthermore, recent developments in Artificial Intelligence (AI) have created
novel challenges for the logical study of normative reasoning. This thesis addresses several
of these topics by assigning a pivotal position to agents. The conducted research is
interdisciplinary, drawing from methods in philosophy, logic, and AI.

The thesis comprises three parts: (I) agency, (II) action, and (III) argumentation. In the
first two parts, we address normative reasoning by reasoning about agents. These parts
belong to well-established modal logic approaches in deontic logic. In the third part,
we employ methods from AI—in particular, formal argumentation and nonmonotonic
logic—to make formal normative reasoning more accessible to agents.

In Part I, we investigate how obligations impact the choices of agents. To do so, we adopt
and extend the agency logic of ‘Seeing To It That’ (STIT). We formally investigate the
limits of contrary-to-duty reasoning when reasoning about choices and obligations over
time. Furthermore, we conduct a comprehensive logical study of the principle of Ought
implies Can. We investigate ten interpretations of the principle and its relation to other
normative reasoning principles.

In Part II, we study ways in which obligations and prohibitions promote the actions
performed by agents. We focus on instrumentality statements, which express actions as
instruments for attaining ends. We develop a deontic action logic in which we analyze,
compare, and assess obligations and prohibitions about instruments. Furthermore, we
apply our formalism to an ancient theory in Sanskrit philosophy that reduces obligations
and prohibitions to instrumentality statements.

In Part III, we investigate explanations in the context of defeasible normative reasoning.
We call these deontic explanations. We develop a sequent-style proof-theoretic approach
tailored to generating explanatory arguments and show how these arguments can be
used in formal argumentation to create explanations. Furthermore, we develop a general,
nonmonotonic proof-theoretic formalism that incorporates argumentative concepts like
attack and defense, and extend it to defeasible normative reasoning.
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Kurzfassung

In dieser Diplomarbeit verwenden wir Logik, um unser Verständnis des normativen
Denkens1 zu erweitern, indem wir Agenten in unseren formalen Analysen eine zentrale
Position zuweisen. Normen sind untrennbar mit Agenten verbunden: Sie geben Gründe
für Handlungen und beeinflussen, wie wir unsere Welt gestalten. Aspekte von Agenten
werden jedoch oft abstrahiert, was zu vereinfachten Formalismen und unteruntersuchten
Themen führt. Außerdem haben jüngste Entwicklungen in der Künstlichen Intelligenz
(KI) neue Herausforderungen für die logische Untersuchung des normativen Denkens
geschaffen. Diese Arbeit behandelt mehrere dieser Themen. Die resultierende Forschung
ist interdisziplinär und nutzt Methoden aus Philosophie, Logik, und KI.

Die Arbeit besteht aus drei Teilen: (I) Agentialität (Agency), (II) Handlung (Action),
und (III) Argumentation. Die ersten zwei Teilen gehören zu den modallogische Ansätzen
der deontischen Logik und handeln vom Denken über Agenten im Kontext von Normen.
Im dritten Teil nutzen wir KI-Methoden—insbesondere formale Argumentation und
nichtmonotone Logik—um formales normatives Denken für Agenten zugänglicher zu
machen.

In Teil I untersuchen wir wie Verpflichtungen die Entscheidungen von Agenten beeinflussen.
Hierfür übernehmen wir die Logik von ‘Seeing To It That’ (STIT) und erweitern diese.
Wir untersuchen formal die Grenzen des contrary-to-duty (das heißt “entgegen der
Pflicht”) Schließens in einem expliziten zeitlichen Kontext. Darüber hinaus führen wir
eine umfassende logische Studie des Prinzips von Ought implies Can (das heißt “Sollen
impliziert Können”) durch. Wir untersuchen zehn Interpretationen des Prinzips und die
Beziehung zu anderen Prinzipien des normativen Denkens.

In Teil II untersuchen wir wie Verpflichtungen und Verbote die expliziten Handlungen
von Agenten fördern. Hierbei konzentrieren wir uns auf Urteile der Instrumentalität,
die Handlungen als Instrumente zur Erreichung von Zielen ausdrücken. Wir entwickeln
eine deontische Handlungslogik, in der wir Verpflichtungen und Verbote in Bezug auf
Instrumente analysieren, vergleichen und bewerten. Außerdem wenden wir unseren
Formalismus auf eine antike Theorie in der Sanskrit-Philosophie, die Verpflichtungen und
Verbote auf Urteile der Instrumentalität reduziert, an.

1Im Kontext der Kurzfassung kann normatives Denken (normative reasoning) als das Ziehen von
Schlussfolgerungen auf Grundlage von Normen, Pflichten, Erlaubnissen und Verboten definiert werden.
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In Teil III untersuchen wir Erklärungen im Kontext des widerlegbaren normativen Denkens.
Wir nennen diese deontische Erklärungen. Wir verwenden einen beweistheoretischen
Ansatz und entwickeln einen Sequenzenkalkül, der darauf abzielt, erklärende Argumente
zu generieren. Darüber hinaus, demonstrieren wir wie diese Argumente in formaler
Argumentation verwendet werden können, um Erklärungen zu erstellen. Anschließend
entwickeln wir einen allgemeinen, nichtmonotonen beweistheoretischen Formalismus, der
argumentative Konzepte wie Attacke und Abwehr in der Sprache des Kalküls integriert.
Wir wenden diesen Formalismus auf widerlegbares normatives Denken an.
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CHAPTER 1
Introduction

This thesis is about normative reasoning. Normative reasoning involves obligations,
prohibitions, permissions, rights, values, and norms. These notions are everywhere. They
make up laws, ethics, morals, business protocols, games, and social customs. What is
more, they are directed to us agents. They influence our everyday decision-making and
shape our lives. The obligation “promises must be kept” might cause us to hurry up
and be on time for an appointment. Whereas the prohibition “it is not allowed to drive
through a red light” affects whether or not we stop and wait for a traffic light to turn
green. Moreover, we often find ourselves in situations where various norms conflict. In
such cases, we must resolve these conflicts and decide which norms to give precedence.
For instance, I might violate my promise to be on time because I decide to wait for a
red light, whereas someone else may actually decide to do the opposite. Norms and
normative concepts motivate, guide, redirect, and inspire the way we behave and how we
form our world: they provide reasons to act.

In particular, this thesis provides a logical analysis of normative reasoning in the context
of agents. Agents make choices, perform actions, and exercise abilities. They reason
practically about attaining ends, plan short-term and long-term, and comply with and
violate norms. Furthermore, agents may not always understand why certain norms apply,
and obligations hold. Sometimes they may even disagree with the reasons given. We
address several of these aspects by dividing this thesis into three parts:

I. Agency: obligations as restricted by the choices and abilities of agents;

II. Action: the interaction between normative concepts, actions, and instruments;

III. Argumentation: explaining to agents why certain norms do or do not apply.

1



1. Introduction

A Logical Analysis of Normative Reasoning

Part I: Agency

Ch2. (RQ1)

• Time, Choice, Obligation

Ch3. (RQ2)

• Ought implies Can

Part II: Action

Ch4. (RQ3)

• Norms and Instruments

Ch5. (RQ4)

• Application to Sanskrit 

Philosophy

Part III: Argumentation 

Ch6. (RQ5&6)

• Deontic Explanations

Ch7. (RQ7)

• Defeasible Reasoning

Figure 1.1: The general structure of the thesis.

Each of these topics represents fundamental challenges and questions that belong to the
study of normative reasoning. In the following section, these topics are introduced and
discussed in detail.

1.1 Guiding Questions and Problems

Deontic Logic is the overarching term for the field of mathematical logic that deals with
normative concepts such as obligation, permission, prohibition, and norms. Since the
1950s, a wide range of deontic logics has been introduced. These logics are most often
modal logics (Blackburn et al., 2004), employing modal formulae such as Oφ expressing
“it is obligatory that φ” (where φ denotes a state of affairs). Such formulae represent
normative propositions according to some underlying set of norms, i.e., a normative code
(Hilpinen and McNamara, 2013). Norms are ‘rules’ and ‘laws’ (von Wright, 1963a), which
are conditional statements from which obligations, prohibitions, and permissions, are
inferred (Parent and van der Torre, 2013).

The term ‘deontic’ refers to the Greek word δέoν signifying “that which is binding”.
Following Kelsen (1991), a norm’s object of binding is agentive behavior. The current
view includes the behavior of humans as well as of artificial agents (Floridi and Sanders,
2004). Even though most approaches in deontic logic abstract away this ‘object’, many
developments in the field have been guided by the conviction that agency and action are
pivotal components of normative reasoning (Castañeda, 1972; Meyer, 1988; von Wright,
1968). In fact, the prominence of agents and acts can be traced back to the introduction
of deontic logic by von Wright (1951).

Research on the formal aspects of normative reasoning and agents is vast but various
problems remain un(satisfactorily)-addressed. What is more, novel problems arise due to
recent developments in Artificial Intelligence (AI) and Normative Multi-agent Systems

2



1.1. Guiding Questions and Problems

(NorMAS). We provide a systematic treatment of several challenges from the field by
dividing this thesis into three parts: agency, action, and argumentation.

The first two parts correspond to two well-developed approaches to including agents
in the logical analysis of normative reasoning (Broersen et al., 2013). The first part
focuses on agency and adopts the view that obligations (and other normative concepts)
reciprocally impact agents’ choices and what is brought about by them. The second
part concentrates on action as performed by agents. Here, we take obligations (and
other normative concepts) to promote and demote the actions agents can undertake to
attain their ends. The third part of this thesis deals with argumentation as a means of
characterizing and explaining conflicts between norms. The relatively new field of formal
argumentation studies arguments and their relations, and is particularly suitable for the
representation of conflicts.

In what follows, we elaborate on the three parts. Each part is divided into two chapters.
We introduce the preliminary background and pose our general research questions along
the way. In the remainder of this thesis, these questions are further specified and concrete
objectives are presented. The general structure of the thesis is presented in Figure 1.1.

1.1.1 Part I: Agency and Normative Reasoning

The first part of the thesis deals with agency, namely, the idea that agents are capable
of making choices and, consequently, influencing and changing the state of the world.
Agency, taken in this sense, adopts an indeterministic worldview (Hilpinen, 1997): time
progresses but may evolve in various ways. The future is not fully determined, and
by choosing and acting, agents provide an essential contribution to delimiting possible
courses of events.1 Likewise, normative concepts such as obligations influence the choices
made by agents and, indirectly, the state of the world. For instance, the fact that I ought
to hand in my thesis next week may influence whether I go to a concert tonight.

Chapter 2. The interaction between time and obligation is one of the central research
themes in deontic logic (Broersen and Torre, 2011). Although most deontic formalisms
do not employ explicit temporal operators (Broersen et al., 2013), temporal deontic logics
have been thoroughly investigated (Broersen et al., 2004; Dignum and Kuiper, 1997; van
Eck, 1982; Prakken and Sergot, 1996; Thomason, 1981). Arguably the most prevailing
logic of agency covering choice, time, and deontic concepts is the logic of ‘Seeing To
It That’ (STIT, for short). It was initially developed by Belnap and Perloff (1988) to
semantically model agents’ choices in indeterministic time. The STIT formalism is a
modal logic, with its primary modality [i] expressing that “agent i sees to it that” (some
state of affairs hold). Over the past decades, a vast body of research has been developed
around STIT. The formalism has seen a wide range of applications, covering, among

1In AI, the intelligent autonomous agent metaphor focuses primarily on the individual agent per-
spective, whereas for NorMAS, the focal point is that of multi-agent interaction (Verhagen et al., 2018).
We deal predominantly with individual agency. We do not consider groups of agents (Herzig and
Schwarzentruber, 2008) or agents as creators, modifiers, and enforcers of norms (Boella et al., 2008).

3



1. Introduction

others, legal reasoning (Armgardt et al., 2018; Lorini and Sartor, 2014; Lorini and Sartor,
2015), epistemic reasoning (Broersen, 2008; Broersen, 2011a; Abarca and Broersen, 2019),
and reasoning for autonomous vehicles (Arkoudas et al., 2005; Shea-Blymyer and Abbas,
2021).

Deontic extensions of the STIT framework were discussed since the beginning of STIT
(Belnap and Perloff, 1988; Belnap, 1991; Bartha, 1993), but its first extensive investigation
was provided by Horty (2001). In particular, Horty argues that temporal settings
provide good reasons for adopting more refined notions of agentive and conditional
obligations. These observations lead Horty to develop his influential deontic theory of
dominance act utilitarianism in STIT. However, these observations are grounded in the
interaction between deontic modalities and the implicit underlying semantic framework
of indeterministic time. Surprisingly, a corresponding logic of explicit temporal deontic
reasoning in STIT has not yet been developed. We set out to do this. The first research
question pursued in this thesis is phrased accordingly:

Research question 1. How can we model reasoning about obligation and choice in
an explicitly indeterministic temporal setting? What are the logical and philosophical
consequences of such a model for normative reasoning in the context of STIT?

The first step towards answering the above questions is the development of a Tem-
poral Deontic STIT logic. Although the semantic interpretation of indeterministic
time—represented through branching-time frames (Prior, 1967; Thomason, 1981)—was
present from the outset in STIT (Belnap and Perloff, 1988), the first sound and complete
axiomatization of temporal STIT logic with branching-time frames was provided only
a decade ago by Lorini (2013).2 Likewise, the first technical results concerning Horty’s
deontic STIT logic were obtained by Murakami (2005), who proved the proposed theory
of dominance ought sound, complete, and decidable. As a consequence of addressing
the above research question, we fill a longstanding literature gap by providing the first
sound and complete axiomatization of temporal deontic STIT logic.3 What is more, the
obtained framework enables us to analyze the logical consequences of normative reasoning
in an explicit temporal setting. In particular, it enables us to reassess some of Horty’s
(2001) observations formally.

Chapter 3. The choices that agents make depend on their abilities. Obligations
and prohibitions often depend on the abilities of agents too. In fact, one of the most
ubiquitous principles governing normative codes and ethical systems is the metaethical
principle called Ought implies Can (OiC). Intuitively, the principle states that “each
obligation presupposes a possibility of fulfilling it” (Hintikka, 1970, p.83). OiC has a

2See also (Armgardt et al., 2018; Broersen et al., 2006; Broersen, 2008; van Berkel and Lyon, 2019b;
Ciuni and Lorini, 2018; Wansing, 2006) for other temporal characterizations of STIT.

3Alternative deontic temporal STIT logics are given by Broersen (2008) and Lorini (2013). Both take
deontic concepts as defined by using violation constants in the spirit of Anderson (1958) (the former uses
the implicitly temporal XSTIT choice operator). See page 8 for an introduction to Anderson’s approach.

4



1.1. Guiding Questions and Problems

long history within philosophy and has been traced back to Aristotle (The Nicomachean
Ethics, translated by Ameriks and Clarke, 2000), ancient Roman law (Vranas, 2007), and
Immanuel Kant (Critique of Pure Reason, translated by Guyer and Wood, 1998). Over
the past decades, OiC became a topic of investigation in its own right (Copp, 2017; Kohl,
2015; McConnell, 1989; Stocker, 1971). The result is a vast body of literature on the
topic containing a variety of interpretations of the principle (van Ackeren and Kühler,
2015; Vranas, 2007). OiC is not uncontroversial and, despite its importance, there is no
clear consensus on its interpretation, let alone its implications. Determining the right
interpretation of OiC is crucial for normative systems that adopt it since it influences
the degree to which an agent can be burdened with and relieved from duties (Dahl, 1974;
McConnell, 1989). For instance, can I be obliged to take my bike to work this morning if
my bike was stolen? Moreover, since OiC is part of various ethical and (ancient) legal
systems, it becomes all the more important to understand OiC and its various readings
better. Formal models provide an effective way of increasing our knowledge in this
respect.

Indeed, in one way or another, OiC is already a principle of most deontic logics (Hilpinen
and McNamara, 2013). What is more, OiC is said to be one of those deontic logic
properties commonly taken as ‘undisputed’ in the field (van der Torre, 1997). Surprisingly,
there is a severe discrepancy between the philosophical and logical approaches to OiC. For
instance, in philosophy, the principle is predominantly taken as agentive: “what ought
to be done, can be done”; cf. (van Ackeren and Kühler, 2015). Nonetheless, in deontic
logic, the principle is commonly taken as impersonal: “what ought to be, is possible”;
cf. (Hilpinen and McNamara, 2013). Thus, there is a significant gap between the formal
treatment of OiC and its philosophical counterpart that it aims to model. The second
research question concerns the formal analysis of Ought implies Can:

Research question 2. What are the logical relations between the various readings
of Ought implies Can encountered in philosophy? What are the consequences of these
readings for formal normative reasoning?

In answering these questions, we find that the level of abstraction adopted in most
deontic logics keeps us from capturing essential nuances and refinements necessary for
an adequate analysis of Ought implies Can. We address the above questions within the
formalism of deontic STIT and develop a class of deontic STIT logics with which we
analyze ten philosophical readings of OiC. Furthermore, we employ these logics to formally
investigate how other pivotal principles relate to OiC (see page 16 for an overview).
The primary motivation for adopting STIT is that STIT provides a formal language
conducive to modeling various refined agentive concepts, such as ‘ability’, ‘refrainability’,
and ‘deliberative choice’ (Belnap et al., 2001). Alternative formalisms, in this respect, are
the logic of ability by Brown (1988) and the logic of ‘bringing it about that’ by Elgesem
(1997). In contrast to these alternatives, the STIT formalism is highly modular, and
deontic extensions of STIT are well-developed (see research question 1).

5



1. Introduction

1.1.2 Part II: Action and Normative Reasoning

The second part of this thesis deals with the performance of actions in relation to
normative concepts such as obligation and prohibition. Whereas Part I deals with the
choices available to agents and the outcomes thereof, Part II treats explicit actions as
first-class citizens. Here too, we take action to assume indeterministic time at its base:
at each given moment in time, an agent can perform various actions which may or may
not ensure an envisioned outcome. This view takes every action to be associated with
a change, namely, a transition between two states (von Wright, 1963a; Hilpinen, 1997).
It supports the decision to consider actions as syntactically different from propositions
describing states of affairs. A common approach to upholding this distinction is by using
modalities for actions, such as in Propositional Dynamic Logic (PDL, for short), where
an action modality [δ] is interpreted as “the performance of action δ ensures that” (some
state of affairs holds) (Åqvist, 1974; Fischer and Ladner, 1979).4 Such logics are also
referred to as dynamic action logics. The formalism was first adapted to the context of
normative reasoning by Meyer (1988) and continues to receive attention to the present
day, e.g., see (Giordani and Canavotto, 2016; Giordani and Pascucci, 2022; Hughes et al.,
2007).

Chapter 4. Normative codes prescribe (or prohibit, for that matter) certain states
of affairs and the performance of particular actions. Instrumentality statements—or
means-end relations—fulfill an essential role in this respect. They describe how actions
serve as instruments (means) for the attainment of desired outcomes (ends) (Condoravdi
and Lauer, 2016; Hughes et al., 2007; von Wright, 1972b). These statements are central
to practical reasoning and deliberation and guide an agent towards achieving her goals
(Bratman, 1981; Hare, 1971; von Wright, 1972a). Furthermore, means-end reasoning
plays a central role in Belief-Desire-Intention (BDI) logics (Rao and Georgeff, 1995) and
related multi-agent systems (Dastani, 2008), where means are considered as plans that
stipulate a sequence of (sub)actions needed to attain a given goal (Rao and Georgeff,
1998). Norms play an important role in this respect: they can prescribe or forbid the
attainment of certain ends on the one hand and the performance of particular actions
on the other. In deontic logic, this twofold role assigned to norms is well-studied and,
in the case of obligations, it is referred to as the dichotomy between ought-to-be and
ought-to-do (Castañeda, 1972). The dichotomy is an important challenge for deontic
logic and NorMAS, where the main question is whether the latter can be reduced to the
former (Pigozzi and van der Torre, 2018).

There is, however, another role that norms can play in relation to instrumentality
statements, and that is when such statements form the content of obligations and
prohibitions. To see this, consider the following example: “It is prohibited to use
nonpublic information as an instrument to acquire financial profit on the stock market”.
This prohibition is known as the law on ‘insider trading’. Notice that it is neither

4St. Anselm (1033 – 1109) is said to be the first to investigate the logical structure of action (Segerberg,
1992). Hilpinen (1997) provides a detailed history of action logic.
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prohibited to use nonpublic information nor is it prohibited to acquire financial profit
on the stock market. Only as a means to attain financial profit, using such information
is forbidden. Prohibitions of the form expressed above articulate which actions may
not be employed as instruments for achieving particular goals. We call obligations and
prohibitions belonging to this category norms of instrumentality. Despite the ubiquity of
normative constraints on instrumentality in legal, social, and ethical systems—think of
protocols, rules of games, and fairness constraints—an investigation of their philosophical
and logical ramifications in logic is absent. This thesis sets out to fill this knowledge gap,
providing the foundations for formal reasoning with norms of instrumentality.

Research question 3. How can we formally represent obligations and prohibitions
about instrumentality statements? Moreover, how do they relate to the dichotomy between
ought-to-be and ought-to-do statements?

We address these questions by providing a modal deontic action logic based on Wright’s
theory of agency and instruments (1963b,1972b). Our approach deviates from the
traditional approach to dynamic action logic. Namely, we propose a reduction of action
modalities to alethic formulae containing action constants functioning as witnesses,
i.e., “action δ is performed by agent i when the next moment witnesses the successful
performance of δ by agent i”. The use of action witnesses as constants preserves the
critical view of actions as distinct, first-class citizens in the formal language. The resulting
language accommodates formalizations of various notions of instrumentality. We point
out that this thesis is not concerned with instrumentality in planning and BDI logics
(Meyer et al., 2015). Instead, we investigate norms about instrumentality relations and
the logical properties of the obligations and prohibitions that result from them.

Chapter 5. As an application of instrumentality in the context of normative reasoning,
we investigate the deontic theory of the south Asian Sanskrit philosopher Man.d. ana
miśra (8CE), Man.d. ana, for short (Freschi, 2010). Man.d. ana belongs to the school of
Mı̄mām. sā, which is one of the most important schools of Indian philosophy with a long
and rich history of investigating normative reasoning (Ciabattoni et al., 2015). The
school—active for over two millennia—focuses on the exegesis and systematization of
the prescriptive parts of the Vedas, the sacred texts of what is now called Hinduism.
Mı̄mām. sā authors invested much effort in rationally interpreting Vedic commands and
resolving conflicts. The result is a vast body of rigorously structured theories of normative
reasoning. Man.d. ana’s deontic theory is unique because it contains a deontic reduction:
i.e., a uniform reduction of all Vedic commands to purely descriptive statements about
actions instrumental to desirable and undesirable outcomes. For Man.d. ana, a command
such as “If one desires rain, one should perform the Kār̄ıri ritual” is reduced to the
descriptive statement “The Kār̄ıri is an instrument for attaining rain”.

Due to their highly systematic nature, Mı̄mām. sā theories continue to be important
to numerous fields, including, among others, Indian jurisprudence (McCrea, 2010).
However, various Mı̄mām. sā doctrines are still unexplored or misunderstood despite
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their undeniable importance. In particular, how Man.d. ana’s deontic reduction relates to
normative reasoning principles prevailing in the common Mı̄mām. sā tradition remains to
be determined. Logic provides an effective formal tool for a rigorous analysis of these
doctrines (Ciabattoni et al., 2015; Freschi et al., 2017). In fact, there are some striking
similarities between Man.d. ana’s reduction and what is known as Anderson’s reduction
(Anderson, 1958) in deontic logic. An Andersonian reduction reduces deontic statements
of the form “It is obligatory to stop for a red light” to statements of the form “Not
stopping for a red light necessary leads to a violation” (Anderson and Moore, 1957;
Castañeda, 1972). Deontic action logics that adopt the Andersonian reduction deal
considerably well with challenging benchmark examples from the literature (Meyer, 1988).
Such examples are referred to as deontic puzzles or paradoxes (Hilpinen and McNamara,
2013) and are discussed on page 13. Accordingly, we investigate the following questions:

Research question 4. How can we formalize Man. d. ana’s deontic theory, and how does
the theory relate to the common Mı̄mām. sā tradition? How does the resulting logic deal
with contemporary deontic paradoxes?

To address the above questions, we adopt the formal language developed in Chapter 4
and tailor the corresponding logic to Man.d. ana’s theory of normative reasoning. The
purpose of this Sanskrit application is twofold: First, we show that logic can deepen our
understanding of Man.d. ana’s deontic reduction and its position in the Mı̄mām. sā tradition.
Second, we formalize Man.d. ana’s theory to demonstrate the advantages of incorporating
instrumentality relations in the formal analysis of normative reasoning, e.g., in relation
to dealing with deontic paradoxes.

1.1.3 Part III: Argumentation and Normative Reasoning

The first two parts of this thesis belong to the modal logic tradition in deontic logic.
In contrast, Part III employs AI methods from the field of formal argumentation and
defeasible reasoning to address the novel challenge of generating explanations in the
context of normative reasoning. Some preliminaries are required.

Defeasibility. First, Part III deals with defeasible normative reasoning. We reason
defeasibly when we draw conclusions due to the absence of information to the contrary
(Reiter, 1980), when our reasoning is rationally compelling but not necessarily deductively
valid (Koons, 2022), or when we jump to conclusions on the basis of normality, typicality,
and probability (Straßer, 2014). In all these readings, the premises justify the conclusion
even though additional information may force one to retract the conclusion later on
(Pollock, 1987). Most of our daily life reasoning is defeasible (Toulmin, 1958) and, due to
the presence of conflicts, violations, exceptions, and priorities, normative reasoning is
inherently defeasible too (Nute, 1997). Formal systems of defeasible reasoning emerged in
the 1980s due to rapid developments in AI5 and logical systems of defeasible normative

5In particular, see the seminal Special Issue on Non-Monotonic Logic (Bobrow, 1980) of the Artificial
Intelligence journal. For a historic overview, we refer to the work of Koons (2022).
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reasoning were introduced soon after (Horty, 1997; Makinson and van der Torre, 2001;
Governatori and Rotolo, 2006). The central characteristic of formalisms of defeasible
reasoning is that they are nonmonotonic. That is, they do not satisfy the property of
monotonicity, which ensures that inference of a conclusion from a set of premises is robust
under expansions of those premises. In other words, nonmonotonic formalisms allow for
the retraction of a conclusion in the light of additional information (Straßer, 2014).

Argumentation. Formal argumentation provides a uniform theory of nonmonotonic
reasoning. Namely, many nonmonotonic logics can be represented in formal argumentation
yielding the same inference relation as the characterized logic. See the work of Arieli
et al. (2021) and Straßer (2014) for an overview of these results.6 The central concept of
this field is that of an instantiated argumentation framework, introduced by Dung (1995).
It consists of a set of arguments—where arguments comprise a claim and a collection of
reasons in support of it—together with an attack relation that defines conflicts between
these arguments. Furthermore, semantic extensions are identified as sets of justified
arguments collectively defendable against counterarguments. The idea of defeasibility is
then captured in terms of counterarguments attacking an initial argument. For instance,
I may argue that Franz can sing because Franz is a bird. An argument I may need to
retract after you counterargue that Franz is an ostrich, and ostriches cannot sing.

Chapter 6. By providing argumentative characterizations of nonmonotonic deontic
logics, we can harness existing methods from the field of formal argumentation and
apply them to the context of normative reasoning. The most promising and well-studied
formalisms in this respect is that of Input/Output logic (I/O logic, for short) (Makinson
and van der Torre, 2001). In brief, I/O logics model normative systems that stipulate
how to contextually detach obligations and permissions from a normative code (Parent
and van der Torre, 2013). In particular, nonmonotonic I/O logics (Makinson and van
der Torre, 2001; Parent, 2011) have been employed to defeasibly reason with deontic
conflicts, norm violations, and exceptions. Some first results concerning argumentative
characterizations of normative reasoning and the I/O formalism have been obtained
(Straßer and Arieli, 2015; Liao et al., 2018; Straßer and Pardo, 2021).7 However, much
work needs to be done. For instance, these approaches consider only fragments of the
standard I/O systems, employing languages restricted to literals. What is more, these
approaches are not suitable for explanatory purposes. For instance, Liao et al. (2018) and
Straßer and Pardo (2021) take arguments to consist only of norms and not of inferences,

6Prakken (2018) identifies two views on formal argumentation: argumentation as inference and
argumentation as dialogue. We adopt the view of argumentation as inference. The literature on formal
dialogues is vast: ranging from inquiry, information-seeking, and persuasion dialogues of argumentation,
to dialogues of practical deliberation (Black and Hunter, 2007; McBurney and Parsons, 2009). A number
of these works provide for dialogical generalizations of argumentation as inference, where two agents
discuss the acceptability of a given argument, e.g., (Prakken, 2005).

7See the work of Dong et al. (2020) and Governatori et al. (2018) for argumentative characterizations
of other deontic logics.
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and for Straßer and Arieli (2015), arguments may contain irrelevant information. Part
III continues this research program.

Research question 5. How can we provide a modular logical formalism that yields
argumentative characterizations of a large class of nonmonotonic Input/Output logics?

Once such a characterization is obtained, we can start applying existing methods from
formal argumentation to I/O reasoning. We are interested in one such application:
explanations. The use of formal argumentation for explanatory purposes is promising
and the field is rapidly expanding (Borg and Bex, 2021; Čyras et al., 2021).

In the context of agents and normative reasoning, explanations are critically important.
In order to motivate compliant behavior, an agent must understand why she is required
to behave in a specific way (particularly if she disagrees with her alleged duty). In
this respect, it does not suffice for the agent to know that an obligation holds: she
must know why it holds. Especially in view of normative conflicts, answers to such
why questions become crucial. Consider the question “why am I permitted to take over
on the left, despite my obligation to drive on the right?”. A satisfactory answer not
only explains that I am permitted but also why the other obligation does not hold. In
the above example, the permission can be an exception to the obligation, thus making
the latter inapplicable in the context of taking over other vehicles. We call answers to
such questions deontic explanations8. Such explanations not only improve an agent’s
understanding of norms but also provide reasons that motivate the agent’s appropriate
conduct. Most deontic logics only show that some obligation holds, and deontic logic has
not yet been investigated with the aim of generating explanations. In fact, explaining
normative reasoning is identified by Peirera et al. (2017) as one of the three challenges
for formal argumentation approaches to NorMAS.

Research question 6. How can we accommodate deontic explanations in the developed
argumentative characterizations of the various Input/Output logics?

Enhancing the explainability of I/O reasoning is an attempt to optimize the existing
expressivity of the I/O formalism. We can think of research question 5 as laying the
foundation for answering research question 6. We address research questions 5 and
6 by developing sequent-style proof calculi that generate explanatory I/O arguments.
The sequent calculus formalism—originating in the work of Gentzen (1934)—defines
proof systems in terms of sets of rules. One of the principal characteristics of sequent
systems (compared to Hilbert-style axiomatic proof systems) is the rule-based approach
to constructing proofs as trees: the leaves of a tree are either trivial logical truths or
assumptions, branches are the result of rule applications, and the tree’s root is the
conclusion (Negri et al., 2008).9 Over the past decades, the sequent framework has been

8The term was suggested by Agata Ciabattoni, Christian Straßer, and Leon van der Torre.
9Sequent calculi can be shown to possess the property of analyticity, which expresses that any

derivable formula is derivable with a proof solely consisting of subformulae of the formula in question.
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extended to cover a wide range of logics and formalisms, including modal logics (Negri,
2005). We are primarily interested in developing classes of sequent systems that generate
logical arguments that show a strong correspondence with formal argumentation, e.g.,
see the work of Arieli and Straßer (2015).

Chapter 7. One of the main contributions of Chapter 6 is the development of a class
of sequent-style proof systems characterizing monotonic normative reasoning in the I/O
formalism. The main technical result of that chapter is that a large class of nonmonotonic
I/O logics can be argumentatively characterized through argumentation frameworks
instantiated with arguments generated by these proof systems. An immediate question
is whether the developed proof systems can be modularly extended with rules that
directly capture defeasible normative reasoning. In Chapter 7, we address this question
by pursuing a more general aim. For this, we make use of the following observation:
An essential feature of defeasible reasoning (and nonmonotonic logics) is that previous
inferences can be retracted in the light of novel information. To illustrate, one may find
that an initial obligation “you ought to drive on the right side of the road”, must be
revised in the context of an exceptional circumstance, e.g., when overtaking another
vehicle. Thus, we say, in the context of defeasible reasoning, the status of a formula as a
logical conclusion may have to be revised (several times). The research question pursued
in this final chapter is formulated accordingly:

Research question 7. How can we integrate status revision considerations of defeasible
reasoning into the object level of sequent-style proof systems? Can we show these proof
systems to yield a nonmonotonic inference relation?

In formal argumentation, the process of revision is intuitively represented in terms of
attack and defense. Our primary objective is to integrate the central concepts of revision,
attack, and defense into a proof-theoretic approach to nonmonotonic logic. The expression
of attack and defeat in sequent-style proof systems has been extensively investigated, e.g.,
by Arieli and Straßer (2015; 2019). The main difference with our objective is that existing
approaches leave both revision and nonmonotonic inference for the meta-analysis of the
proof system. We set out to incorporate these features on the level of the proof. The
result is a novel proof-theoretic approach for nonmonotonic reasoning with conflicting
information in which revision procedures are fully integrated on the object level of proofs.
We will demonstrate that nonmonotonic inference in our calculi strongly relates to various
types of inference in formal argumentation. Returning to our initial aim, we will leverage
these results to enhance the calculi from Chapter 6 to obtain a class of nonmonotonic
proof systems for normative reasoning. A direct advantage of the approach is that we can
express normative conflicts in the object language of proofs by employing the integrated
notions of attack and defense.

That is, one can construct proofs by merely decomposing a formula, making it an effective tool for proof
search. Analyticity is also useful for determining other properties, such as consistency of a logic.
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Situating the Thesis

The logical analysis of normative reasoning is an interdisciplinary research field. The
results of this thesis are specifically relevant to philosophical logic and Knowledge
Representation and Reasoning (KR). As a subfield of philosophy and logic, philosophical
logic deals with applying logical methods to problems in philosophy. The main aim is to
enhance our understanding of these problems through mathematical analysis. Think of
problems concerning properties of time, knowledge, and norms. The use of modal logic
is the predominant approach in this field. Parts I and II contribute to this field. As a
subfield of AI, KR deals, among others, with the formal representation of knowledge
for reasoning tasks. We find various modifications of philosophical logics employed in
the context of KR. Think of temporal, epistemic, and deontic logics. In particular, the
I/O formalism is highly suitable for defeasible normative reasoning tasks, representing
normative systems as knowledge bases. Part III primarily contributes to KR.

1.2 Methodology

The field of deontic logic is not characterized by a principal methodology and the
interdisciplinary research presented in this thesis involves methods from philosophy, logic,
and AI. In this section, we reflect on various methods. Formal logics are, by definition,
abstractions and this implies that design decisions must be made. Such choices largely
depend on the reasons of formalization. In general, we can distinguish between theoretical
and practical reasons. This thesis deals with both.

Concerning theoretical reasons, formal models provide mathematically precise means—i.e.,
analytic tools—for enhancing our understanding of concepts and reasoning with concepts.
Formalization has the unique advantage of employing mathematical methods for evaluat-
ing such models with respect to, for instance, a set of formally specified properties the
model should ideally satisfy (cf. page 16 below). Furthermore, mathematically precise
languages facilitate the comparison of various logics modeling the same (or similar)
phenomena. Part I and II involve such theoretical reasons.

Practical reasons are concerned with (defeasible) reasoning tasks, computability, ex-
plainability, and implementations. For instance, logics of normative reasoning can be
harnessed for reasoning tasks that deal with conflicts, planning, and compliance checking.
Another prominent method for practically assessing a developed logic is by determining
its computational complexity.10 Moreover, recent developments in AI show that formal
models can be of specific use in generating explanations. Part III addresses practical
reasons concerned with defeasible reasoning, conflict resolution, and explanation.

When developing a formal logic, the following two central questions must be addressed:

1. Which formalism should be employed in developing a formal system?
10Complexity considerations and implementation fall outside the scope of this thesis.
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2. How can we assess the correctness or suitableness of a formal system with respect
to the phenomenon it intends to model?

The above questions are strongly connected. The first question relates to the various
types of formalisms available: For instance, one may adopt a propositional or a first-
order language, a classical or an intuitionistic base, a modal approach, a nonmonotonic
approach, and so on. Additionally, one may provide different semantic and proof-theoretic
characterizations of the same logic. The choices made in this respect strongly depend on
determining the right depth of abstraction. We address these considerations throughout
this thesis in the respective chapters.

The second question concerns the evaluation of the obtained formalism. In the remainder
of this section, we further elaborate on this question and discuss three methods often em-
ployed for assessing deontic logics: these concern deontic puzzles, metaethical principles,
and philosophical foundations. We frequently refer to these methods throughout the rest
of this thesis.

1.2.1 Examples and Deontic Puzzles

As in many other fields—such as formal argumentation (Caminada, 2004), linguistics
(Condoravdi and Lauer, 2016; Kratzer, 1981), and ethics (Sverdlik, 1985)—examples
and counterexamples play a central role for developments in deontic logic. Often, such
examples are given in natural language and appeal to some common intuition. A
benchmark example is a quintessential example that a formalism should be able to deal
with. Failing to address such an example correctly does not necessarily imply refutation
of the formalism at hand but, at minimum, forces one to reflect on whether to revise the
formalism or whether the model constitutes an exception to the example.

The most prominent benchmark examples in deontic logic are deontic puzzles or deontic
paradoxes. They are the driving force for defining and refining deontic systems (Hilpinen
and McNamara, 2013). They highlight typical properties of normative reasoning and
usually consist of the (un)derivability of certain formulae, counterintuitive to a given
common-sense reading (van der Torre, 1997). We follow the suggestion of Hilpinen and
McNamara (2013) and adopt the overarching term puzzles to denote these challenges.
We distinguish between two types of puzzles: The first type emphasizes challenges of
conditional obligations. The second type concerns unintuitive consequences of the logical
properties of deontic systems. In various chapters of this thesis, we assess the developed
formalisms in light of such puzzles. Here, we briefly recapitulate some of the most
prominent ones and refer to Hilpinen and McNamara (2013) for an extensive overview.11

Remark 1.1. Most of the problems indicated by the paradoxes pertain to Standard
Deontic Logic (SDL), one of the oldest systems in deontic logic, e.g., see (Hilpinen and

11This thesis investigates obligations, prohibitions, and norms. It does not deal with the study of
permission, which can be taken as a proper subfield of deontic logic (Hansson, 2013). The study of
permission comes with its own set of deontic puzzles (Hilpinen and McNamara, 2013).
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McNamara, 2013). The language of SDL consists of the propositional connectives for
negation (¬), disjunction (∨), conjunction (∧), and material implication (→), together
with the monadic modality O denoting “it is obligatory that” (some proposition holds).
SDL is defined as the normal modal logic KD, containing the deontic consistency axiom
¬(Oφ∧ O¬φ), often referred to as the D-axiom (Chellas, 1980). To facilitate discussion,
some of the puzzles considered in this section contain, besides their natural language form,
a formal representation in SDL.

Puzzles of Conditional Obligations. Of all the challenges of conditional norms,
contrary-to-duty (CTD) reasoning yields the most notorious challenge of them all (van der
Torre, 1997; van der Torre and Tan, 1998). CTD reasoning deals with those obligations
that hold whenever a violation ensues. There are many different CTD puzzles. Here, it
suffices to discuss the original CTD paradox proposed by Chisholm (1963). The paradox
pinpoints problems of conditional obligations and (deontic) detachment (Parent and van
der Torre, 2017). It consists of the following four sentences:

(C1) Billy ought to go to the assistance of her neighbors.

(C2) If Billy goes to the assistance of her neighbors, she ought to tell them she is
coming.

(C3) If Billy does not go to the assistance of her neighbors, she ought not to tell them
that she is coming.

(C4) Billy is not going to the assistance of her neighbors.

The scenario expresses a CTD situation: (C1) is referred to as the unconditional initial
obligation, (C2) is a compliant-with-duty obligation expressing an obligation conditional
on the fulfillment of the initial obligation; and (C3) is a contrary-to-duty obligation
expressing what ought to be in case a violation occurs. The last premise (C4) tells us
that the agent is in a violation state contrary to her initial obligation. Following Hilpinen
and McNamara (2013), “it is not at all as easy as it might seem to faithfully represent
scenarios like those [. . . ] and it proved to be a real shortcoming of the standard systems”
(p.83) such as Standard Deontic Logic. The introduction of the paradox marks a turning
point in deontic logic, initiating a thorough investigation of conditional obligations and
the concept of violation.12 Hilpinen and McNamara (2013) and Prakken and Sergot
(1996) provide a (critical) overview of various solutions to the paradox. In Chapter 2, we
discuss temporal CTD reasoning. In Chapter 5, we discuss an atemporal CTD scenario—
i.e., the Gentle Murder Paradox (Forrester, 1984)—using an action-based deontic logic.

12This thesis treats obligations as monadic and defined conditional modalities. We do not investigate
primitive dyadic operators. A dyadic obligation O(φ/ψ) expresses that “in the context ψ, it is obligatory
that φ”. Its antecedent enables one to single out what is obligatory in specific contexts (Parent, 2021).
For this reason, dyadic deontic logics are suitable for reasoning about violation contexts (Chisholm, 1963)
and differentiating between prima facie and all-things-considered obligations (Alchourrón, 1996).
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In Chapter 6, we discuss deontic explanations of CTD scenarios in the context of the
Input/Output formalism.

Puzzles of Logical Properties. One of the oldest deontic puzzles in the literature
is Ross’ Paradox (Ross, 1944). It consists in deriving from the obligation (R1) the
counterintuitive obligation expressed in (R2):

(R1) It is obligatory that you mail the letter.

(R2) It is obligatory that you mail the letter or burn the letter.

In Standard Deontic Logic, the scenario is formalized as:

(r1) O(mail)

(r2) O(mail ∨ burn)

The oddity of the puzzle is that (R1) implies the obligation (R2) which can be fulfilled
by burning the letter—an act that violates the obligation in (R1). As Hilpinen and
McNamara (2013) put it: “it remains odd to think I could plead partial mitigation in
failing to mail the letter by burning it instead with ‘Well, at least I fulfilled my obligation
to mail or burn it’ ” (p.63). In Standard Deontic Logic, (r2) logically follows from (r1).
Most normal modal logics suffer from this paradox due to the normality of the obligation
modality (see Remark 1.1). A prominent solution to the paradox is to block the above
logical inference by adopting a non-normal modal interpretation of the deontic modalities
(Chellas, 1980). In Chapters 3 and 5, we discuss Ross’ Paradox.

As indicated above, some puzzles may be solved by adopting a weaker—e.g., non-normal—
modal interpretation of the obligation modality O. However, there is a price to pay:
one may lose some intuitively desirable inferential power of the logic in question. The
Alternative Service Challenge (Van Fraassen, 1973) highlights this. The challenge consists
in deriving from the following two commands:

(A1) You should fight in the army or perform alternative service.

(A2) You should not fight in the army.

The third command:

(A3) You should perform alternative service.

The inference of (A3) from the premises (A1) and (A2) is intuitively desirable. In fact, it
is valid in Standard Deontic Logic where the scenario is represented as follows:
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(a1) O(fight ∨ service)

(a2) O(¬fight)

(a3) O(service)

However, by adopting weaker modal logics—e.g., to solve other deontic puzzles—the
inference of (a3) from (a1) and (a2) is often lost (Van Fraassen, 1973; Chellas, 1980;
Horty, 1994). The challenge lies in solving some of the deontic puzzles while preserving
certain desirable inferences. We discuss this challenge in the light of deontic dilemmas in
Chapters 3 and 5.

1.2.2 Metaethical Principles

Another accepted way of assessing a developed logical systems is by comparing it
with lists of principles the logic must ideally satisfy. Such principles are sometimes
referred to as postulates or desiderata. Think of the rationality postulates in the field of
formal argumentation (Caminada and Amgoud, 2007), the postulates of belief revision
(Alchourrón et al., 1985), rationality principles for multi-agent systems (Dastani, 2008),
and desirable properties of nonmonotonic inference (Arieli et al., 2022b; Straßer, 2014).

In normative reasoning, such criteria have been referred to as metaethical principles
(McConnell, 1985), which are principles that ideally any ethical theory should satisfy.
For instance, Ought implies Can is a metaethical principle. Metaethical principles can
pinpoint flaws or weaknesses of such theories, giving rise to modifications and discussions.

Similarly, metaethical principles are central to the formal analysis of normative reasoning.
We find applications of such principles since the early days of deontic logic (von Wright,
1951; Anderson and Moore, 1957). The ineptitude of particular formalisms to satisfy
metaethical principles led to new developments in deontic logic. For example, the
deficiency of normal modal logics to consistently represent deontic dilemmas led to the
introduction and analysis of non-normal modal deontic logics (Chellas, 1980). In this
thesis, we consider several such metaethical principles:

1. Ought implies Can: What an agent is obliged to do, an agent can do;

2. Deontic Consistency: Obligations are (individually) consistent;

3. Deontic Contingency: Obligations range over contingent states of affairs;

4. No deontic dilemmas: Obligations are jointly consistent;

5. Dilemmas are possible: Obligations can consistently require what is incompatible;

6. No Vacuous commands: Obligations are not about what trivially holds.
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The above principles are phrased in terms of obligations, but one may likewise think of
them in terms of prohibitions. It is not the case that failing to satisfy one of the above
principles means the refutation of the proposed formal system. Some deontic theories may
deliberately abstain from adopting some of these principles. Nevertheless, metaethical
principles invite one to reflect critically on specific aspects of the formalism.

In Chapter 3, we thoroughly discuss the above list of principles and investigate their
logical interdependencies. In Chapters 4 and 5, we investigate several such principles in
the context of action and instrumentality.

1.2.3 Philosophical Foundations

Several sources can be used in order to formalize a particular phenomenon. One of which
is philosophy. For deontic logics—but also agency logics and epistemic logics—one may
build a formal system upon existing philosophical theories on the respective topics. The
upshot of adopting this approach is that one’s formal system is grounded in a thoroughly
justified theory. Another advantage is that one can often lean on results that arose
through a rich and long history of critical debates on the topic at hand. Moreover, such
philosophical theories often provide a systematic study of principles, properties, and
(counter)examples against which the formal systems can be evaluated.

To illustrate this point, we mention some influential philosophical theories in logic. Von
Wright’s theory of agency as developed in (von Wright, 1963a; von Wright, 1972b) has
proven to be a rich source for developments in the logic of agency and action, e.g.,
(Åqvist, 2002; Segerberg, 2002). From the viewpoint of philosophy of law, Hohfeld serves
as an essential source of inspiration (Glavaničová and Pascucci, 2021; Kanger, 1972;
Markovich, 2020). Of recently, the ancient philosophical school of Mı̄mām. sā—dealing
with normative reasoning in the context of the Vedas—has been employed as a fruitful
source for developing deontic systems, e.g., (Ciabattoni et al., 2015; Freschi et al., 2019;
Lellmann et al., 2021; van Berkel et al., 2022a). The same applies to formal systems of
Talmudic reasoning, e.g., (Abraham et al., 2011).13

Several chapters in this thesis are grounded in philosophical theories: Chapter 3 is based
on an extensive survey of the philosophy of Ought implies Can, Chapter 4 is rooted
in von Wright’s philosophy of action and instrumentality, and Chapter 5 proposes a
formalization of the deontic theory of one of the central authors of the school of Mı̄mām. sā.
Concerning the latter, we provide a more detailed discussion of our methodology in
Chapter 5, which involves interpreting and translating Sanskrit texts.

13Another commonly recognized source of formalization is intuition. In fact, new fields may often
largely depend on intuition as a driving forces behind developments due to the lack of a well-grounded
theory. We refer to the work of Caminada (2004) for a discussion of intuition and the difference between
intuition of lay people (logica utens) and those that arise through systematic study (logica docens).
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1.3 Outline
Part I is devoted to analyzing normative reasoning in the context of agential choice.

In Chapter 2, we develop a sound and complete Temporal Deontic STIT logic (TDS). We
show how the proposed semantics of TDS can be truth-preservingly transformed into the
traditional deontic STIT semantics using utility functions. We demonstrate the limits
of the traditional approach by providing an incompleteness result for explicit temporal
contrary-to-duty reasoning in the context of deliberative agency.

Chapter 3 provides a comprehensive logical study of ten philosophical interpretations
of Ought implies Can (OiC). We modify the deontic STIT formalism of Chapter 2 and
develop a class of sound and complete deontic STIT logics (OS) axiomatizing these ten
OiC interpretations. We employ the resulting logics to provide a formal taxonomy of the
(in)dependencies of the various OiC readings. We then extend this class of STIT logics
with other metaethical and normative reasoning principles and determine their relation
to OiC.

Part II formally addresses instrumentality relations in the context of normative reasoning.

In Chapter 4, we develop a logic of action and norms (LAN) to reason about instrumentality
statements. We identify a ubiquitous yet previously unaddressed norm category called
norms of instrumentality, formalize it, and investigate its logical relations to other well-
known norm categories. Based on the work of von Wright, we discuss possible extensions
of LAN that model more refined instrumentality notions.

In Chapter 5, we provide an application of the logical language developed in Chapter 4
to Sanskrit philosophy. In particular, we formally analyze the deontic theory of the
Mı̄mām. sā philosopher Man.d. ana, which reduces all commands to statements about actions
as instruments for (un)desirable results. We provide a sound and complete logic (LM)
capturing this reduction and use the logic to enhance our understanding of Man.d. ana’s
theory. We show how the logic LM deals with well-known deontic paradoxes.

In Part III, we use methods from formal argumentation to address deontic explanations
and defeasible normative reasoning.

In Chapter 6, we introduce a modular proof theoretic formalism that accommodates
explanation by integrating meta-reasoning about the (in)applicability of norms into the
object language of its proofs. The resulting calculi are called Deontic Argumentation
Calculi (DAC). Using these calculi, we provide a sound and complete argumentative
characterization of the class of nonmonotonic constrained Input/Output logics. We discuss
the explanatory nature of our formalism by applying existing explanation methods from
the argumentation literature to our formalism.

In Chapter 7, we develop Annotated Calculi (AC), a highly modular class of proof systems
internalizing aspects of formal argumentation within the object language of its proofs.
We show the consequence relation of AC to be nonmonotonic and to strongly correspond
with the inference relation of formal argumentation. We extend the formalism to include
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defeasible normative reasoning. Namely, we incorporate the DAC formalism of Chapter 6
and show that a correspondence with formal argumentation is preserved.

Last, in Chapter 8, we conclude by giving an overview of the central contributions of this
thesis. We reflect on general conclusions that can be drawn from the conducted research
and discuss the most promising future research directions.

1.4 Publications
The chapters comprising Parts I–III of this dissertation are extensions of published,
peer-reviewed articles. In each respective chapter, we explain in detail the differences
between these articles and the present work. Here, we briefly list the relevant publications.

Chapter 2

• Kees van Berkel and Tim Lyon (2019). “A Neutral Temporal Deontic STIT Logic”.
In: Logic, Rationality, and Interaction - 7th International Workshop (LORI 2019).

Chapter 3

• Kees van Berkel and Tim Lyon (2021). “The Varieties of Ought-Implies-Can and
Deontic STIT Logic”. In: Deontic Logic and Normative Systems - 15th International
Conference (DEON 2021).

Chapter 4

• Kees van Berkel, Tim Lyon, and Francesco Olivieri (2020). “A Decidable Multi-
agent Logic for Reasoning About Actions, Instruments, and Norms”. In: Logic and
Argumentation - Third International Conference (CLAR 2020).

• Kees van Berkel and Matteo Pascucci (2018). “Notions of instrumentality in agency
logic”. In: International Conference on Principles and Practice of Multi-Agent
Systems (PRIMA 2018).

Chapter 5

• Kees van Berkel, Agata Ciabattoni, Elisa Freschi, Francesca Gulisano, and Maya
Olszewski (2021). “The Gentle Murder Paradox in Sanskrit Philosophy”. In:
Deontic Logic and Normative Systems - 15th International Conference (DEON
2021).

• Kees van Berkel, Agata Ciabattoni, Elisa Freschi, Francesca Gulisano, and Maya
Olszewski (2022) “Deontic paradoxes in Mı̄mām. sā logics: there and back again”.
In: Journal of Logic, Language, and Information.14

14This journal publication is an extended version of the preceding conference article.

19



1. Introduction

Chapter 6

• Kees van Berkel and Christian Straßer (2022). “Reasoning With and About Norms
in Logical Argumentation”. In: Frontiers in Artificial Intelligence and Applications:
Computational Models of Argumen (COMMA 2022).

Chapter 7

• Ofer Arieli, Kees van Berkel, and Christian Straßer. “Annotated Sequent Calculi
for Paraconsistent Reasoning and Their Relations to Logical Argumentation”. In:
Main Track of the 31st International Joint Conference on Artificial Intelligence
(IJCAI 2022).
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CHAPTER 2
Time, Choice, and Obligation

This chapter deals with obligation and choice in an explicitly temporal setting. We focus
on the logic of ‘Seeing To It That’ (for short, STIT), a prominent formalism employing
modal logics to represent and analyze agentive choice in indeterministic time. Since
its beginning, STIT logic has been investigated in the light of deontic modalities, such
as obligations, prohibitions, and permissions. What is more, deontic STIT scenarios
have been extensively discussed against the background of temporal structures (Bartha,
1993; Belnap, 1991; Belnap et al., 2001; Horty and Belnap, 1995). Most notable is
Horty’s highly influential work ‘Agency and Deontic Logic’ (2001). Horty argues that the
temporal multi-agent setting provides good reasons for adopting a more refined notion
of obligation in STIT. The resulting obligation is called the dominance ought. Horty’s
arguments concern the interaction between deontic modalities and the implicit underlying
semantic framework of indeterministic time. Surprisingly, a logic of explicit temporal
deontic reasoning in STIT has not yet been developed.1 In this chapter, we set out to do
this. Our intentions are twofold: we want to formally reassess some of the arguments
given by Horty and further our understanding of obligations in the context of time and
agency. The first objective is, thus, phrased:

Objective 1. Develop a sound and complete Temporal Deontic STIT logic.

We propose a sound and complete logic called Temporal Deontic STIT logic, referred to
as TDSn. The logic is a synthesis of various systems in the literature: non-deontic basic
STIT logic (Belnap et al., 2001) extended with deontic modalities (Horty, 2001) and the
temporal characterization of STIT (Lorini, 2013). The latter faithfully represents the
implicitly temporal structures of the traditional STIT semantic: Branching Time frames
(BT) with Agentive Choice functions, for short, BT+AC-frames. For a philosophical
discussion of BT+AC frames, we refer to the work of Belnap and Perloff (1988).

1Broersen (2008) and Lorini (2013) provide temporal STIT logics in which obligations are defined
using violation constants (without providing corresponding axiomatizations).
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The semantics of Horty’s (2001) deontic STIT logic of dominance ought is based on
utility assignments. In the sequel, we call this the Utilitarian STIT tradition. Initially
formulated by Jeremy Bentham (1789/1996), the influential theory of utilitarianism has
promoted utility calculation as a ground for ethical deliberation: e.g., act utilitarianism
classifies acts as morally right or wrong based on their comparative utility. For this
reason, utility-based approaches to formal normative reasoning are promising (Åqvist,
1969). Unfortunately, each available utility function has its own (dis)advantages that give
rise to philosophical puzzles—several of them addressed by Horty (2001). To avoid such
problems, we provide an alternative semantic account of TDSn by adopting relational
semantics.

Objective 2. Provide a modular characterization of Temporal Deontic STIT logic through
relational semantics, bypassing the use of utility functions.

An essential advantage of using relational semantics is its modularity. In our case, it facil-
itates a better understanding of the semantic properties of the involved deontic operators.
(Furthermore, a relational characterization facilitates the formalization of a wider variety
of alternative deontic properties. We demonstrate this in Chapter 3.) An immediate
question arising from the above objective is whether the relational characterization of
deontic STIT is equivalent to its utilitarian characterization.

Objective 3. Formally investigate the relation between Utilitarian STIT semantics and
Deontic STIT semantics.

In this chapter, we develop a translation that enables us to constructively transform the
relational STIT semantics into utilitarian STIT semantics—while preserving satisfiability—
thus recovering the traditional utilitarian approach developed by Horty (2001).

Last, Horty (2001) extensively investigates various utility functions in the light of
branching time frames and provides good reasons for preferring certain utility functions
over others. However, the logical language used is atemporal, and Murakami (2005)
proved that the corresponding atemporal deontic STIT logic cannot logically differentiate
between the various types of utility assignments discussed by Horty. Furthermore, it
was left as an open question to investigate “how various operators for deontic notions
behave and interact in a temporal structure” (Murakami, 2005, p.5). Employing the
developed TDS logic, we formally reassess some of the observations made by Horty (2001)
concerning deontic STIT logic.

Objective 4. Investigate whether the temporal extension of deontic STIT has consequences
for the use of utility functions.

In particular, we are interested in whether there is a formal difference between utility
functions that restrict the assignment of utilities to single moments in time and those
that consider the overall utility of a complete branch of a branching time structure,
called a history. In this chapter, we argue that some utility functions—equivalent in
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a non-temporal setting—not only differ in a temporal setting but cause substantial
problems with respect to contrary-to-duty (CTD) scenarios and deliberative agency.

Contributions. In this chapter, we address the above four objectives. We make four
main contributions. First, we fill a long-standing gap in the STIT literature by providing
a sound and weakly complete temporal deontic STIT logic. We do this by employing
relational semantics. In this respect, our approach extends the results by Balbiani et al.
(2008) by showing that (temporal) deontic STIT logics can likewise be characterized
without using the traditional BT+AC frames.

Second, we prove several equivalence results between the two semantic approaches. We
provide a constructive transformation between models adopting relational semantics
and those using utility-based semantics. For instance, we observe that the language of
atemporal deontic STIT is not expressive enough to differentiate between binary utility
assignments and those grounded in the set of natural numbers.

Third, all of the above results hold for temporal deontic STIT logic and atemporal deontic
STIT logic. For the latter, we additionally prove that the logic is strongly sound and
complete.

Fourth, the increase of expressivity gained by extending deontic STIT with temporal
modalities provides interesting insights into the use of utility functions. Namely, we
demonstrate that certain utility functions, equivalent in an atemporal deontic STIT
setting, are no longer equivalent for its temporal extension. From a philosophical point
of view, we argue that two-valued utility assignments that assign utilities to complete
histories are unsuitable for deliberative agency and contrary-to-duty reasoning in temporal
settings. From a technical point of view, we prove that the logic TDSn is incomplete for
temporal STIT frames adopting these two-valued utility functions.

Differences. The results presented in this chapter were first published in (van Berkel
and Lyon, 2019a). Novel contributions are the following: We provide a different axioma-
tization of the obligation modality ⊗i and show (Lemma 2.12) that the resulting axioms
are equivalent to the axioms employed by Murakami (2005). We give the complete proofs
of all the results in (van Berkel and Lyon, 2019a) and show that the results extend to the
atemporal deontic STIT logic DSn. Last, in (van Berkel and Lyon, 2019a), we informally
argued that certain utility functions ranging over histories cause problems in an explicit
temporal setting. Here, we make this formally precise by proving the incompleteness
of TDSn with respect to temporal utilitarian STIT-frames employing two-valued utility
assignments ranging over complete histories.

Outline. In Section 2.1, we introduce the temporal deontic STIT logic TDSn and its
atemporal subsystem DSn. Thereafter, in Section 2.2, we prove soundness of both logics
and demonstrate that TDSn is weakly complete and that DSn is strongly complete. In
Section 2.3, we prove equivalence results between the relational semantics of TDSn (and
DSn) and the utilitarian STIT semantics. We then discuss the problem of employing
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two-valued utility functions in an explicitly temporal STIT setting and provide an
incompleteness result in Section 2.4. Last, we relate our work to the literature and point
out future work in Section 2.5.

2.1 Temporal Deontic STIT Logic

In this section, we introduce the Temporal Deontic STIT logic, referred to as TDSn
(Objective 1). We provide a Hilbert-style axiomatization of TDSn and a corresponding
semantic characterization using relational semantics (Objective 2). Due to the modularity
of our approach, we simultaneously introduce the atemporal Deontic STIT logic DSn as a
proper subsystem of the former. We start with an informal discussion of the language
employed.

Indeterministic Time. Agency presupposes choice. Choice presupposes indeterministic
time. This is a notion of time in which the future is open—i.e., not fully determined—and
influenceable by the choices that agents make. A moment is then a point in time at
which agents exercise choices that affect the possible continuations of time. Although the
past of a given moment is uniquely determined by the course of events that led to that
moment, at that moment, several futures are still possible. In other words, one may think
of indeterminism as a branching time structure represented as a tree: the past is rooted in
a linear sequence of moments, whereas the future branches out. Given such a branching
time structure, each possible timeline of consecutive moments is called a history. In
the sequel, we use timeline and history interchangeably. In other words, a moment in a
branching time structure is a point in time where previously indistinguishable histories
split, possibly through the influence of agents. In order to refer to the past and the
future, we use the modal operators H and G, respectively. The former expresses that “it
has always been that” (some proposition holds) and the latter that “it will always be
that” (some proposition holds). Let P and F be the duals of H, respectively G (Prior,
1967) expressing that “somewhere in the past” (some proposition holds), respectively
“somewhere in the future” (some proposition holds). We refer to the work of Belnap and
Perloff (1988), Belnap et al. (2001), and Thomason (1984) for extensive discussions of
indeterminist time.

Agents. Choices are exercised by agents. We denote agents by numbers i ∈ N =
{1, 2, 3, . . . }. This chapter focuses on multi-agent settings that take agents as individuals.
Nature may also be considered an agent (von Wright, 1963a). We do not discuss choices
made by arbitrary groups of agents (Herzig and Schwarzentruber, 2008). The only
exception is the grand coalition of agents, which is used to characterize the outcome of
all agents acting together (Lorini, 2013).

Choices. Different choices may be available to different agents at different moments in
time. The characteristic feature of basic STIT logic is the use of an instantaneous choice
operator [i] for each agent i, which informally expresses that “agent i sees to it that”
(some proposition holds). The operator is instantaneous in the sense that choice refers to
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2.1. Temporal Deontic STIT Logic

what an agent can directly see to at a given moment in time.2 In a multi-agent world, a
single agent cannot uniquely determine the future by acting. For instance, when I decide
to go to a concert, it may be that my friend joins me but also that she stays at home.
Nevertheless, that I see to it that I go to the concert excludes a future continuation of this
moment where I stayed at home. Hence, what an agent can do via exercising choice is to
constrain or limit the possible courses of events. In other words, STIT models agency in
indeterministic time under uncertainty of choice. We interpret the dual ⟨i⟩ of [i] as “agent
i sees possibly to it that” (some proposition holds). The position of “possibly” denotes
that the proposition can be a consequence of the agent’s choice (although this might not
be guaranteed through the choice alone). Last, the modal operator [Ag] represents that
“the grand coalition of agents sees to it that” (some proposition holds).

Settledness. At any given moment, there are states of affairs that cannot be altered by
any of the agents’ (joint) choices. Such states of affairs are settled true at the moment in
question. Basic STIT logic includes a settledness operator □ to refer to such states of
affairs. For instance, the formula □tuesday states that “at this moment, it is settled
true that it is Tuesday.” In basic STIT logic, this implies that no choice is available to
any of the agents to see to it that today is not Tuesday. In such cases, we sometimes say
that tuesday is realized independently of any of the agents’ choices. The dual operator
♢ expresses that some state of affairs is possible or realizable. The settledness operator
plays an essential role in characterizing the relations between different choices of agents.
For instance, ♢[i]concert expresses that agent i has a choice to attend the concert.

Deliberative choices. The above language enables the construction of complex formulae
such as [i]concert ∧ ¬□concert which informally expresses that agent i sees to it that
she attends the concert although it is not settled true that she will attend. In fact, this
formula is an instance of the defined deliberative STIT operator, i.e., [i]dφ := [i]φ∧ ¬□φ.3
Deliberative choices capture the idea that whenever an agent sees to it that φ, it is not
necessarily the case that φ (Horty and Belnap, 1995).

Obligations. Choices lead to different continuations of time, and obligations prescribe
certain choices over others. In the context of STIT, obligation is an agentive modality
⊗i for each agent i. Belnap and Perloff (1988) propose the canonical reading of ⊗i as
“agent i is obligated to see to it that” (some proposition holds), whereas Horty (2001)
interprets ⊗i as “agent i ought to see to it that” (some proposition holds). We use both
interchangeably. These proposed readings include the agentive ‘see to it that’. Belnap
and Perloff (1988) argue that ⊗i is only quasi-agentive since although it involves both an
agent and an agentive, the agent is tied to the normative (i.e., ought) and not to the
agentive (i.e., ‘see to it that’). To illustrate, the formula ⊗iconcert is informally read

2The operator [i] is also referred to as the Chellas STIT modality (Belnap et al., 2001). Alternative
non-instantaneous STIT operators are the achievement STIT referring to the past and alternative courses
of events (Belnap et al., 2001), and the next STIT referring to future moments as the result of agential
choice (Broersen, 2011a).

3Xu (1998) provides a sound and complete characterization of the deliberative STIT operator taken
as a primitive modality. The idea to combine two modal operators in order to define a (non-normal)
deliberative choice operator was also adopted by Elgesem (1997), Kanger (1972), and Pörn (1977, Ch.1).
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Figure 2.1: A graphical illustration of the single-moment scenario in Example 2.1.

as “agent i ought to see to it that she attends the concert” (e.g., because she made a
promise). In Chapter 3, we argue that weaker interpretations of the ⊗i operator are
possible and even desirable.

Example 2.1 (A single-moment two-agent example). Consider a two-agent scenario.
Let John and Paul be the two agents, i.e., Agents = {j, p}. Suppose John and Paul got
into a fight, and now each of them is faced with two choices: they can each try to work it
out, or they can decide not to work it out. Let try_j, try_p, and work_it_out stand
for “John tries to work it out”, “Paul tries to work it out”, and “it works out”. The
choices are formalized as follows:

♢[j]try_j and ♢[j]¬try_j;

♢[p]try_p and ♢[p]¬try_p.

Furthermore, assume it is possible that John and Paul work it out, i.e., ♢work_it_out.
We stipulate that this can only be the case if both agents try to do so, i.e., □(work_it_out
→ ([j]try_j∧ [p]try_p)). Let the moment m consist of the four possible combinations of
the above choices. Following Balbiani et al. (2008), we interpret a moment as a collection
of worlds, where each world corresponds to a possible continuation of time determined
by the joint choices of the involved agents. Figure 2.1 gives a graphical representation
of the scenario. The moment m consists of four possible continuations w1, w2, w3, and
w4. Both agents have two choices at m. The two choices of j limit the future to either
{w1, w3} or {w2, w4} and are graphically represented by ‘- - -’ lines. The two choices
of p restrict the future to either {w1, w2} or {w3, w4} and are graphically represented by
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‘· · ·’ lines. Clearly, j and p can together see to it that they work it out by exercising
the choices {w1, w3} (i.e., [j]try_j) and {w1, w2} (i.e., [p]try_p), leading to the unique
continuation w1 at which they work it out (i.e., work_it_out). The four vertical solid
lines ‘———’ denote the four distinct histories (i.e., timelines) resulting from the four
possible combined choices of agents j and p. Figure 2.1 furthermore illustrates that
each agent can individually and deliberately guarantee that their fight is not resolved,
i.e., ♢[i]d¬work_it_out (for i ∈ {j, p}), but only together they can work it out, i.e.,
♢[Ag]work_it_out.

Last, suppose that, at minimum, John and Paul are under the obligation to try and work
it out, i.e., their obligations are ⊗jtry_j and ⊗ptry_p. In Figure 2.1, the two choices
{w1, w3} (i.e., [j]try_j) and {w1, w2} (i.e., [p]try_p) are shaded to denote that they
are obligatory choices. In fact, we see that only if both agents comply with their duties
will they work it out. In Example 2.2, we discuss an extended example that involves
temporal reasoning.

Two agency principles. To classify time as an agentive branching time structure, specific
properties must be met. Traditionally, the STIT formalism contains two such principles:
independence of agents (IoA, for short) and no choice between undivided histories (NCbUH,
for short). Both principles are accredited to Von Kutschera (1986; 1993). The IoA
principle stipulates that no agent can block another agent from exercising an available
choice. For instance, if I have the choice to attend a concert tonight, I can exercise this
choice irrespective of any of the choices made by the other agents. Hence, one may think
of IoA as a principle that characterizes choice as choice proper (in contrast to a defeasible
reading of choice). From a logical point of view, IoA ensures that any combination
of choices made by the agents is consistent. The NCbUH principle stipulates that if
two histories remain undivided at the next moment, no agent has a choice that realizes
one history but excludes the other. This principle ensures the temporal coherence of
choice. We refer to Belnap et al. (2001) for a philosophical and logical discussion of
these principles. The notion of the grand coalition of agents is formally employed to
characterize NCbUH (see Definition 2.2 below).4

We define the temporal deontic STIT language Ltdn as the combined languages of atemporal
deontic STIT (Horty, 2001) and temporal non-deontic STIT (Lorini, 2013). We define
Ldn as the atemporal fragment of Ltdn . We use the subscript n to denote the number of
agents in the formalism.

Definition 2.1 (The Languages Ltdn and Ldn). Let Atoms = {p, q, r, . . . } be a denumerable
set of propositional atoms and let Agents = {1, 2, . . . , n} be a finite set of agent labels.
The temporal deontic STIT language Ltdn is given by the following BNF grammar:

φ ::= p | ¬φ | φ ∧ φ | □φ | [i]φ | ⊗i φ | [Ag]φ | Gφ | Hφ
4Additionally, one may adopt the limited choice principle (Belnap et al., 2001). The principle restricts

each agent to a maximum number of choices at each moment. We leave it to future work to extend the
logics of this chapter with the limited choice principle.
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where p ∈ Atoms and i ∈ Agents. The atemporal deontic STIT language Ldn is defined as
the {[Ag],G,H}-free fragment of Ltdn .

In what follows, we use lowercase Roman letters p, q, r, . . . to denote propositional
variables and lowercase Greek letters φ,ψ, γ, . . . to denote arbitrary formulae of Ltdn and
Ldn. We write Atoms(φ) to denote the set of atoms occurring in a formula φ. Furthermore,
we use upper case Greek letters ∆,Γ,Σ to refer to arbitrary sets of Ltdn (Ldn) formulae. We
adopt a classical propositional base logic for the logics TDSn and DSn. For that reason,
it suffices to take the connectives ¬ and ∧ as primitives expressing ‘not’, respectively
‘and’. The other logical connectives for ‘disjunction’, ‘material implication’, and ‘material
equivalence’ are defined as usual: φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ → ψ := ¬φ ∨ ψ, and
φ ≡ ψ := (φ → ψ) ∧ (ψ → φ). We define tautology and contradiction as ⊤ := p ∨ ¬p,
respectively ⊥ := ¬⊤. Last, the dual operators are defined as ⟨α⟩φ := ¬[α]¬φ for
each pair (⟨α⟩, [α]) ∈ {(♢,□), (⟨i⟩, [i]), (⊖i,⊗i), (⟨Ag⟩, [Ag]), (F,G), (P,H)}. We adopt the
usual notational conventions concerning brackets.

2.1.1 Axiomatization of Temporal Deontic STIT logic

The Hilbert-style axiomatization of the temporal deontic STIT logic TDSn is given in
Definition 2.2 below. We identify the atemporal deontic STIT logic DSn as a proper
subsystem of TDSn. The axiomatization of TDSn combines the temporal non-deontic
STIT logic from Lorini (2013) with the deontic STIT logic from Murakami (2005). The
deontic axioms A10 and A13 of Definition 2.2 differ from those presented by Murakami
(2005) but in Section 2.3 we prove (Lemma 2.12) that the two axiomatizations are
equivalent. We refer to the work of Horty (2001) and Lorini (2013) for a more detailed
discussion of the axioms. Here, we discuss each axiom briefly.

All the modalities of the language are normal modal operators by virtue of the distribution
axioms A4, A1, A9, A14, A18, and A21, the rule R1 and for [i],⊗i, and [Ag] the axioms
A7, A12, respectively A17. It can be straightforwardly checked that the latter three axiom
schemes, together with R1, imply necessitation for [i], ⊗i, and [Ag].

Concerning basic STIT, □, [i], and [Ag] are S5 operators by virtue of A2-A3, A5-A6,
respectively A15-A16. The S5 characterization of these modalities ensures that □ refers to
moments, and that [i] and [Ag] refer to choices. We come back to these interpretations in
detail when we provide the corresponding semantics on page 33. Axiom A7 expresses that
whatever is settled true at a moment is also seen to by each agent at that moment. Phrased
differently, if it is settled true that φ holds at a given moment, then irrespective of the
choices made by any of the agents, φ holds. Axiom A8 corresponds to the independence
of agents principle, i.e., any combination of agents’ choices is jointly realizable. Last,
axiom A17 captures the idea that all agents acting together implies the grand coalition
of agents acting.

Concerning the deontic axioms, A10 expresses the idea that obligations are settled at
the level of the moment. Namely, obligations express which continuations of the present
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moment are ideal for that agent. For that reason, obligations that hold at a given moment
do not depend on the choices made by any of the agents at that moment. Axiom A11
represents the principle of Ought implies Can, which ensures that what an agent is obliged
to see to, the agent has the choice to see to (Chapter 3 is devoted to the analysis of Ought
implies Can in the context of STIT). Axiom A12 is a bridge axiom stating that everything
which is settled true is also obligatory (consequently excluding obligations to bring about
states of affairs that cannot be realized). Last, A13 expresses the quasi-agentive reading
of ⊗i that whenever an agent has an obligation concerning φ, the agent ought to see to
it that φ holds (see Remark 2.1).

Definition 2.2 (Axiomatization of TDSn and DSn). We define the Hilbert-Axiomatization
of TDSn to be the following collection of axiom schemes and rules:

A0. All classical propositional tautologies;

R0. From φ and φ → ψ, infer ψ;

A1. □(φ → ψ) → (□φ → □ψ);

A2. □φ → φ;

A3. ♢φ → □♢φ;

A4. [i](φ → ψ) → ([i]φ → [i]ψ);

A5. [i]φ → φ;

A6. ⟨i⟩φ → [i]⟨i⟩φ;

A7. □φ → [i]φ;

A8. ∧
i∈Agents ♢[i]φi → ♢(∧i∈Agents[i]φi);

A9. ⊗i(φ → ψ) → (⊗iφ → ⊗iψ);

A10. ⊗iφ → □ ⊗i φ;

A11. ⊗iφ → ♢[i]φ;

A12. □φ → ⊗iφ;

A13. ⊗iφ → ⊗i[i]φ;

R1. From φ, infer □φ;

A14. [Ag](φ → ψ) → ([Ag]φ → [Ag]ψ);

A15. [Ag]φ → φ;

A16. ⟨Ag⟩φ → [Ag]⟨Ag⟩φ;

A17. ∧
1≤i≤n[i]φi → [Ag] ∧

1≤i≤n φi;

A18. G(φ → ψ) → (Gφ → Gψ);

A19. Gφ → GGφ;

A20. Gφ → Fφ;

A21. H(φ → ψ) → (Hφ → Hψ);

A22. φ → GPφ;

A23. φ → HFφ;

A24. FPφ → Pφ ∨ φ ∨ Fφ;

A25. PFφ → Pφ ∨ φ ∨ Fφ;

A26. F♢φ → ⟨Ag⟩Fφ;

R2. From φ, infer Gφ and Hφ;

R3. From (□¬p ∧ □(Gp ∧ Hp)) → φ with
p ̸∈ Atoms(φ), infer φ;

where we have a copy of A4–A13 for each i ∈ Agents. The logic TDSn is the smallest set
of formulae from Ltdn closed under all instances of the axiom schemes and applications of
the inference rules R0–R3. Whenever φ ∈ TDSn, we say that φ ∈ Ltdn is a TDSn-theorem
and write ⊢TDSn φ.
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We define the Hilbert-Axiomatization of DSn to consist of the axiom schemes and rules
of the left column (above), i.e., axiom schemes A0–A13 (for each i ∈ Agents) and the
rules R0–R1. The logic DSn and DSn-theoremhood are defined as above.

Concerning the axiomatization of time, A18-A20 capture the common conception of
branching time as transitive and serial, i.e., G is a KD4 modality. Axioms A22 and A23
serve as the central axioms of minimal temporal logic and ensure that the past (i.e., H) is
the converse of the future (i.e., G), e.g., see the work of Thomason (1984). For instance,
A22 expresses that what is the case now, will always going to be somewhere in the past.
Furthermore, since we are dealing with branching time structures containing histories,
the axioms A24 and A25 capture the idea that histories are linear timelines. Axiom
A26 characterizes the no choice between undivided histories principle. In fact, the main
reason why the grand coalition operator [Ag] is added to the language Ltdn is because it
enables the axiomatization of this pivotal STIT principle.

Last, the rule R3 is a variation of the irreflexivity rule proposed by Gabbay et al.
(1994). The rule ensures that moments in a branching time structure are irreflexive and,
consequently, so is time. The rule R3 is not immediately intuitive. To see how it works,
consider a simplification of the rule as proposed by Gabbay et al. (1994):

R3∗ From (¬p ∧ [α]p) → φ with p ̸∈ Atoms(φ), infer φ.

where [α] is an arbitrary normal modal operator. This rule ensures that [α] behaves
as an irreflexive modality. Adding the reflexivity axiom [α]φ → φ to any consistent
logic containing R3∗ would render the logic inconsistent. Namely, from [α]p → p we
straightforwardly obtain ([α]p ∧ ¬p) → ⊥ and, thus, by R3∗ we have ⊥. At a minimum,
the presence of the rule tells us that the logic does not permit any reflexive behavior.
How R3 actually ensures irreflexivity of TDSn-frames is best understood by considering
the proofs of soundness (Theorems 2.1) and completeness (Theorem 2.3) in Section 2.2.
We refer to Gabbay et al. (1994) for a more general discussion of the irreflexivity rule.

Definition 2.3 (TDSn and DSn derivations). Let φ ∈ Ltdn and Γ ⊆ Ltdn , we define a
derivation φ from premises Γ in TDSn, written Γ ⊢TDSn φ, as follows: there exists a
sequence φ1, . . . , φn ∈ Ltdn of formulae such that φn = φ and for each 1 ≤ i ≤ n, φi is
either a TDSn-theorem, an assumption from Γ, or a consequence of an application of R0
to some φj = ψ and φk = ψ → φi with j, k < i. A derivation in DSn is defined similarly.

Remark 2.1 (Quasi-Agentive Obligation). We point out that the logic DSn defines the
quasi-agentive reading of ⊗i, i.e., “agent i ought to see to it that” (some proposition
holds). The DSn-theorem ⊗iφ ≡ ⊗i[i]φ expresses this. Clearly, the left-to-right direction
follows directly from A13. The right-to-left direction is proven as follows: First, observe
that ⊗i([i]φ → φ) is a theorem by an application of R1 to A5 and basic modal reasoning
with A12. Since ⊗i is a normal modal operator, we can infer ⊗i[i]φ → ⊗iφ. In other
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words, the modal operator ⊗i receives its quasi-agentive reading from the adopted DSn
axiomatization. The above shows that ⊗i is only quasi-agentive if one adopts the axioms
A9, A12, and A13 (on top of the basic STIT logic). The class of deontic STIT logics
introduced in Chapter 3 deliberately does not imply the quasi-agentive reading of ⊗i. The
reason is that certain prominent alternative readings of Ought-implies-Can cannot be
axiomatized with quasi-agentive deontic modality.

2.1.2 Semantics for Temporal Deontic STIT Logic

We forgo the traditional BT+AC semantics in characterizing TDSn. Instead, we adopt
relational semantics (Blackburn et al., 2004). As observed by Balbiani et al. (2008),
atemporal STIT logic can be semantically characterized using relational frames that model
moments as sets of worlds partitioned into equivalence classes, the latter representing
the choices available to the agents at the respective moments. We adopt this approach in
defining TDSn- and DSn-frames. The semantic characterization of the temporal properties
was initially proposed by (Lorini, 2013).

Definition 2.4 (Frames and Models for TDSn and DSn). A Temporal Deontic STIT-frame
(for short, TDSn-frame) is defined as a tuple F = ⟨W,R□, {R[i] | i ∈ Agents}, {R⊗i | i ∈
Agents},R[Ag],RG,RH⟩. Let R[α] ⊆ W × W and R[α](w) := {v ∈ W | (w, v) ∈ R[α]}
for [α] ∈ Boxes := {□,G,H, [Ag]} ∪ {[i] | i ∈ Agents} ∪ {⊗i | i ∈ Agents}. Let W be a
non-empty set of worlds w, v, u, . . . . The following holds:

C1 R□ is an equivalence relation5;

C2 For all i ∈ Agents, R[i] is an equivalence relation;

C3 For all i ∈ Agents, R[i] ⊆ R□;

C4 For all w ∈ W and all u1, . . . , un ∈ R□(w), ⋂
i∈Agents R[i](ui) ̸= ∅;

C5 R[Ag] is an equivalence relation;

C6 For all w ∈ W , R[Ag](w) ⊆
⋂
i∈Agents R[i](w);

D1 For all i ∈ Agents and for all w, v, u ∈ W , if v ∈ R⊗i(w) and u ∈ R□(w), then
v ∈ R⊗i(u);

D2 For all i ∈ Agents, and all w ∈ W , there exists v ∈ W such that for all u ∈ R[i](v),
u ∈ R⊗i(w);

D3 For all i ∈ Agents, R⊗i ⊆ R□;

D4 For all i ∈ Agents, and all w, v, u ∈ W , if v ∈ R⊗i(w) and u ∈ R[i](v), then
u ∈ R⊗i(w);

5That is, R□ is reflexive and euclidean.
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T1 RG is a transitive and serial relation;

T2 RH is the converse of RG, i.e., RH = {(w, v) | (v, w) ∈ RG};

T3 For all w, u, v ∈ W , if u ∈ RH(w) and v ∈ RH(w), then v ∈ RH(u), u = v, or
u ∈ RH(v);

T4 For all w, u, v ∈ W , if u ∈ RG(w) and v ∈ RG(w), then v ∈ RG(u), u = v, or
u ∈ RG(v);

T5 RG ◦ R□ ⊆ R[Ag] ◦ RG, where R[α] ◦ R[β] := {(w, v) | there is u ∈ W , u ∈ R[α](w),
and v ∈ R[β]} for [α], [β] ∈ Boxes;

T6 For all w, u ∈ W , if u ∈ R□(w), then u ̸∈ RG(w).

A TDSn-model is a tuple M = ⟨F, V ⟩ where F is a TDSn-frame and V is a valuation
function mapping propositional variables to subsets of W , i.e., V : Atoms 7→ ℘(W ).

An (atemporal) Deontic STIT-frame (for short, DSn-frame) is defined to be a tuple
F = ⟨W,R□, {R[i] | i ∈ Agents}, {R⊗i | i ∈ Agents}⟩. Where F satisfies C1-C4 and
D1-D4. A DSn-model is a tuple M = ⟨F, V ⟩ where F is a DSn-frame and V is a valuation
function as defined above.

In Definition 2.4, we write Ci (i ∈ {1, . . . , 6}), Di (i ∈ {1, . . . , 4}), and Ti (i ∈ {1, . . . , 6}
to denote the choice properties, deontic properties, respectively temporal properties of
TDSn-frames. We discuss each property in turn.

First, observe that the relation R[α] for [α] ∈ {□} ∪ {[i] | i ∈ Agents} ∪ {[Ag]} is an
equivalence relation by C1, C2, and C5, and thus the set R[α](w) = {v | (w, v) ∈ R[α]}
is an equivalence class (cf. the S5 axiomatization of □, [i], and [Ag] in Definition 2.2).
Property C1 stipulates that TDSn-frames are partitioned into R□-equivalence classes
representing moments. For each agent in the language, C2 and C3 partition moments
into equivalence classes representing the agent’s choices at these moments (cf. A7). In
what follows, we often call R□(w) a moment and for each v ∈ R□(w), we refer to R[i](v)
as a choice for agent i at moment R□(w). Property C4 captures the IoA principle,
ensuring that the choices of agents acting simultaneously are jointly consistent (cf. A8).
Furthermore, C5 expresses that the set R[Ag](w) is an equivalence class, i.e., a choice of
the grand coalition of agents acting together. Last, C6 ensures that all agents acting
together is a necessary condition for the grand coalition of agents acting (cf. A17).6

Deontic property D1 ensures that obligations refer to what is obligatory at a given
moment irrespective of the choices made by the agents at that moment (cf. A10). Notice

6As shown by Lorini (2013), condition C6 can be strengthened to equality: i.e., C6* for all w ∈ W ,
R[Ag](w) =

⋂
i∈Agents R[i](w). In such a setting, completeness is proven by demonstrating that each

TDSn-frame can be transformed into a frame satisfying the same formulae with the strengthened condition
C6*. Hence, the language Ltd

n is not expressive enough to distinguish between the two frame classes.
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that obligations may still differ from moment to moment in a branching time setting.
Property D2 semantically captures the principle of Ought implies Can (cf. A11). D3
enforces that ideal worlds are confined to moments (cf. A12). This condition implies that
every ideal world is realizable at its corresponding moment. Subsequently, D4 expresses
that agent-dependent obligations are about choices, thus enforcing that every ideal world
extends to a complete ideal choice (cf. A13). Property D4 is central for the quasi-agentive
reading of the obligation ⊗i (cf. Remark 2.1). In what follows, we sometimes refer to
R[i](v) ⊆ R⊗i(w) ⊆ R□(w) as a deontically optimal choice for agent i at moment R□(w).

Combined, the conditions T1–T6 ensure that TDSn-frames are irreflexive, temporal
orderings of moments in a branching time structure. First, T1 and T2 ensure that for
each history, the future is transitive and serial, and the past is the converse of the future.
Properties T3 and T4 stipulate that future and past sequences of worlds are linearly
ordered. As discussed a the beginning of this section, we call such a (maximally) linearly
ordered sequence a history, representing a possible timeline in a branching time structure.
Formally, we can express the history of which a world w ∈ W is a member as the set
RG(w) ∪ RH(w) ∪ {w}. Just like R□(w) and R[i](w) refer to moments, respectively
choices, we use RG(w) and RH(w) to refer to the future, respectively past history of w.
Property T6 ensures the temporal irreflexivity of moments.

In particular, condition T5 ensures the STIT principle of no choice between undivided
histories. Namely, if two histories remain undivided at the next moment, no agent has a
choice that realizes one history but excludes the other. To see how T5 formally captures
this idea, suppose towards a contradiction that agent i has two choices R[i](v) and R[i](u)
at a moment R□(w) such that the histories of these choices are undivided at a next
moment. Then, there are v′ ∈ RG(v) and u′ ∈ RG(u) such that R□(v′) = R□(u′), i.e.,
the two future worlds v′ and u′ are part of the same future moment. In other words,
(v, u′), (u, v′) ∈ RG ◦R□. Hence, by T5 (v, u′), (u, v′) ∈ R[Ag] ◦RG. This means that there
is a z ∈ R□(w) such that (v, z) ∈ R[Ag] and (z, u′) ∈ RG. By the linearity of histories,
we know that z = u and so (v, u) ∈ R[Ag]. However, by the fact that R[i](v) ∩ R[i](u) = ∅
we know that v and u cannot be part of the same choice of the grand coalition of agents
acting at R□(w), i.e., (v, u) ̸∈ R[Ag]. Contradiction. Consequently, T5 ensures that the
ordering of moments is linearly closed with respect to the past and allows for branching
with respect to the future. We refer to Belnap et al. (2001) for a philosophical discussion
of this principle.

The semantic interpretation of Ltdn is defined as usual.

Definition 2.5 (Semantics of TDSn- and DSn-models). Let M be a TDSn-model and let
w ∈ W of M. The satisfaction of a formula φ ∈ Ltdn in M at w is defined accordingly:

1. M, w |= p iff w ∈ V (p);

2. M, w |= ¬φ iff not M, w |= φ;

3. M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ;
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4. M, w |= □φ iff for all u ∈ R□(w), M, u |= φ;

5. M, w |= [i]φ iff for all u ∈ R[i](w), M, u |= φ;

6. M, w |= ⊗iφ iff for all u ∈ R⊗i(w), M, u |= φ;

7. M, w |= [Ag]φ iff for all u ∈ R[Ag](w),M, u |= φ;

8. M, w |= Gφ iff for all u ∈ RG(w), M, u |= φ;

9. M, w |= Hφ iff for all u ∈ RH(w), M, u |= φ.

We define ||φ||M = {w ∈ W | M, w |= φ} as the truth-set of φ (we often omit the subscript
M). We write M, w ̸|= φ to indicate that not M, w |= φ.

A formula φ is globally true on a TDSn-model M, written M |= φ, if and only if φ is
satisfied at every world w ∈ W of M. A formula φ is TDSn-valid, written |=TDSn φ, if
and only if it is globally true on every TDSn-model. Last, we say that Γ ⊆ Ltdn semantically
entails φ, written Γ |=TDSn φ, if and only if for all TDSn-models M and worlds w ∈ W
of M, if M, w |= ψ for all ψ ∈ Γ, then M, w |= φ. The logic induced by the class of all
TDSn-models is the set of TDSn-valid formulae.

Satisfaction of a formula φ ∈ Ldn in a DSn-model is defined by clauses (1)-(6). Global
truth, validity, and semantic entailment for DSn-models are defined as above.

Example 2.2 (A Temporal Deontic Scenario). To illustrate temporal deontic STIT
models, consider an extension of the scenario in Example 2.1. Recall that the two agents
John and Paul (i.e., Agents = {j, p}) were in a feud and are both under the obligation
to try to work it out, i.e., (a) ⊗jtry_j ∧ ⊗ptry_p. Furthermore, they work it out
together only if they try, i.e., (b) □(work_it_out → ([j]try_j ∧ [p]try_p)). If both
agents fulfill their duty and work it out, then they ought to thank each other (out of
politeness), i.e., (c) □(work_it_out → F(⊗jthank_j ∧ ⊗pthank_p)), where thank_j
and thank_p express “John thanks Paul”, respectively “Paul thanks John”. However, if
they do not manage to work it—i.e., at least one of them violating the initial obligation—
they both ought to get a little help from their friends (say, for mediation), i.e., (d)
□(¬work_it_out → F(⊗jhelp_j ∧ ⊗phelp_p)), where help_j and help_p express
“John gets a little help from his friends”, respectively “Paul gets a little help from his
friends”. This second situation represents a temporal contrary-to-duty (CTD) scenario
in which obligations arise from the violation of a previous obligation.7

Figure 2.2 graphically represents the above scenario in a branching time TDSn-model.
We briefly explain its representation. The model consists of a root moment R□(ωα) and
four immediate successor moments. To illustrate, R□(vi) (1 ≤ i ≤ 4) is the moment
continuing from ωv. We stress that since, in total, four distinct histories emerge from

7In Section 2.4, we discuss CTD in the context of TDSn at length (see Chapter 1 for an introduction).
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Figure 2.2: A graphical illustration of the temporal contrary-to-duty scenario in Ex-
ample 2.2. For the moment R□(ωα) the symbol ωα represents a set of worlds for each
α ∈ {v, u, z, x} because each ωα leads to a future moment with four worlds. We stipulate
that after each βi with β ∈ {v, u, z, x} and i ∈ {1, 2, 3, 4} the histories indefinitely continue
with single-world moments only. Moments R□(zi) and R□(xi) have a characterization
identical to that of R□(ui) and are, for that reason, omitted from the figure. The numbers
assigned to the histories represent utilities and are discussed in Section 2.3.
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R□(vi) we know by the linearity of timelines that ωv represents the set of four worlds
{wv1 , wv2 , wv3 , wv4}. We write ωv to enhance readability of Figure 2.2. The same holds for
ωu, ωx, and ωz. Consequently, this model consists of exactly 16 histories. In fact, due
to the irreflexivity and seriality of TDSn-models, these histories are infinite. It suffices
to stipulate that each history in the model is infinite (we provide an exact model of this
example in Section 2.4). Furthermore, we assume that the moments R□(zi) and R□(xi)
(1 ≤ i ≤ 4) represent exactly the same scenario as R□(ui) and are, for that reason,
omitted from the figure. The choices of j and p are graphically represented by ‘- - -’
lines, respectively ‘· · ·’ lines. The obligatory choices for both agents are shaded, and
darker shaded when overlapping. (The utilities assigned to the histories in Figure 2.2 are
explained when we discuss Utilitarian STIT logic in Section 2.3.)

The formulae (a), (b), (c), and (d) hold at moment R□(ωα). Furthermore, the obligations
to thank each other—i.e., (e) ⊗jthank_j ∧ ⊗pthank_p—result from the agents’ joint
compliance with (a) at R□(ωα). Namely, (e) holds at moment R□(vi) which is a con-
tinuation of ωv resulting from the joint choices [j]try_j and [p]try_p at R□(ωα), i.e.,
{ωv, ωu} ∩ {ωv, ωz}. Similarly, John and Paul’s obligations to get some help from their
friends—i.e., (f) ⊗jhelp_j ∧ ⊗phelp_p—result from either of the two agents violating
their obligation at R□(ωα). For instance, (f) holds at the moment R□(ui), which is a
continuation of world ωu resulting from the joint choices [j]¬try_j and [p]try_p at
R□(ωα), i.e., {ωu, ωx} ∩ {ωv, ωu}. The same reasoning applies to (f) and moments
R□(zi) and R□(xi).

2.2 Soundness and Completeness
Soundness of the logic TDSn is obtained by demonstrating that all TDSn axioms are
TDSn-valid and the logical rules of TDSn preserve truth on any TDSn-frame. This is a
standard strategy for normal modal logics (Blackburn et al., 2004). In the sequel, we
make (often implicit) use of the following useful lemma.

Lemma 2.1. The following holds for any TDSn- and DSn-frame. Let w, v ∈ W and
i ∈ Agents:

1. For all v ∈ R□(w), we have R□(w) = R□(v);

2. For all v ∈ R[i](w), we have R[i](w) = R[i](v);

3. R□(w) ̸= ∅ and R[i](w) ̸= ∅;

4. For all v ∈ R□(w), we have R⊗i(v) = R⊗i(w);

5. ||φ|| = ||¬φ|| and ||φ|| ∩ ||ψ|| = ||φ ∧ ψ||.

Proof. Claims (1)–(3) follow from the fact that R□ and R[i] are equivalence classes, and
statement (4) follows from property D1 of Definition 2.4. The properties of truth sets in
(5) follow by basic semantic reasoning. QED
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Theorem 2.1 (Soundness of TDSn). Let TDSn be the logic from Definition 2.2. For any
formula φ ∈ Ltdn , and any Γ ⊆ Ltdn : if Γ ⊢TDSn φ, then Γ |=TDSn φ.

Proof. First, we demonstrate the following claim:

(†) if ⊢TDSn φ, then |=TDSn φ.

We prove (†) by demonstrating that all axioms are TDSn-valid and the logical rules of
TDSn preserve truth on the respective frame class. Take an arbitrary LM-model M and
an arbitrary w ∈ W of M. The axiom schemes A0, A1, A4, A9, A21, A18, and A14, and
rules R0, R1, and R2 are valid, respectively preserve validity on any relational frame
(Blackburn et al., 2004). We omit their proofs. Validity of the remaining axioms and
rule R3 is shown below.

A2 Assume M, w |= □φ. Hence, for all v ∈ R□(w) M, v |= φ by C1 we know that R□ is
reflexive and thus w ∈ R□(w). Consequently, M, w |= φ.

A3 Assume M, w |= ♢φ. Hence, there is a world v ∈ R□(w) such that M, v |= φ. By
Lemma 2.1-(i) we know that R□(w) = R□(v). Therefore, we know that for all
u ∈ R□(w), v ∈ R□(u) with M, v |= φ. Hence, by the semantic definition of □ we
know that for all u ∈ R□(w), M, u |= ♢φ and so M, w |= □♢φ.

A5 Similar to A2.

A6 Similar to A3.

A7 Assume M, w |= □φ. Hence, by the semantic definition of □ we know that for
each v ∈ R□(w), M, v |= φ. That is, R□(w) ⊆ ||φ||. By property C3, R[i](w) ⊆
R□(w) ⊆ ||φ|| and so M, w |= [i]φ.

A8 Assume M, w |= ∧
i∈Agents ♢[i]φi, i.e., M, w |= ♢[1]φ1 ∧ ... ∧ ♢[n]φn. By the semantic

definition of ♢ there are v1, ..., vn ∈ R□(w) such that M, v1 |= [1]φ1, ... , M, vn |=
[n]φn. Therefore, for all vi with 1 ≤ i ≤ n, R[i](vi) ⊆ ||φi||. By condition C4, we
know that there is a u ∈

⋂
i∈Agents R[i](vi). Since u ∈ R[i](vi) for each 1 ≤ i ≤ n

we have M, u |= [1]φ1 ∧ ... ∧ [n]φn. Consequently, by property C3 we know that
u ∈ R□(w) and thus M, w |= ♢

∧
i∈Agents[i]φi.

A10 Assume M, w |= ⊗iφ. Suppose towards a contradiction that M, w ̸|= □⊗i φ. Hence,
M, w |= ♢⊖i¬φ and so there is a v ∈ R□(w) such that M, v |= ⊖i¬φ. Consequently,
by semantic definition of ⊖i, we know there is a u ∈ R⊗i(v) with M, u |= ¬φ. By
D1 we know that u ∈ R⊗i(w) and so, by our initial assumption, M, u |= φ too.
Contradiction.

A11 Assume M, w |= ⊗iφ. By D2 we know there is a v ∈ R□(w) and for all u ∈ R[i](v),
u ∈ R⊗i(w). Suppose towards a contradiction that M, w ̸|= ♢[i]φ. Consequently,
M, w |= □⟨i⟩¬φ and so M, v |= ⟨i⟩¬φ. By semantic definition of ⟨i⟩ there is
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a u ∈ R[i](v) such that M, u |= ¬φ. However, since u ∈ R⊗i(w) we also have
M, u |= φ. Contradiction.

A12 Similar to A7.

A13 Assume M, w |= ⊗iφ and suppose towards a contradiction that M, w ̸|= ⊗i[i]φ.
Hence, M, w |= ⊖i⟨i⟩¬φ. By semantic definition of ⊖i there is a u ∈ R⊗i(w) such
that M, u |= ⟨i⟩¬φ and by semantic definition of ⟨i⟩ we know there is a v ∈ R[i](u)
such that M, v |= ¬φ. However, by D4 we have v ∈ R⊗i(w) too, and so M, v |= φ.
Contradiction.

A15 Similar to A2.

A16 Similar to A3.

A17 Assume that M, w |= ∧
i∈Agents[i]φi. Hence, for each i ∈ Agents we have R[i](w) ⊆

||φi|| = {v ∈ W | M, v |= φ}. By straightforward semantic reasoning we obtain⋂
i∈Agents R[i](w) ⊆

⋂
i∈Agents ||φi|| and so ⋂

i∈Agents R[i](w) ⊆ ||φ1 ∧ ...∧φn||. By C6,
R[Ag](w) ⊆

⋂
i∈Agents R[i](w) and so R[Ag](w) ⊆ ||φ1 ∧ ... ∧ φn||. Consequently, by

the semantic definition of [Ag], M, w |= [Ag] ∧
i∈Agents φi.

A19 Assume M, w |= Gφ and suppose towards a contradiction that M, w ̸|= GGφ.
Consequently, M, w |= FF¬φ. By semantic definition of F we know there is a
v ∈ RG(w) and there is a u ∈ RG(v) such that M, u |= ¬φ. By T1 we know
u ∈ RG(w) and so M, u |= φ. Contradiction.

A20 Assume M, w |= Gφ. By T1 there is a v ∈ RG(w) and thus by semantic definition
of G we have M, v |= φ. Consequently, M, w |= Fφ.

A22 Assume M, w |= φ, by T2 we know that for all v ∈ RG(w) there is a u ∈ RH(v)
such that u = w. By semantic definition of P we thus have for all v ∈ RG(w),
M, v |= Pφ. By semantic definition of G, we have M, w |= GPφ.

A23 Similar to A22 using T2.

A24 Assume M, w |= FPφ. Hence, there is a v ∈ RG(w) such that Mo, v |= Pφ and
there is a u ∈ RH(v) such that M, u |= φ. By T2, w ∈ RH(v). By T3 we know
that either (i) u ∈ RH(w), (ii) u = w, or (iii) w ∈ RH(u). We consider each case.
Ad (i), then M, w |= Pφ. Ad (ii), then M, w |= φ. Ad (iii), then by T2 u ∈ RG(w)
and so M, w |= Fφ. Consequently, M, w |= Pφ ∨ φ ∨ Fφ.

A25 Similar to A24 using T2 and T4.

A26 Assume M, w |= F♢φ. By semantic definition of F, there is a v ∈ RG(w) such that
M, v |= ♢φ and by semantic definition of ♢ there is a u ∈ R□(v) with M, u |= φ. By
T5, there is a z ∈ R[Ag](w) such that u ∈ RG(z). Consequently, M, w |= ⟨Ag⟩Fφ.

R3 Last, we show soundness of the irreflexivity-rule of TDSn. Recall the rule:
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From (□¬p ∧ □(Gp ∧ Hp)) → φ with p ̸∈ Atoms(φ), infer φ.

We assume that the atomic variable p does not occur in φ. We prove the result
by contraposition and assume that φ is not TDSn-valid. Therefore, we know there
exists a TDSn-model M = ⟨F, V ⟩ s.t. F is a TDSn-frame and M, w ̸|= φ for some
w ∈ W of M. We define another TDSn-model M′ = ⟨F, V ′⟩ over the frame F and
define the valuation V ′ as follows:

V ′(q) :=
{
V (q) if q ̸= p,

W \ R□(w) otherwise.

(i.e., the valuation V ′ of p contains all worlds except those sharing the same moment
with w). Clearly, since φ does not contain p and the other atomic propositions
are evaluated in the same way in M as in M′, we have M′, w |= ¬φ. However, by
the construction of V ′ and because F is irreflexive by condition T6, we have that
M′, w |= □¬p ∧ □(Gp ∧ Hp)). Since, M′, w ̸|= φ, by Definition 2.5, we have that
M′, w ̸|= (□¬p∧□(Gp∧Hp)) → φ. Hence, we conclude that (□¬p∧□(Gp∧Hp)) → φ
is also not TDSn-valid.

The above holds for each i ∈ Agents, which finishes the proof of (†). We use (†) to prove
the main claim. Assume Γ ⊢TDSn φ. Then, by Definition 2.3 there exists a sequence
φ1, ..., φn ∈ Ltdn such that φn = φ, and for all 1 ≤ i ≤ n, φi is (i) an TDSn-theorem, (ii)
an assumption from Γ, or (iii) a consequence of an application of R0 to some φj = ψ and
φk = ψ → φi with j, k < i. Take an arbitrary model M and world w such that M, w |= Γ.
By (†), for each φi ∈ Γ for which (i) holds we have M, w |= φi. By assumption, for each
φi for which (ii) holds, we have M, w |= φi. By validity of R0 and the previous two items,
for each φi for which (iii) holds, we have M, w |= φi. Hence, M, w |= φ. QED

Due to the modularity of the above proof, we can see that soundness of the subsystem
DSn immediately follows from Theorem 2.1.

Corollary 2.1 (Soundness of DSn). Let DSn be the logic from Definition 2.2. For any
formula φ ∈ Ldn, and any Γ ⊆ Ldn: if Γ ⊢DSn φ, then Γ |=DSn φ.

2.2.1 Strong Completeness of Deontic STIT Logic

We first prove strong completeness for the atemporal deontic STIT logic DSn. The results
obtained in this section are also useful in proving completeness of TDSn and the class of
deontic STIT logics introduced in Chapter 3.

We adopt the completeness via canonicity method for normal modal logics (Blackburn
et al., 2004). We prove the following claim:

If Γ |=DSn φ then Γ ⊢DSn φ
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for Γ ⊆ Ldn and φ ∈ Ldn. The strategy is as follows: we define the notion of a DSn-
maximally consistent set of Ldn formulae (Definition 2.6). These sets are used as worlds in
constructing a canonical model for the logic DSn (Definition 2.7). Subsequently, we prove
a truth lemma (Lemma 2.5), ensuring that every DSn-consistent set of formulae can be
satisfied on the corresponding canonical model. The main aim is to demonstrate that
the obtained canonical model is a DSn-model (Theorem 2.6). Finally, the model is used
to prove completeness via contraposition. Namely, if a formula φ is not DSn-derivable
from a set Γ, then {¬φ} ∪ Γ is an DSn-consistent set. By an adaptation of Lindenbaum’s
Lemma (Lemma 2.3) we know there is an DSn-maximally consistent set Γ′ extending
{¬φ} ∪ Γ. Since Γ′ is a world in the canonical DSn-model, we know that ¬φ and Γ are
satisfiable and so Γ ̸|=DSn φ.

First, we define DSn-consistent sets and DSn-maximally consistent sets.

Definition 2.6 (DSn-CS and DSn-MCS). A set ∆ ⊂ Ldn is a DSn-consistent set (for
short, DSn-CS) iff ∆ ̸⊢DSn ⊥. A set ∆ ⊂ Ldn is a DSn-maximally consistent set (for
short, DSn-MCS) iff ∆ is a DSn-CS and for any set ∆′ ⊆ Ldn such that ∆ ⊂ ∆′ it is the
case that ∆′ ⊢DSn ⊥.

We prove some useful properties of DSn-MCSs, which are (implicitly) used throughout
this section. In fact, the results hold for all modal logics considered in this thesis.

Lemma 2.2. Let Γ be a MCS. Then, Γ has the following properties:

• Γ ⊢DSn φ iff φ ∈ Γ;

• φ ∈ Γ iff ¬φ ̸∈ Γ;

• φ ∧ ψ ∈ Γ iff φ ∈ Γ and ψ ∈ Γ.

Proof. We prove each of the claims in turn:

(i) For the left-to-right direction assume that φ ̸∈ Γ. Since Γ is a maximal, we know
that Γ ∪ {φ} is inconsistent, i.e., Γ ⊢DSn ¬φ. Due to the fact that Γ is consistent,
we know that Γ ̸⊢DSn φ. For the opposite direction observe that if φ ∈ Γ, then
trivially Γ ⊢DSn φ.

(ii) Suppose that φ ∈ Γ. Observe that if ¬φ ∈ Γ as well, then Γ would be inconsistent;
hence, ¬φ ̸∈ Γ. For the backward direction, assume that ¬φ ̸∈ Γ. Suppose
towards a contradiction that φ ̸∈ Γ, then since Γ is a MCS, we know that both
Γ ∪ {φ} ⊢TDSn ⊥ and Γ ∪ {¬φ} ⊢DSn ⊥. However, this implies that Γ ⊢DSn φ∧ ¬φ,
thus contradicting the consistency of Γ. Hence, we know that φ ∈ Γ.

(iii) If φ ∧ ψ ∈ Γ, then by fact (i) φ ∈ Γ and ψ ∈ Γ since both Γ ⊢DSn φ and Γ ⊢DSn ψ
when φ ∧ ψ ∈ Γ. The opposite direction is proven similarly. QED
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Adapting Lindenbaum’s Lemma, every DSn-CS can be extended to a DSn-MCS.

Lemma 2.3 (Lindenbaum’s Lemma for DSn). Let ∆ ⊆ Ldn be a DSn-CS: there is a
DSn-MCS ∆′ ⊆ Ldn such that ∆ ⊆ ∆′.

Proof. See (Blackburn et al., 2004, Lem. 4.17) for a general proof. QED

Definition 2.7 (Canonical model for DSn). Let [α] ∈ Boxes = {□} ∪ {[i] | i ∈ Agents} ∪
{⊗i | i ∈ Agents} and let ⟨α⟩ be the operator dual to [α]. We define the canonical model
to be the tuple Mc := ⟨W c,Rc

□, {Rc
[i] | i ∈ Agents}, {Rc

⊗i
| i ∈ Agents}, V c⟩ such that:

• W c := {Γ ⊂ Ldn | Γ is a DSn-MCS};

• for each [α] ∈ Boxes and each ∆ ∈ W c, Rc
[α](∆) := {Γ ∈ W c | for all [α]φ ∈ ∆,

φ ∈ Γ};

• V c is a valuation function such that for all p ∈ Atoms, V c(p) := {∆ ∈ W c | p ∈ ∆}.

The semantic evaluation of formulae from Ldn is defined as usual (Definition 2.5).

We show some useful properties for demonstrating that the canonical model is a DSn-
model (Lemma 2.6).

Lemma 2.4 (Existence Lemma). Let [α] ∈ Boxes and let ⟨α⟩ be the operator dual to
[α].8 For any world ∆ ∈ W c of Mc and each i ∈ Agents the following holds:

• If ⟨α⟩φ ∈ ∆, then there is a Γ ∈ W c such that φ ∈ Γ and Γ ∈ Rc
α](∆).

Proof. See (Blackburn et al., 2004, Lem. 4.20) for a general proof. QED

Corollary 2.2. Let [α] ∈ Boxes and let ⟨α⟩ be the operator dual to [α]. For any world
∆ ∈ W c of Mc and each i ∈ Agents the following holds:

• If for all Γ ∈ Rc
[α](∆), φ ∈ Γ, then [α]φ ∈ ∆.

The following lemma shows that the defined model is canonical for DSn, i.e., each
DSn-MCS is satisfiable on this model.

Lemma 2.5 (Truth Lemma). For any φ ∈ Ldn and ∆ ∈ W c of Mc: Mc,∆ |= φ iff
φ ∈ ∆.

8The diamond-shaped operator is the defined dual of its box-shaped counterpart. Consequently, in
the syntactical construction of the canonical model Mc, when we write ♢, we denote the syntactic object
¬□¬. For readability, we use the defined operator ♢.
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Proof. The proof is by induction on the complexity of φ. Base case φ = p. Follows
directly from the definition of V c in Definition 2.7. Inductive Step. The cases for
the propositional connectives ¬ and ∧ are straightforward, see (Blackburn et al., 2004,
Lem.4.21). We show the case for the modality [α] ∈ Boxes:

(φ = [α]ψ) Left-to-Right. Suppose Mc,∆ |= [α]ψ, then for all Γ ∈ Rc
[α](∆), Mc,Γ |= ψ.

By IH, for all Γ ∈ Rc
[α](∆), ψ ∈ Γ. By Corollary 2.2, [α]ψ ∈ ∆.

Right-to-Left. Suppose [α]ψ ∈ ∆, and take an arbitrary Γ ∈ Rc
[α](∆), then by

definition of Rc
[α] we have ψ ∈ Γ. By IH, Mc,Γ |= ψ and since Γ was arbitrary by

semantic definition of [α] we conclude Mc,∆ |= [α]ψ. QED

Lemma 2.6 (Canonical DSn-model). The canonical model Mc is a DSn-model.

Proof. W c and V c are trivially well-defined. We only need to show that Mc satisfies the
properties C1–C4 and D1–D4 of Definition 2.4. Take an arbitrary ∆ ∈ W c of Mc:

C1 To prove that Rc
□ is an equivalence relation, it suffices to show that Rc

□ is (i)
reflexive and (ii) euclidean. Ad (i), take an arbitrary φ ∈ Ldn and assume □φ ∈ ∆.
Since ∆ is a DSn-MCS we know that □φ → φ ∈ ∆ (axiom A2). Consequently,
φ ∈ ∆. Since φ was arbitrary we know by Definition 2.7 that ∆ ∈ Rc

□(∆). Ad
(ii), assume that Γ,Σ ∈ Rc

□(∆). We show that Γ ∈ Rc
□(Σ). Take an arbitrary

φ ∈ Ldn and assume □φ ∈ Σ. Suppose towards a contradiction that φ ̸∈ Γ.
Consequently, since Γ ∈ Rc

□(∆), ♢¬φ ∈ ∆. By the fact that ∆ is a DSn-MCS we
know ♢¬φ → □♢¬φ ∈ ∆ (axiom A3) and so □♢¬φ ∈ ∆. By the assumption that
Σ ∈ Rc

□(∆) we have ♢¬φ ∈ Σ and so ¬□φ ∈ Σ. This contradicts the assumption
that Σ is a DSn-MCS.

C2 Similar to C1.

C3 Consider an arbitrary Γ ∈ Rc
[i](∆). We prove that Γ ∈ Rc

□(∆). Take an arbitrary
φ ∈ Ldn and assume that □φ ∈ ∆. By the fact that ∆ is a DSn-MCS, we know that
□φ → [i]φ ∈ ∆ (axiom A7). Consequently, [i]φ ∈ ∆ and thus φ ∈ Γ. Since φ was
arbitrary we know by Definition 2.7 that Γ ∈ Rc

□(∆).

C4 Let Γ1, ...,Γn ∈ Rc
□(∆). We show that there is a Σ ∈ W c such that Σ ∈

⋂
i∈Agents Rc

[i](Γi).
We construct this DSn-MCS Σ. Consider the following set:

Σ′ =
⋃

i∈Agents
{φ | [i]φ ∈ Γi} ∪ {ψ | □ψ ∈ ∆}

We suppose towards a contradiction that Σ′ is inconsistent, i.e., Σ′ ⊢DSn ⊥. Conse-
quently, we know that there are φ1, ..., φk ∈

⋃
i∈Agents{φ | [i]φ ∈ Γi} and there are

ψ1, ..., ψl ∈ {ψ | □ψ ∈ ∆} such that

(†) ⊢DSn (φ1 ∧ ... ∧ φk) → (¬ψ1 ∨ ... ∨ ¬ψl)
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We define for each i ∈ Agents the following set Φi = {φm | [i]φm ∈ Γi}∩{φ1, ..., φk}.
As an immediate consequence, we have ∧[i]Φi ∈ Γi, and since [i] is a normal
modal operator [i] ∧ Φi ∈ Γi. Since Γi ∈ Rc

□(∆) we have ♢[i] ∧ Φi ∈ ∆ for each
i ∈ Agents and consequently ∧

i∈Agents ♢[i] ∧ Φi ∈ ∆. Since ∆ is a DSn-MCS,
we know that ∧

i∈Agents ♢[i] ∧ Φi → ♢
∧
i∈Agents[i]

∧ Φi ∈ ∆ (axiom A8) and so
♢

∧
i∈Agents[i]

∧ Φi ∈ ∆. By the existence lemma 2.4, there is a Σ ∈ Rc
□(∆) such

that ∧
i∈Agents[i]

∧ Φi ∈ Σ. By the fact that [i] ∧ Φi →
∧ Φi ∈ Σ (axiom A5), we

have ∧
i∈Agents

∧ Φi ∈ Σ. By (†) we have ¬ψ1 ∨...∨¬ψl ∈ Σ but since Σ ∈ Rc
□(∆) we

also have ψ1, ..., ψl ∈ Σ. Contradiction. Hence, Σ′ is DSn-consistent. By Lemma 2.3
we know there is a DSn-MCS Σ ∈ W c extending Σ′. Last, by the construction of
Σ′ ⊆ Σ and the definitions of Rc

□ and Rc
[i] we have Σ ∈ Rc

□(∆) and Σ ∈ Rc
[i](Γi)

for each i ∈ Agents.

D1 Suppose that Γ ∈ Rc
⊗i

(∆) and Σ ∈ Rc
□(∆). We prove that Γ ∈ Rc

⊗i
(Σ). Take an

arbitrary φ ∈ Ldn and suppose that ⊗iφ ∈ Σ. Since Σ is a DSn-MCS we know
⊗iφ → □ ⊗i φ ∈ Σ (axiom A10) and thus □ ⊗i φ ∈ Σ. By the fact that Rc

□
is an equivalence class (see C1 above) we know ∆ ∈ Rc

□(Σ) and so ⊗iφ ∈ ∆.
By the assumption that Γ ∈ Rc

⊗i
(∆) we have φ ∈ Γ. Since φ was arbitrary, by

Definition 2.7, we know that Γ ∈ Rc
⊗i

(Σ).

D2 We show that there is a Γ such that Γ ∈ Rc
□(∆) and for all Σ ∈ Rc

[i](Γ) we have
Σ ∈ Rc

⊗i
(∆). We construct Γ. Let

Γ′ = {[i]φ | ⊗i φ ∈ ∆} ∪ {ψ | □ψ ∈ ∆}

Suppose towards a contradiction that Γ′ is inconsistent. Then we know that

⊢DSn ([i]φi ∧ ... ∧ [i]φk ∧ ψ1 ∧ ... ∧ ψl) → ⊥

where [i]φ1, ..., [i]φk ∈ {[i]φ | ⊗i φ ∈ Γ} and ψ1, ..., ψl ∈ {ψ | □ψ ∈ Γ}. Let
φ̂ = φ1 ∧ ... ∧ φk and ψ̂ = ψ1 ∧ ... ∧ ψl. By normality of [i], we have ⊢DSn [i]φ̂ ≡
([i]φ1 ∧ ...∧ [i]φk) and thus by basic modal reasoning we obtain ⊢DSn ψ̂ → ¬[i]φ̂. By
the normality of □, we have ⊢DSn □ψ̂ → □¬[i]φ̂, which implies ⊢DSn □ψ̂ → ¬♢[i]φ̂.
Clearly, because □ψ̂ ∈ ∆ and the fact that ∆ is a DSn-MCS, we know that
¬♢[i]φ̂ ∈ ∆. Also, since ⊗iφ1, ...,⊗iφk ∈ ∆ and ⊗i is a normal modal operator, we
have that ⊗iφ̂ ∈ ∆ as well. We know that ⊗iφ̂ → ♢[i]φ̂ ∈ ∆ (axiom A11) and thus
by the fact that ∆ is a DSn-MCS, we obtain ♢[i]φ̂ ∈ ∆. We have a contradiction,
and so Γ′ is consistent. By Lemma 2.3 there is a DSn-MCS Γ such that Γ′ ⊆ Γ. By
the definition of Rc

□ and the construction of Γ′ ⊆ Γ we know Γ ∈ Rc
□(∆). Last,

assume Σ ∈ Rc
[i](Γ) and take an arbitrary ψ ∈ Ldn with ⊗iψ ∈ ∆. By construction

of Γ, [i]ψ ∈ Γ and thus ψ ∈ Σ. Since ψ was arbitrary we have by the definition of
Rc

⊗i
that Σ ∈ Rc

⊗i
(∆).

D3 Similar to C3.
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D4 Suppose that Γ ∈ Rc
⊗i

(∆) and Σ ∈ Rc
[i](Γ). We prove that Σ ∈ Rc

⊗i
(∆). Take

an arbitrary φ ∈ Ldn and assume ⊗iφ ∈ ∆. Since ∆ is a DSn-MCS, we know
⊗iφ → ⊗i[i]φ ∈ ∆ (axiom A13). Consequently, ⊗i[i]φ ∈ ∆. Since Γ ∈ Rc

⊗i
(∆) we

have [i]φ ∈ Γ and since Σ ∈ Rc
[i](Γ) we have φ ∈ Σ. Last, because φ was arbitrary

we have, by Lemma 2.7, that Σ ∈ Rc
⊗i

(∆). QED

We can now demonstrate strong completeness of DSn.

Theorem 2.2 (Strong Completeness of DSn). For any formula φ ∈ Ldn, and any Γ ⊆ Ldn:
if Γ |=DSn φ, then Γ ⊢DSn φ.

Proof. The proof is by contraposition. Suppose φ is not DSn-derivable from Γ. This
means that Γ ∪ {¬φ} is a DSn-CS. Namely, if Γ ∪ {¬φ} would be DSn-inconsistent, then
Γ,¬φ ⊢DSn ⊥ and so Γ ⊢DSn φ. By Lemma 2.3 there is a Γ′ ⊆ Ldn such that Γ′ is a
DSn-MCS and Γ ∪ {¬φ} ⊆ Γ′. By construction of the canonical model, Γ′ ∈ W c and
by Lemma 2.5 we know that Mc,Γ′ |= Γ and Mc,Γ′ |= ¬φ. By Lemma 2.6, Mc is a
DSn-model and so Γ ̸|=DSn φ. QED

2.2.2 Weak Completeness of Temporal Deontic STIT Logic

Following Gabbay et al. (1994), due to the use of the irreflexivity rule R3, we cannot
readily adapt the standard completeness via canonicity method for normal modal logics
(Blackburn et al., 2004). In order to prove completeness of the logic TDSn, we must
define a specific canonical model, i.e., one that respects temporal irreflexivity. To ensure
irreflexivity, we adopt the mechanism from Gabbay et al. (1994) and employed by Lorini
(2013) in the context of STIT, which allows us to encode TDSn-MCSs with information
that excludes reflexive points in the resulting model.

The strategy is as follows: we define the notion of a TDSn-maximally consistent set
(MCS) of Ltdn formulae (Definition 2.8). These MCSs are used as worlds in constructing
a canonical model for the logic TDSn (Definition 2.9). Subsequently, we define a specific
submodel of the canonical model, restricted to specific TDSn-MCSs called IRR-theories.
An IRR-theory is a TDSn-MCS constructed in such a way that it coherently and uniquely
labels itself and each reachable TDSn-MCS. The labeling occurs by giving each MCS
a unique atomic proposition that identifies it (Definition 2.12). The truth lemma
(Lemma 2.7) holds for the canonical submodel restricted to IRR theories. It is then
shown that each TDSn-consistent formula φ ∈ Ltdn can be consistently extended to an
IRR theory (Lemma 2.8). The gist of the proof lies in the observation that one needs
infinitely many atomic propositions to coherently name each reachable world in an infinite
branching time structure. Since a formula φ contains only finitely many atoms, and since
the set Atoms is infinite, there are infinitely many atoms left to coherently define the IRR
theory extending {φ}. The labeling strategy is used to demonstrate that the obtained
canonical submodel is a TDSn-model (Theorem 2.11). As a last step, this TDSn-model is
used to prove weak completeness via contraposition in the usual way.
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It must be noted that we only obtain weak completeness of TDSn, e.g., see (Gabbay et al.,
1994). In order to prove strong completeness, we must guarantee that any arbitrary
TDSn-consistent set ∆ can be extended to an IRR theory. However, to ensure that a
TDSn-maximally consistent extension ∆′ of ∆ is an IRR theory, we need an infinite
number of atomic formulae p not occurring in ∆. Hence, ∆′ cannot contain infinitely many
atomic formulae, e.g., when ∆′ = Atoms. This observation excludes TDSn-consistent sets
that are maximal but are not IRR theories. Consequently, not every arbitrary TDSn-
consistent set can be extended to an IRR theory. As observed, we can still guarantee
weak completeness because every TDSn-consistent formula φ is syntactically finite, which
means that there is an infinite number of atoms in Atoms not occurring in φ.

We now turn to the proof. First, we define TDSn-maximally consistent sets and the
general canonical model for TDSn that does not yet ensure irreflexivity. The definitions
are similar to the canonical model construction for the logic DSn.

Definition 2.8 (TDSn-CS and TDSn-MCS). A set ∆ ⊂ Ltdn is an TDSn consistent set
(for short, TDSn-CS) iff ∆ ̸⊢TDSn ⊥. A set ∆ ⊂ Ltdn is an TDSn-maximally consistent
set (for short, TDSn-MCS) iff ∆ is an TDSn-CS and for any set ∆′ ⊆ Ltdn such that
∆ ⊂ ∆′ it is the case that ∆′ ⊢TDSn ⊥.

Observe that the properties of MCSs proven in Lemma 2.2 also hold for TDSn-MCSs. For
the remainder of this section, we use Boxes to refer to the set of box-shaped modalities
of Ltdn , i.e., Boxes := {□, [Ag],G,H} ∪ {[i] | i ∈ Agents} ∪ {⊗i | i ∈ Agents}.

Definition 2.9 (Canonical model for TDSn). Let [α] ∈ Boxes and let ⟨α⟩ be the operator
dual to [α]. We define the canonical model to be the tuple Mc := ⟨W c,Rc

□, {Rc
[i] | i ∈

Agents}, {Rc
⊗i

| i ∈ Agents},Rc
[Ag], Rc

G,Rc
H, V

c⟩ such that:

• W c := {Γ ⊂ Ltdn | Γ is a TDSn-MCS};

• for each [α] ∈ Boxes and for all ∆ ∈ W c, Rc
[α](∆) := {Γ ∈ W c | for all [α]φ ∈ ∆,

then φ ∈ Γ};

• V c is a valuation function such that for all p ∈ Atoms, V c(p) := {∆ ∈ W c | p ∈ ∆}.

We are interested in a submodel of the canonical model, namely, one that excludes
reflexive worlds. In order to guarantee that the submodel satisfies the truth lemma
(Lemma 2.7) we must ensure that the submodel is well-defined. For this, we adopt
Lorini’s (2013) notion of a diamond-saturated set.

Definition 2.10 (Diamond-saturated set (Lorini, 2013)). Let X be a set of MCSs and let
⟨α⟩ be dual to [α] ∈ Boxes. We say that X is a diamond saturated set iff for all Γ ∈ X,
for each ⟨α⟩φ ∈ Γ there exists a ∆ ∈ X such that Rc

[α]Γ∆ and φ ∈ ∆.
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Definition 2.11 (An X-induced submodel MX). Let Mc := ⟨W c,Rc
□, {Rc

[i] | i ∈
Agents}, {Rc

⊗i
| i ∈ Agents},Rc

[Ag], Rc
G,Rc

H, V
c⟩ be the canonical model from Defini-

tion 2.9. Let X ⊆ W c. We define the X induced submodel MX = ⟨WX ,RX
□ , {RX

[i] | i ∈
Agents}, {RX

⊗i
| i ∈ Agents},RX

[Ag], RX
G ,RX

H , V
X⟩ of Mc as follows:

• WX := W c ∩X;

• For each [α] ∈ Boxes, R[α]|X := {(Γ,∆) | (Γ,∆) ∈ R[α] and Γ,∆ ∈ X};

• For each p ∈ Atoms, V X(p) := V c(p) ∩X.

Lemma 2.7 (Truth Lemma). Let Mc be the canonical model and let X ⊆ W c be a
diamond saturated set with Γ ∈ X, φ ∈ Ltdn . Let MX be the X induced submodel of Mc.
Then, MX ,Γ |= φ iff φ ∈ Γ.

Proof. Proven in the usual manner (Blackburn et al., 2004, Lem. 4.70). QED

Following Lorini (2013), let IRR-theories be those sets of TDSn-formulae that (i) are
maximally consistent, (ii) contain a label name(p) := □¬p∧□(Gp∧Hp), uniquely labeling
a moment and (iii) for any world that is reachable through any ‘zig-zagging’ sequence of
diamond operators, that is, every zig-zagging formula φ of the form

⟨α1⟩(φ1 ∧ ⟨α2⟩(φ2 ∧ ... ∧ ⟨αn⟩φn))...)

where ⟨αi⟩ is dual to [αi] ∈ Boxes with 1 ≤ i ≤ n, there exists a corresponding zig-zagging
formula φ(q) (where q is a propositional variable) of the form,

⟨α1⟩(φ1 ∧ ⟨α2⟩(φ2 ∧ ... ∧ ⟨αn⟩(φn ∧ □¬q ∧ □(Gq ∧ Hq)))...)

labeling reachable worlds.

Intuitively, the naming formula □¬p∧□(Gp∧Hp) ∈ Γ ensures that the literal ¬p uniquely
identifies the moment of which Γ is part in the constructed canonical model (i.e., □¬p).
It is unique because all other moments making up the tree-structure of which Γ is part
will satisfy p instead (i.e., □(Gp ∧ Hp)). The inclusion of zig-zagging formulae ensures
that any other moment in the desired branching time structure, reachable through
sequences of diamond operators, will likewise be uniquely named. Subsequently, using
naming formulae (first item of Definition 2.12) and zig-zagging formulae (second item of
Definition 2.12) in the selection of TDSn-MCSs enables us to ensure that each moment
in the canonical model is irreflexive (Gabbay et al., 1994).

Definition 2.12 (IRR-theory (Lorini, 2013)). Let Zig be the set of all zig-zagging
formulae in Ltdn and let name(p):= □¬p∧□(Gp∧ Hp) where p is a propositional variable.
A set of formulae Γ is called an IRR-theory iff the following hold:
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• Γ is a TDSn-MCS and name(p) ∈ Γ, for some propositional variable p;

• if φ ∈ Γ ∩ Zig, then φ(q) ∈ Γ, for some propositional variable q.

Let IRR := {Γ ⊆ Ltdn | Γ is an IRR-theory } denote the set of all IRR-theories.

The proof of the following lemma demonstrates how for each TDSn-consistent formula
φ ∈ Ltdn , we can construct an IRR-theory containing it.

Lemma 2.8. Let φ ∈ Ltdn be a consistent formula. Then, there exists an IRR-theory Γ
such that φ ∈ Γ.

Proof. Let φ ∈ Ltdn be a consistent formula. We enumerate the formulae of Ltdn so that
each formula in odd position is an element of Zig and make use of this enumeration to
build an increasing sequence of consistent theories Γ0, Γ1, . . . , Γn, . . .

We let Γ0 := {φ ∧ □¬p ∧ □(Gp ∧ Hp)} for some propositional variable p not occurring
in φ. We define the sequence of Γn (for n > 0) as follows: Assume that Γn is defined
and consider ψn of the enumeration. We know that either Γn ∪ {¬ψn} is consistent or
Γn∪{ψn} is consistent. If Γn∪{¬ψn} is consistent, set Γn+1 := Γn∪{¬ψn}. If Γn∪{ψn}
is consistent, then there are two cases to consider: either n is even, or n is odd. If n is
even, then set Γn+1 := Γn ∪ {ψn}. Otherwise, if n is odd, set Γn+1 := Γn ∪ {ψn, ψn(q)},
where q is a propositional variable not occurring in Γn or ψ. We define our desired
maximally consistent IRR-theory as follows:

Γ :=
⋃
n∈N

Γn

To finish the proof, we need to show that Γ is both a TDSn-MCS and an IRR-theory.
We first prove that (i) Γ is a MCS and then show that (ii) Γ is an IRR-theory.

To prove claim (i), it is useful to first prove that for all n ∈ N, each Γn is consistent. We
show this claim by induction on n. In the base case, assume for a contradiction that
Γ0 = {φ ∧ □¬p ∧ □(Gp ∧ Hp)} is inconsistent. Hence, □¬p ∧ □(Gp ∧ Hp) ∧ φ ⊢TDSn ⊥,
which further implies that ⊢TDSn □¬p ∧ □(Gp ∧ Hp) → (φ → ⊥). We may infer from
the rule R3 that ⊢TDSn φ → ⊥. However, we know that φ is consistent, meaning that
̸⊢TDSn φ → ⊥. We have thus obtained a contradiction implying that Γ0 is consistent.
For the inductive step, assume that Γn is consistent. We want to show that Γn+1 is
consistent. This trivially follows by the definition of Γn+1.

To prove that Γ is a MCS, we must show that Γ is both consistent and maximal. Assume
for a contradiction that Γ is inconsistent. Then, this implies that for some finite subset Γ′

of Γ, Γ′ ⊢ ⊥. However, if this is the case, then there exists some Γn such that Γn ⊢TDSn ⊥.
We know this cannot be the case by the previous paragraph, and so, Γ must be consistent.
Assume now that there exists some Γ′ such that Γ ⊂ Γ′ and Γ′ ̸⊢TDSn ⊥. Let ψ ∈ Γ′ \ Γ.
Since ψ is a formula in Ltdn , we know that if was considered at some point during the
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construction of the sequence Γ0, Γ1, . . . , Γn, . . . . Since ψ ̸∈ Γ this implies that there
exists some Γm such that Γm ∪ {ψ} is inconsistent. Therefore, Γm ⊢TDSn ¬ψ, which
implies that Γ ⊢TDSn ¬ψ. Due to the fact that Γ ⊂ Γ′, it follows that Γ′ ⊢TDSn ¬ψ and
Γ′ ⊢TDSn ψ since ψ ∈ Γ′, which is a contradiction. Therefore, Γ is a MCS.

We now prove that Γ is an IRR-theory. By construction, we know that φ∧□¬p∧□(Gp∧
Hp) ∈ Γ0 ⊂ Γ, and since Γ is a MCS, it follows that □¬p∧□(Gp∧Hp) ∈ Γ, thus satisfying
the first condition of being an IRR-theory. The second condition of being an IRR-theory
is satisfied by the fact that whenever a formula ψ ∈ Zig is added to Γm ⊂ Γ, for m ∈ N,
the formula ψ(q) is added as well with q fresh. QED

The following existence lemma guarantees that the set IRR is a diamond saturated set
(Definition 2.10), which implies that the submodel MIRR obtained by restricting the
canonical model to IRR theories satisfies the truth lemma (Lemma 2.7).

Lemma 2.9 (Existence lemma). Let Γ ∈ IRR be an IRR-theory and let ⟨α⟩ be dual to
[α] ∈ Boxes. For each ⟨α⟩φ ∈ Γ there exists an IRR-theory ∆ ∈ IRR such that ∆ ∈ Rc

[α](Γ)
and φ ∈ ∆.

Proof. The proof is the same as in Lorini (2013, Lem. 16). QED

Henceforth, we use the superscript IRR for denoting the elements of the IRR induced
canonical submodel MIRR. We prove the following useful lemma:

Lemma 2.10. Let MIRR be the IRR induced submodel of Mc. Let ⟨α⟩ be dual to [α] ∈
Boxes and let Γ,∆ ∈ IRR. Then, ∆ ∈ RIRR

[α] (Γ) iff for all φ ∈ ∆, ⟨α⟩φ ∈ Γ.

Proof. Left-to-Right. Assume ∆ ∈ RIRR
[α] (Γ). By Definition 2.11 we know that ∆ ∈

Rc
[α](Γ). By the definition of Rc

[α] (Definition 2.9) we know that for all [α]φ ∈ Γ, φ ∈ ∆.
Which by contraposition gives us for all φ ∈ ∆, ⟨α⟩φ ∈ Γ.

Right-to-Left. Assume that for all φ ∈ Ltdn , if φ ∈ ∆, then ⟨α⟩φ ∈ Γ. Take an arbitrary
ψ ∈ Ltdn and suppose that [α]ψ ∈ Γ. Since Γ is a TDSn-MCS we know that ⟨α⟩¬ψ ̸∈ Γ.
By contraposition on our initial assumption, we have ¬ψ ̸∈ ∆. Because ∆ is a TDSn-MCS,
we know that ψ ∈ ∆. Since ψ was arbitrary, by the definition of Rc

[α] (Definition 2.9) we
have established that ∆ ∈ Rc

[α](Γ). Since both ∆,Γ ∈ IRR, by Definition 2.11 we know
that (Γ,∆) ∈ RIRR

[α] = Rc
[α] ∩ IRR × IRR.

QED

It remains to show that the model MIRR is, in fact, a TDSn-model. It suffices to show
that MIRR satisfies the properties C1-C6, D1-D4, and T1-T6 of Definition 2.4.

Lemma 2.11 (Canonical TDSn-model). The canonical submodel MIRR is a TDSn-model.
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Proof. We must show that MIRR satisfies properties C1-C6, D1-D4, and T1-T6. Due
to the modularity of our approach, the proofs of the temporal properties T1-T5, as well
as C4-C6, are those provided by Lorini (2013).9 The proofs of C1-C4, D1, D3, and D4
are straightforward adaptations of the ones given for the logic DSn in Lemma 2.6. Thus,
we only need to prove D2. In order to clarify how irreflexivity of MIRR is guaranteed, we
recall the proof of T6 provided by Lorini (2013). Take an arbitrary Γ ∈ IRR of MIRR:

D2 We show that there exists a ∆ ∈ IRR such that ∆ ∈ RIRR
□ (Γ) and for every Σ ∈ IRR, if

Σ ∈ RIRR
[i] (∆), then Σ ∈ RIRR

⊗i
(Γ). Since Γ is an IRR-theory, there is a propositional

variable p such that name(p) ∈ Γ. Define

∆0 = {[i]φ | ⊗i φ ∈ Γ} ∪ {ψ | □ψ ∈ Γ} ∪ {name(p)}

We prove by contradiction that ∆0 is consistent and then extend ∆0 to an IRR-
theory. If ∆0 is inconsistent, then

⊢TDSn ([i]φ1 ∧ ... ∧ [i]φk ∧ ψ1 ∧ ... ∧ ψl ∧ name(p)) → ⊥

where [i]φ1, . . . , [i]φk ∈ {[i]φ | ⊗i φ ∈ Γ} and ψ1, . . . , ψl ∈ {ψ | □ψ ∈ Γ}. Let
φ̂ = φ1 ∧ ...∧φk and ψ̂ = ψ1 ∧ ...∧ψl. Since, ⊢TDSn [i]φ̂ ≡ [i]φ1 ∧ ...∧ [i]φk we have

⊢TDSn (ψ̂ ∧ name(p)) → ¬[i]φ̂

By the normality of □ we know that ⊢TDSn □(ψ̂ ∧ name(p)) → □¬[i]φ̂, which
implies ⊢TDSn □ψ̂ ∧ □name(p) → ¬♢[i]φ̂. Clearly, because □ψ̂ ∈ Γ, name(p) ∈ Γ
and ⊢TDSn name(p) → □name(p), we have that Γ ⊢TDSn ¬♢[i]φ̂. This implies that
¬♢[i]φ̂ ∈ Γ since Γ is an IRR-theory.
Also, since ⊗iφ1, ...,⊗iφk ∈ Γ we have ⊗iφ1 ∧ ... ∧ ⊗iφk ∈ Γ. By ⊢TDSn ⊗iφ̂ ≡
⊗iφ1 ∧ ... ∧ ⊗iφk we conclude ⊗iφ̂ ∈ Γ as well. Since ⊗iφ̂ → ♢[i]φ̂ ∈ Γ (axiom
A11), we obtain by modus ponens that ♢[i]φ̂ ∈ Γ. Since Γ is an IRR-theory (and
hence consistent), we obtain a contradiction, which proves that ∆0 is consistent.
We now extend ∆0 to an IRR-theory ∆ by first defining an increasing sequence ∆0,
∆1, ..., ∆n, ... of sets of formulae. Suppose that ∆n is consistent and defined, and
enumerate the formulae of Ltdn so that each formula in odd position is an element
of Zig. We define ∆n+1.
Consider the formula ψn. Either, ∆n∪{¬ψn} is consistent or ∆n∪{ψn} is consistent.
If the former holds, then let ∆n+1 := ∆n∪{¬ψn}. If the latter holds, then there are

9Although the non-deontic frame properties are the same, Lorini (2013) uses a different labeling of
the properties than we do in this chapter. He defines the properties in Def. 2.4 of (Lorini, 2013). To
facilitate comparison, we point out that C1, C2, and C4 correspond to the second bullet in Def. 2.4.
Properties C3, C4, and C6 corresponds to (C1), (C2), respectively (C3) in Def. 2.4. The temporal
properties T1 and T2 correspond to the third bullet in Def. 2.4. Last, T3, T4, T5, and T6, correspond
to (C4), (C5), (C6), respectively (C7) in Def. 2.4.
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two subcases to consider: either n is even, in which case, we let ∆n+1 := ∆n∪ {ψn},
or n is odd, in which case, ∆n ∪ {ψn} is consistent and ψn ∈ Zig. We show that in
the latter subcase, we can find a propositional variable q such that ∆n∪{ψn, ψn(q)}
is consistent; we then define ∆n+1 := ∆n ∪ {ψn, ψn(q)}.
First, we show that for Γ,

⊖i(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn) ∈ Γ (2.1)

Suppose towards a contradiction that (2.1) does not hold. Then,

⊗i((name(p) ∧
∧

χ∈∆n\∆0

χ) → ¬ψn) ∈ Γ

since Γ is an IRR-theory and has the properties specified by Lemma 2.2. By the
definition of ∆0 it follows that

[i]((name(p) ∧
∧

χ∈∆n\∆0

χ) → ¬ψn) ∈ ∆n

Using the axiom scheme [i]θ → θ A5, we infer that

∆n ⊢TDSn (name(p) ∧
∧

χ∈∆n\∆0

χ) → ¬ψn

Since
∆n ⊢TDSn name(p) ∧

∧
χ∈∆n\∆0

χ

we conclude that ∆n ⊢TDSn ¬ψn, which contradicts the fact that ∆n ∪ {ψn} is
consistent and, so, (2.1) holds. Consequently, since Γ is an IRR-theory, we know
that

⊖i(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q)) ∈ Γ (2.2)

Using this fact, we prove that ∆n+1 := ∆n ∪ {ψn, ψn(q)} is consistent. Suppose
towards a contradiction otherwise. Then, there exist θ1, . . . , θm ∈ {θ | □θ ∈ Γ} and
[i]γ1, . . . , [i]γk ∈ {[i]γ | ⊗i γ ∈ Γ} such that

⊢TDSn θ1 ∧ · · · ∧ θm → ([i]γ1 ∧ · · · ∧ [i]γk → ¬(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q)))

By the normality of ⊗i, we can derive

⊢TDSn ⊗i(θ1 ∧ · · · ∧ θm) → ⊗i([i]γ1 ∧ · · · ∧ [i]γk → ¬(name(p) ∧
∧

χ∈∆n\∆0

χ∧ψn(q)))

Using axiom A12 we obtain

⊢TDSn □(θ1 ∧ · · · ∧ θm) → ⊗i([i]γ1 ∧ · · · ∧ [i]γk → ¬(name(p) ∧
∧

χ∈∆n\∆0

χ∧ψn(q)))
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By the assumption that θ1, . . . , θm ∈ {θ | □θ ∈ Γ} and the fact that Γ is an
IRR-theory, we know that □(θ1 ∧ · · · ∧ θm) ∈ Γ, implying that

⊗i([i]γ1 ∧ · · · ∧ [i]γk → ¬(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q))) ∈ Γ

We infer by the normality of ⊗i that

⊗i[i](γ1 ∧ · · · ∧ γk) → ⊗i¬(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q))) ∈ Γ

Using the axiom scheme ⊗iφ → ⊗i[i]φ (A13) we derive

⊗i(γ1 ∧ · · · ∧ γk) → ⊗i¬(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q))) ∈ Γ

Our assumption implies that ⊗i(γ1 ∧ · · · ∧ γk) ∈ Γ, and so

⊗i¬(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q))) ∈ Γ

This contradicts (2.2) and proves that ∆n ∪ {ψnψn(q)} is consistent.
It is straightforward to infer that ∆ is an IRR-theory by an argument similar to
Lemma 2.8.
Clearly, ∆ ∈ RIRR

□ (Γ) holds by the definition of ∆. Last, let Σ be an arbitrary
IRR-theory in IRR. Assume that Σ ∈ RIRR

[i] (∆) holds and let ⊗iφ ∈ Γ. By definition
[i]φ ∈ ∆, and so, φ ∈ Σ by the definition of the relation RIRR

[i] , which completes the
proof.

T6 Let ∆ ∈ IRR and assume that ∆ ∈ RIRR
□ (Γ). We show that ∆ ̸∈ RIRR

G (Γ). Since ∆
is an IRR-theory we know name(p) ∈ ∆ for some atom p ∈ Atoms. Consequently,
□¬p,□Gp,□Hp ∈ ∆. Since □¬p → ¬p ∈ ∆ (axiom A2) we also have ¬p ∈ ∆. By
the fact that RIRR

□ is an equivalence relation, we have Γ ∈ RIRR
□ (∆) and so Gp ∈ Γ.

Furthermore, since Γ is an IRR-theory, we know that F¬p ̸∈ Γ. Last, since ¬p ∈ ∆
by Lemma 2.10 we obtain ∆ ̸∈ RIRR

G (Γ). QED

Theorem 2.3 (Weak completeness of TDSn). For any formula φ ∈ Ltdn , if |=TDSn φ,
then ⊢TDSn φ.

Proof. Suppose that φ ∈ Ltdn is consistent. By Lemma 2.8, we can extend φ to an
IRR-theory Γ such that φ ∈ Γ. By Lemma 2.9, we know that the set IRR is a diamond
saturated set, and so, by Lemma 2.7, we know that MIRR,Γ |= φ iff φ ∈ Γ. Hence, we
can conclude that MIRR,Γ |= φ. By Lemma 2.11 we know that MIRR is a TDSn-model.
Therefore, φ is satisfiable on a TDSn-model. QED
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2.3 Transformations into Utilitarian Models

In this section, we prove that the logics TDSn and DSn are also sound and complete
with respect to the traditional utilitarian semantics (Objective 3). This means that our
relational semantics is equivalent to the utilitarian approach. In particular, we show
that DSn is equivalent to the logic of dominance ought based on (act) utilitarian STIT
models, as developed by Horty (2001, Ch.4). We obtain these results by demonstrating
how TDSn-models can be truth-preservingly transformed into utilitarian STIT models.
To be precise, we introduce a utility function ‘util’ that maps natural numbers—i.e.,
utilities—to worlds in the model.10 In contrast to (Horty, 2001; Murakami, 2005), we
start with assigning utilities to individual worlds and only later modify our approach
by assigning utilities to complete histories (i.e., where all worlds on a timeline have the
same utility). There are two reasons for doing this. First, the atemporal language of Ldn
cannot distinguish between multi-moment models and single-moment models (Balbiani
et al., 2008; Murakami, 2005) and thus utility assignments may be safely restricted to
individual worlds in DSn. Second, once we move to an explicit temporal setting, certain
problems arise with respect to assigning utilities to complete histories. The latter is
discussed in Section 2.4.

2.3.1 The Semantics of Dominance Ought

Horty (2001) defines Dominance Act Utilitarianism as “a form of act utilitarianism
applicable in the presence of both indeterminism and uncertainty, and based on the
dominance ordering among actions” (p.73). Formally, indeterminism and uncertainty
refer to branching time, respectively, choice in the context of STIT (see page 26). The act
utilitarian approach to STIT takes the evaluation of utilities as the ground for obligation:
by comparing utilities, one can obtain an ideality ordering on the choices available to
each agent. Horty (2001, Ch.3-4) provides an extensive argument for the adaptation of,
what he calls, the dominance ought: in brief, what an agent ought to see to is defined in
terms of the choices that are not strongly dominated by any other choice available to the
agent, irrespective of the choices made by any of the other agents. One may thus think of
this notion as an all-things-considered obligation. In the remainder, we make the above
formally precise and define Temporal Utilitarian STIT logic (for short, TUSn). We use
USn to denote the atemporal subsystem called Utilitarian STIT logic (for short, USn).

Remark 2.2. It must be noted that Horty (2001) initially developed the semantics of
dominance ought for Branching Time frames (BT) with Agential Choice (AC) functions.
Fortunately, because BT+AC frames can be directly translated into relational semantics
(Balbiani et al., 2008; Lorini, 2013)—such as the one employed in this chapter—the trans-

10Horty (2001) takes the reals as default utilities. Although irreflexive and serial branching time
frames are infinite, they are countable infinite: every node is reachable by a finite path, and there is at
most countably infinite branching at each node. Consequently, it suffices to use the natural numbers N
to assign a (possibly unique) number to each world in the model. Last, we point out that the idea of a
utility is abstract, i.e., how those utilities came about is not taken into consideration.
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formation of the semantics of dominance ought (Horty, 2001) into relational semantics
is straightforward.

Definition 2.13 (Frames and Models for TUSn and USn). A relational Temporal
Utilitarian STIT frame (for short, TUSn-frame) is a tuple F = ⟨W,R□, {R[i]|i ∈
Ag}, util,R[Ag],RG,RH⟩, where F satisfies conditions C1–C6 and T1–T6 of Defini-
tion 2.4 together with the following:

U1 util : W 7→ N is a utility function assigning each world to a natural number.

A TUSn-model is a tuple M = ⟨F, V ⟩ where F is a TUSn-frame and V is a valuation
function assigning propositional atoms to subsets of W , i.e., V : Atoms 7→ ℘(W ).

A relational Utilitarian STIT frame (for short, USn-frame) is a tuple F = ⟨W,R□, {R[i]|i ∈
Ag}, util⟩ satisfying the conditions C1-C4 of Definition 2.4 together with U1 above. A
USn-model is defined as usual.

In order to semantically characterize the interpretation of the dominance ought ⊗i, we
need some additional machinery. First of all, we need to make precise what it means for
a choice to be optimal “irrespective of the choices made by any of the other agents”. To
model this, Horty introduces the notion of a state (of nature): “we will identify the states
confronting an agent at any given moment with the possible patterns of action that might
be performed at that moment by all other agents” (p.66). The principle of independence
of agents ensures that no agent can influence the choices of any other agent. Therefore,
one can regard the joint interaction of all other agents as a state of nature for that agent.
Subsequently, an agent may compare each choice available to her with a given state, each
resulting in a unique outcome (namely, that of all agents acting together). A dominance
ordering then orders an agent’s choices according to these possible outcomes.

Formally, let v ∈ R□(w), then a state Rs
[i](v) for agent i at v is defined as,

Rs
[i](v) := ⋂

k∈Agents\{i}
Rk(v)

The possible combinations of choices available to the set Agents\{i} are the different
states available at that moment to agent i. We point out that the independence of
agents principle ensures that the joint choice of any combination of choices of all agents
is non-empty, which, a fortiori, makes each individual choice, as well as each state,
non-empty.

Subsequently, we define a preference order ≤ over choices and collective choices, including
states. Let util be a function assigning natural numbers to worlds, i.e., util : W 7→ N, and
let R[i](v),R[i](z) ⊆ R□(w), then weak preference is defined as11,

11Henceforth, we use the quantifies ∀ and ∃ as abbreviations for ‘for all’ and ‘there exists a’.
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R[i](v) ≤ R[i](z) := ∀v∗ ∈ R[i](v), ∀z∗ ∈ R[i](z), util(v∗) ≤ util(z∗)

where util(v) denotes the natural number assigned to v. The preference order over Rs
[i]

is defined similarly. The above definition states that, for an agent i, a choice is weakly
preferred over another whenever all values of the possible outcomes of the former are
at least as high as those of the latter. Strict preference is then defined as usual, i.e.,
R[i](v) < R[i](z) := R[i](v) ≤ R[i](z) and R[i](z) ̸≤ R[i](v).

Next, a dominance order ⪯ over choices R[i](v),R[i](z) ⊆ R□(w) is defined as,

R[i](v) ⪯ R[i](z) := ∀Rs
[i](x) ⊆ R□(w),R[i](v) ∩ Rs

[i](x) ≤ R[i](z) ∩ Rs
[i](x)

where ∀Rs
[i](x) ⊆ R□(w) means for each available state to i at moment R□(w) with

x ∈ R□(w). Informally, the dominance ordering expresses that an agent’s choice weakly
dominates another if the values of the outcomes of the former are weakly preferred to those
of the latter choice, given any possible state available to that agent. Last, strict dominance
is defined as usual, i.e., R[i](v) ≺ R[i](z) := R[i](v) ⪯ R[i](z) and R[i](z) ̸⪯ R[i](v). We
use the dominance ordering for the semantic evaluation of the modal operator ⊗i (see
(Horty, 2001, Ch.4) for a more detailed discussion).

Definition 2.14 (Semantics of TUSn- and USn-models). Let M be a TUSn-model, w ∈ W
of M and let ||φ|| = {w | M, w |= φ} be the truth-set of φ over M. We define satisfaction
of a formula φ ∈ Ltdn at a world w of M by adopting clauses 1–5 and 7–9 of Definition 2.5
together with the following clause:

10. M, w |= ⊗iφ iff for all R[i](v) ⊆ R□(w), if R[i](v) ̸⊆ ||φ||, then there is a

R[i](z) ⊆ R□(w) such that (i) R[i](v) ≺ R[i](z),

(ii) R[i](z) ⊆ ||φ||, and (iii) for each R[i](x) ⊆ R□(w),

if R[i](z) ⪯ R[i](x), then R[i](x) ⊆ ||φ||.

Let M be a USn-model. We define satisfaction of a formula φ ∈ Lds by adopting clauses
1–5 of Definition 2.5 together with clause 10 above.

Global truth, frame validity, and semantic entailment are defined as usual (Definition 2.4).
We define the logic TUSn as the set of all Ltdn formulae valid on the class of TUSn-models.
The logic USn is defined as the set of all Ldn formulae valid on the class of USn-models.

Clause 10 of Definition 2.14 is a relational representation of the semantic evaluation of
the dominance ought in (Horty, 2001). It must be interpreted as follows: agent i ought
to see to it that φ holds iff for every choice R[i](v) available to i that does not guarantee
φ there (i) exists a strictly dominating choice R[i](z) that (ii) does guarantee φ and (iii)
every weakly dominating choice R[i](x) over R[i](z) also guarantees φ. In other words,
all choices not guaranteeing φ are strictly dominated by choices guaranteeing φ at the
moment of evaluation.

56



2.3. Transformations into Utilitarian Models

Notice that TUSn-frames only differ from TDSn-frames through replacing the relation
R⊗i (for each i ∈ Agents) and corresponding conditions D1–D4 with the utility function
util and condition U1. The same holds true for USn- and DSn-frames.

Example 2.3 (A Utilitarian Scenario). Consider the utility assignment in Figure 2.2
on page 36. The utilities at moment R□(vi) are assigned as follows: util(vi) = 4 for
i ∈ {1, 2, 3} and util(v4) = 3.12 At R□(vi), both John and Paul have the choice to thank
each other for working it out, i.e., ♢[j]thank_j and ♢[p]thank_p. In fact, for both
agents, this choice guarantees a utility of 4 and John and Paul are obliged to thank one
another. To illustrate, using Definition 2.14, we know that John ought to see to it that
he thanks Paul—i.e., ⊗jthank_j—since the choice R[j](v2) not guaranteeing thank_j
is strictly dominated by the only other choice R[j](v1) guaranteeing thank_j (to see this,
observe that v4 ∈ R[j](v2) has a utility of 3). If the two agents fulfill their duty, this
yields a utility of 4 at R□(vi). If both act against their duty, the outcome will be of a
strictly lesser utility 3.

2.3.2 Equivalence of the Two Semantics

First, we show that the Hilbert-style axiomatizations TDSn and DSn are sound with
respect to the class of TUSn-models, respectively, the class of USn-models. We start by
pointing out some useful facts.

Lemma 2.12. Let DS−
n be the atemporal minimal deontic STIT logic consisting of axioms

A0-A9 and A12, and the rules R0 and R1. The following holds:

1. Let DS−
n {A10} be the logic DS−

n extended with axiom A10 ⊗iφ → □ ⊗i φ and let
DS−

n {B10} be the logic DS−
n extended with axiom B10 ♢ ⊗i φ → □ ⊗i φ. Then:

DS−
n {A10} ≡ DS−

n {B10}.

2. Let DS−
n {A13} be the logic DS−

n extended with axiom A13 ⊗iφ → ⊗i[i]φ and let
DS−

n {B13} be the logic DS−
n extended with axiom B13 □([i]φ → [i]ψ) → (⊗iφ →

⊗iψ). Then: DS−
n {A13} ≡ DS−

n {B13}.

Proof. The proofs are straightforward cases of modal reasoning. We briefly sketch the
main steps and theorems used.

Ad (1). The left-to-right direction straightforwardly follows from the fact that □ is an
S5 modality in DS−

n and, so, ⊗iφ → ♢ ⊗i φ is a DS−
n {B10}-theorem. For the right-to-left

direction, observe that ♢ ⊗i φ → ♢□ ⊗i φ is a DS−
n {A10}-theorem by the normality of □.

By the fact that □ is an S5 operator, we know ♢□⊗iφ → □⊗iφ is a DS−
n {A10}-theorem

and so, by basic modal reasoning, ♢⊗i → □ ⊗i φ is a theorem.
12In Figure 2.2 utilities are represented as assigned to histories. In Section 2.4, we reconsider the

example in light of utility functions restricted to histories. We note that each utility function restricted to
histories straightforwardly yields a function restricted to moments. We refer to Definition 2.16 for details.
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Ad (2). The left-to-right direction follows from the basic STIT theorem □([i]φ → [i][i]φ)
(S5 behavior of [i]), together with □([i]φ → [i]ψ) → (⊗iφ → ⊗iψ), which implies ⊗iφ →
⊗i[i]φ as a DS−

n {B13}-theorem. For the right-to-left direction, it suffices the observe
the following: □([i]φ → [i]ψ),⊗iφ ⊢DS−

n {A13} ⊗i([i]φ → [i]ψ) ∧ ⊗i[i]φ (by A12 and A13,
respectively). The normality of ⊗i implies □([i]φ → [i]ψ),⊗iφ ⊢DS−

n {A13} ⊗i(([i]φ →
[i]ψ) ∧ [i]φ). By straightforward modal reasoning we have □([i]φ → [i]ψ),⊗iφ ⊢DS−

n {A13}
⊗i[i]ψ. By the fact that [i] is an S5 modality and by the normality of ⊗i we know
⊢DS−

n {A13} ⊗i[i]ψ → ⊗iψ. Consequently, □([i]φ → [i]ψ),⊗iφ ⊢DS−
n {A13} ⊗iψ. QED

Lemma 2.12 demonstrates that the alternative axiomatization of the deontic STIT
modality ⊗i by Murakami (2005) is equivalent to the axiomatization of ⊗i provided in
this chapter (Definition 2.2). We use this fact in the following theorem.

Theorem 2.4 (Soundness of TUSn). For each φ ∈ Ltdn and Γ ⊆ Ltdn , if Γ ⊢TDSn φ, then
Γ |=TUSn φ.

Proof. By the modularity of our approach, it suffices to only consider the deontic axioms
A10-A13. The axioms A11 and A12 were shown sound by Murakami (2005) with respect
to USn and hence they are also sound with respect to TUSn. Furthermore, the axioms
♢⊗i → □ ⊗i φ and □([i]φ → [i]ψ) → (⊗iφ → ⊗iψ) are shown sound by (Murakami,
2005) and so, by Lemma 2.12, we know that axioms A10 and A13 are sound with respect
to TUSn too. QED

Completeness is shown through the stronger result in Theorem 2.6, which demonstrates
that the class of TUSn-models characterizes the same set of formulae as the class of
TDSn-models. In what follows, we make (often implicit) use of the following lemma.

Lemma 2.13. The following holds for any TUSn-, respectively TDSn-model:

1. For all v ∈ Rs
[i](w), we have Rs

[i](w) = Rs
[i](v);

2. For all R[i](z) ⊆ R□(w), either R[i](z) ⊆ R⊗i(w) or R[i](z) ∩ R⊗i(w) = ∅.

Proof. Claim (1) follows from the fact that Rs
[i] is an equivalence class. We prove (2)

by reasoning towards a contradiction. Suppose there is a R[i](z) ⊆ R□(w) such that
R[i](z) ̸⊆ R⊗i(w) and R[i](z)∩R⊗i(w) ̸= ∅. It follows that there is a z′ ∈ R[i](z)\R⊗i(w)
and, consequently, z′ ̸∈ R⊗i(w). Furthermore, there is a z′′ ∈ R[i](z) ∩ R⊗i(w) which
implies that z′′ ∈ R⊗i(w). By Lemma 2.1-(2) we know that z′ ∈ R[i](z) = R[i](z′′) and,
consequently, by D4 we obtain z′ ∈ R⊗i(w). Contradiction. QED

We now prove that every TUSn-valid formula is a TDSn-valid formula (Lemma 2.16). We
do this by constructing a TUSn model from a TDSn-model (Lemma 2.14). Then, we show
that the constructed TUSn-model satisfies exactly the same formulae as the TDSn-model
from which it is obtained (Lemma 2.15). We start by defining the transformation.
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Definition 2.15. Let Mtd = ⟨W,R□, {R[i] | i ∈ Agents}, {R⊗i |i ∈ Agents},R[Ag],RG,
RH,V⟩ be a TDSn-model. Let Mu = ⟨W,R□, {R[i]|i ∈ Agents}, util,R[Ag],RG,RH,V⟩ be
defined as follows: W := W, R□ := R□, R[i] := R[i], R[Ag] := R[Ag],RG := RG,RH := RH,
and V(p) := V(p) for each p ∈ Atoms. Let util be a function assigning each w ∈ W to a
natural number i ∈ N according to the following three criteria:

u1. For all i ∈ Agents, and for all w, v, z ∈ W, if v, z ∈ R□(w), v ∈ Rs
[i](w) \ R⊗i(w),

and z ∈ Rs
[i](w) ∩ R⊗i(w), then util(v) ≤ util(z);

u2. For all w, v, z ∈ W, if v ∈ R□(w)\R⊗Ag (w) and z ∈ R⊗Ag (w), then util(v)<util(z);

u3. For all w, u, z ∈ W , if v, z ∈ Rs
[i](w) ∩ R⊗i(w), then util(v) = util(z).

where R⊗Ag := ⋂
i∈Agents R⊗i.

To enhance the readability of our proofs, we briefly discuss the intuition behind the three
criteria. In the sequel, we call a world w ∈ R⊗i a deontically ideal world. Then, u1
expresses that all deontically ideal worlds belonging to a particular state have a utility
at least as high as any non-deontically ideal world belonging to that same state; u2
stipulates that those worlds deontically ideal for all the agents have a strictly higher
utility than any other world; and u3 ensures that all deontically ideal worlds belonging
to the same state receive the same utility.

The following lemma shows that the obtained model is, in fact, a TUSn-model.

Lemma 2.14. Let Mtd be a TDSn-model and let Mu be obtained following Definition 2.15:
Mu is a TUSn-model

Proof. Observe that conditions C1–C6, and T1–T6 of Definition 2.4 are satisfied by
Mu since all of the relations of Mtd, with the exception of R⊗i , are identical to those in
Mu. Furthermore, util satisfies property U1 of Definition 2.13 and is well-defined. QED

Lemma 2.15 shows that satisfaction in the constructed TUSn-model is equivalent to the
TDSn-model from which it is generated. Since the proof is for arbitrary TDSn-models we
know that a function util of Definition 2.15 exists for every such model.

Lemma 2.15. Let Mtd be a TDSn model and let Mu be obtained following Definition 2.15.
For all ψ ∈ Ltdn and all w ∈ W: Mtd, w |= ψ iff Mu, w |= ψ.

Proof. The proof is by induction on the complexity of ψ.

Base Case φ = p. By the definition of V in Mu it follows directly that Mtd, w |= p iff
w ∈ V iff w ∈ V iff Mu, w |= p.
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Inductive Step. The cases for the propositional connectives and the modalities [α] ∈
{□} ∪ {[i] | i ∈ Agents} ∪ {[Ag],G,H} are straightforward by the construction of Mu. We
consider the only non-trivial case ψ = ⊗iφ.

Left-to-right. Assume Mtd, w |= ⊗iφ. By the semantic interpretation of ⊗i in Defini-
tion 2.13 it suffices to prove that: for all R[i](v) ⊆ R□(w), if R[i](v) ̸⊆ ||φ||Mu , then there
is a R[i](u) ⊆ R□(w) such that the following three clauses hold:

(i) R[i](v) ≺ R[i](u);

(ii) R[i](u) ⊆ ||φ||Mu ;

(iii) for all R[i](x) ⊆ R□(w), if R[i](u) ⪯ R[i](x) then R[i](x) ⊆ ||φ||Mu .

Let R[i](v) ⊆ R□(w) be an arbitrary choice and assume that R[i](v) ̸⊆ ||φ||Mu . We prove
the existence of a choice R[i](u) ⊆ R□(w) for which conditions (i)–(iii) hold. Observe that
since Mtd satisfies C3 and D2 of Definition 2.4 we know that

there is a u ∈ W such that R[i](u) ⊆ R□(w) and R[i](u) ⊆ R⊗i(w) (2.3)

and, therefore, by construction of Mu we know R[i](u) = R[i](u). We demonstrate that
conditions (i)–(iii) hold for R[i](u) ⊆ R□(w).

Before we address each item, we make two useful observations concerning R[i](u). By D2
we know that for all j ∈ Agents\{i}, there is a uj ∈ R□(w) such that R[j](uj) ⊆ R⊗j (w)
and by C4 (IoA) we have ⋂

j∈Agents\{i} R[j](uj) ∩ R[i](u) ̸= ∅. Therefore,

there exists a u∗ ∈
⋂

j∈Agents\{i}
R[j](uj) ∩ R[i](u). (2.4)

As a consequence, the following statement holds for u∗ at Mtd:

u∗ ∈
⋂

j∈Agents\{i}
R⊗j (w) ∩ R⊗i(w) = R⊗Ag (w). (2.5)

We now prove (i)–(iii):

(i) We show that R[i](v)≺R[i](u), that is, we show (a) R[i](v) ⪯ R[i](u) and (b) R[i](u) ̸⪯
R[i](v).
(a) Recall our assumption that R[i](v) ̸⊆ ||φ||Mu . Thus, we know there is a v∗∈ R[i](v)
s.t. Mu, v∗ ̸|= φ. By construction of Mu, v∗∈ R[i](v) and by IH we have Mtd, v∗ ̸|= φ.
Consequently, by the assumption that Mtd, w |= ⊗iφ, and the fact that Mtd, v∗ ̸|= φ,
it follows that v∗ ̸∈ R⊗i(w). Hence, we know that R[i](v) ̸⊆ R⊗i(w), which implies
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R⊗i(w) ∩ R[i](v) = ∅ by Lemma 2.13−(2). Therefore, by R⊗i(w) ∩ R[i](v) = ∅
along with statement (2.3), we know that

For all x, u′, v′ ∈ W, if v′ ∈ Rs
[i](x) ∩ R[i](v) and u′ ∈ Rs

[i](x) ∩ R[i](u),
then v′ ∈ Rs

[i](x)\R⊗i(w) and u′ ∈ Rs
[i](x) ∩ R⊗i(w).

(2.6)

Let x, u′, v′ ∈ W be arbitrary and assume that v′ ∈ Rs
[i](x) ∩ R[i](v) and u′ ∈

Rs
[i](x) ∩ R[i](u). By statement (2.6), it follows that v′ ∈ Rs

[i](x)\R⊗i(w) and
u′ ∈ Rs

[i](x) ∩ R⊗i(w), which in conjunction with criterion u1 of the util function of
Mu (Definition 2.15) implies that util(v′) ≤ util(u′). Therefore, the following holds,

For all x, u′, v′ ∈ W, if v′ ∈ Rs
[i](x) ∩ R[i](v) and u′ ∈ Rs

[i](x) ∩ R[i](u),
then util(v′) ≤ util(u′).

(2.7)

It follows that for all Rs
[i](x) ⊆ R□(w), Rs

[i](x) ∩ R[i](v) ≤ Rs
[i](x) ∩ R[i](u). Hence,

by the definition of ⪯ and the definition of Mu, we obtain R[i](v) ⪯ R[i](u).
(b) We need to show R[i](u) ̸⪯ R[i](v). By definition of ⪯, it suffices to show that
there are x, u′, v′ ∈ W such that R[i](x) ⊆ R□(w), u′∈ R[i](u) ∩ Rs[i](x), v′∈ R[i](v) ∩
Rs[i](x), and util(v′) < util(u′). Consider ⋂

j∈Agents\{i} R[j](uj) ∩ R[i](u) ̸= ∅ from
statement (2.5). Let Rs[i](x) = ⋂

j∈Agents\{i} R[j](uj) = ⋂
j∈Agents\{i} R[i](uj) =

Rs
[i](x). Clearly, Rs[i](x) ⊆ R□(w). Since Mtd satisfies C4 (IoA) we know that

Rs
[i](x) ∩ R[i](v) ̸= ∅ and so Rs[i](x) ∩ R[i](v) ̸= ∅ by the definition of Mu. Therefore,

there is a v′ ∈ Rs[i](x) ∩ R[i](v). Since u∗ ∈
⋂
j∈Agents\{i} R[j](uj) ∩ R[i](u) by

statement (2.4), we know that u∗ ∈
⋂
j∈Agents\{i} R[j](uj) ∩ R[i](u), implying that

u∗ ∈ Rs[i](x) ∩ R[i](u). We know R⊗i(w) ∩ R[i](v) = ∅ by Lemma 2.13-(2) and thus
R[i](v) ∩ R⊗Ag (w) = ∅ too. Consequently, since R[i](v) ̸= ∅ we know there is a v′ ∈
R[i] ∩ R□(w) \ R⊗Ag (w). By criterion u2 of the util function of Mu (Definition 2.15)
and the facts v′ ∈ R□(w) \ R⊗Ag (w) and u∗ ∈ R⊗Ag (w) (statement (2.5)), we have
util(v′) < util(u∗). Therefore, R[i](u) ̸⪯ R[i](v).

(ii) By assumption R⊗i(w)⊆||φ||Mtd and by statement (2.5) we know R[i](u) ⊆ R⊗i(w).
By IH we have ||φ||Mtd=||φ||Mu and since R[i](u)=R[i](u) we know R[i](u) ⊆ ||φ||Mu .

(iii) We prove the case by contraposition and show that for all R[i](x) ⊆ R□(w), if
R[i](x) ̸⊆ ||φ||Mu , then R[i](u) ̸⪯ R[i](x). Let R[i](x) be an arbitrary choice in R□(w)
and assume that R[i](x) ̸⊆ ||φ||Mu . We prove that R[i](u) ̸⪯ R[i](x). By definition
of ⪯ it suffices to show that there is a state Rs[i](y) ⊆ R□(w) such that there is a
u′ ∈ R[i](u) ∩ Rs[i](y) and a x′ ∈ R[i](x) ∩ Rs[i](y), with util(x′) < util(u′). We prove
that Rs[i](u∗) is this state.

By the assumption that R[i](x) ̸⊆ ||φ||Mu , we know there is a x′ ∈ R[i](x) such that
Mu, x′ ̸|= φ. Clearly, x′ ∈ R[i](x), and by IH we know that Mtd, x′ ̸|= φ. Since
Mtd, w |= ⊗iφ, we obtain x′ ̸∈ R⊗i(w), and by Lemma 2.13−(2) we obtain

61



2. Time, Choice, and Obligation

R[i](x) ̸⊆ R⊗i(w). (2.8)

By statement (2.5) we have u∗ ∈ R⊗Ag (w) and u∗ ∈ R⊗i(w). Also, we know
u∗ ∈ R[i](u) by statement (2.4). Since, u∗ ∈

⋂
j∈Ag\{i} R[j](uj) ∩ R[i](u), we also

have u∗ ∈
⋂
j∈Agents\{i} R[j](uj). Let Rs

[i](u∗) = ⋂
j∈Ag\{i} R[j](uj). Since Mtd

satisfies C4 (IoA), we obtain R[i](x) ∩ Rs
[i](u∗) ̸= ∅, implying that there exists some

x′ ∈ R[i](x) ∩ Rs
[i](u∗). It follows from D2 and statement (2.8) that x′ ̸∈ R⊗Ag (w),

which together with the fact that u∗ ∈ R⊗Ag (w) (statement 2.5), implies by criterion
u2 of the util function of Mu (Definition 2.15) that util(x′) < util(u∗). Furthermore,
by the construction of Mu, we have x′ ∈ R[i](x) ∩ Rs[i](u∗), u∗ ∈ R[i](u) ∩ Rs[i](u∗) and
util(x′) < util(u∗), which implies the desired claim R[i](u) ̸⪯ R[i](x).

Right-to-left. Assume Mu, w |= ⊗iφ. We reason towards a contradiction by assuming
Mtd, w ̸|= ⊗iφ. Hence, there exists a v ∈ R⊗i(w) such that Mtd, v ̸|= φ. Since Mtd

satisfies D4 we obtain R[i](v) ⊆ R⊗i(w) and hence R[i](v) ̸⊆ ||φ||Mtd . By IH and the
construction of Mu, we obtain R[i](v) ̸⊆ ||φ||Mu . This fact, in conjunction with the
assumption Mu, w |= ⊗iφ, implies that there exists some R[i](z) ⊆ R□(w) such that the
following hold: (i) R[i](v) ≺ R[i](z), (ii) R[i](z) ⊆ ||φ||Mu , and (iii) ∀R[i](x) ⊆ R□(w), if
R[i](z) ⪯ R[i](x) then R[i](x) ⊆ ||φ||Mu .

By Lemma 2.13−(2) and the fact that R[i](z) = R[i](z), we know that either (a) R[i](z) ⊆
R⊗i(w) or (b) R[i](z) ∩ R⊗i(w) = ∅ is the case.

Suppose (a) is the case. We know that R[i](v) ≺ R[i](z) and therefore, R[i](z) ̸⪯ R[i](v).
Hence, there is a Rs[i](x) ⊆ R□(w) with z∗ ∈ R[i](z) ∩ Rs[i](x), and v∗ ∈ R[i](v) ∩ Rs[i](x),
such that util(v∗) < util(z∗). We also know that R[i](v) ⊆ R⊗i(w) and R[i](z) ⊆ R⊗i(w)
and thus we obtain z∗, v∗ ∈ R⊗i(w) ∩ Rs

[i](x). Consequently, by criterion u3 of the util
function of Mu (Definition 2.15) we obtain util(v∗) = util(z∗). Contradiction.

Suppose (b) is the case. We know that R[i](v) ≺ R[i](z) and therefore, R[i](z) ̸⪯
R[i](v). Hence, there is a Rs[i](x) ⊆ R□(w) with z∗ ∈ R[i](z) ∩ Rs[i](x), v∗ ∈ R[i](v) ∩
Rs[i](x), such that util(z∗) ̸≤ util(v∗). Then, by criterion u1 of the util function of Mu

(Definition 2.15), either (I) z∗ ̸∈ Rs
[i](x)\R⊗i(w) or (II) v∗ ̸∈ Rs

[i](x) ∩ R⊗i(w). Suppose
(I), since z∗ ∈ Rs[i](x) we know that z∗ ∈ Rs

[i](x) and thus conclude z∗ ∈ R⊗i(w). However,
by the initial assumption R[i](z) ∩ R⊗i(w) = ∅ we obtain z∗ ̸∈ R⊗i(w). Contradiction.
Suppose (II), then since v∗ ∈ Rs

[i](x) we infer v∗ ̸∈ R⊗i(w). However, R[i](v) ⊆ R⊗i(w).
Contradiction. QED

Lemma 2.16. For each φ ∈ Ltdn we have: |=TUSn φ implies |=TDSn φ.

Proof. We prove the claim by contraposition. Assume ̸|=TDSn φ. Then, there is a TDSn-
model Mtd such that Mtd, w |= ¬φ for some w ∈ W. Let Mu be the model obtained
from by Mtd (Definition 2.15). By Lemma 2.14 we know Mu is a TUSn model. Last, by
Lemma 2.15 we know Mu, w |= ¬φ and, so, ̸|=TUSn φ. QED
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As an immediate corollary of the above, we know that the Hilbert-style axiomatization
of TDSn is complete with respect to the class of TUSn-models (Definition 2.13).

Theorem 2.5 (Weak completeness of TUSn). For all φ ∈ Ltdn , if |=TUSn φ, then ⊢TDSn φ.

Proof. Follows from Theorem 2.16 together with Theorem 2.3. QED

Moreover, we now know that the two semantic approaches are equivalent.

Theorem 2.6. For all φ ∈ Ltdn , |=TDSn φ, iff |=TUSn φ.

Proof. Follows directly from Theorems 2.3 and 2.4 together with Lemma 2.16. QED

In fact, since the function util of Definition 2.13 is defined independently of the relations
RG, RH, and R[Ag], all of the results in this section also hold for DSn and USn (including
strong completeness).

Corollary 2.3. For all φ ∈ Ldn, |=DSn φ iff |=USn φ iff ⊢DSn φ.

Remark 2.3. The atemporal logics USn and DSn cannot differentiate between utility
functions that are restricted to moments—such as in Definition 2.13—and those functions
that assign utilities uniformly to complete histories (i.e., where every world on a history has
the same utility). To see this point, consider Murakami’s (2005) observation concerning
USn: “[s]ince the formal language [. . . ] contains no operators whose interpretation
involves temporal reference [. . . ], and thus from a technical point of view, the temporal
relation in utilitarian stit frames can be eliminated when stit formulas and ought formulas
are in question” (p.7). In other words, USn cannot differentiate between multi- and
single-moment models, cf. (Balbiani et al., 2008). Since a history of a single-moment
model is just a single world, from the perspective of USn, the two types of utility functions
yield the same logic. We further investigate this in the next section.

2.4 The Limits of Utilities: Temporal Contrary-to-Duty
Obligations

So far, we have filled a long-standing gap in the literature by providing a temporal
characterization of Deontic STIT logic. Furthermore, in Section 2.3, we showed that
utilitarian semantics that assign utilities to moments is equivalent to the relational
characterization of the logic TDSn. Furthermore, we observed that the atemporal
characterization of deontic STIT, i.e., DSn, cannot differentiate between utility functions
restricted to moments and those that assign utilities to complete histories (Remark 2.3).
The latter extends the results by Murakami (2005), who showed that the atemporal
axiomatization of deontic STIT logic cannot distinguish between the following three
semantic characterizations: (a) utilitarian STIT for dominance ought (using the reals); (b)
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utilitarian STIT for optimal ought (using finite-choice models13), and (c) the two-valued
optimal ought (using binary assignments). Thus, we obtain a class of seven equivalent
semantic characterizations with respect to DSn. This section formally investigates whether
these equivalences are preserved for the logic TDSn. We are now in the position to answer
an open question posed by Murakami (2005) and investigate “how various operators for
deontic notions behave and interact in a temporal structure” (p.5). In particular, we
investigate the following claim by Horty (2001):

[B]ecause the utilitarian setting allows us to handle reparational oughts [i.e.,
CTD obligations14] while maintaining a uniform assignment of values to
histories, and because such an assignment seems more natural—we build this
uniformity constraint into our definition of the utilitarian framework. (p.41)

To understand the reasons given by Horty in the above quote, consider the utility
assignment in Figure 2.2 on page 36. At moment R□(ωα), John and Paul are both
obliged to try to work things out. If the two agents act according to their duty, this
eventually yields a utility of at least 3 at moment R□(vi). In contrast, if both violate their
obligation and choose not to work it out—i.e., the choices {ωu, ωx}, respectively {ωz, ωx}—
at R□(ωα), they arrive at a sub-ideal moment R□(xi) where the CTD obligation consists
in “getting a little help from their friends”. At this violation state R□(xi), the CTD
obligation assures the maximum utility of 2 if observed. Although this utility is at R□(xi)
the highest, it is strictly less than the assured utility of 3 at R□(vi) resulting from John
and Paul fulfilling their initial obligation to try to work it out together. Hence, the use
of utilities assigned to histories naturally represents that the CTD situation in R□(xi)
is strictly less ideal than the according to duty situation in R□(vi). We refer to Horty
(2001, Ch.3) for a more detailed discussion.

In this section, we assess the claim made by Horty on page 64 above. Our conclusion will
be twofold: first, the two-valued utility function—e.g., investigated in (Murakami, 2005)—
causes problems concerning CTD scenarios. Second, the observed equivalence between
different utility functions in the context of DSn is not preserved, i.e., TDSn is incomplete
with respect to two-valued utility functions assigning utilities to complete histories.
Consequently, our analysis provides a formal argument why only the real/natural numbers
are suitable for Temporal Utilitarian STIT logic. With this, we address Objective 4.

2.4.1 Utilities Assigned to Histories

We first define some preliminaries. In what follows, we use utilm and utilh to differentiate
between utility functions that are restricted to moments, respectively histories (the utility
function in Definition 2.13 is a utilm function. For each world w, we define a history as

13Following Horty (2001), the optimal ought characterizes dominance act utilitarianism proper. The
definition of (a) is a generalization of (b), the latter which is characterized by finite-choice frames.

14Like Governatori and Rotolo (2006), Horty (2001) calls obligations that arise through the violation
of previous obligations ‘reparational oughts’ (cf. CTD-reasoning in Chapter 1).
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the set h(w) = RH(w) ∪ {w} ∪ RG(w). It can be straightforwardly observed that each
world is a member of exactly one history and that RG forms a strict linear order on h(w)
(Definition 2.4). We refer to temporal utilitarian STIT frames that employ utilh functions
as hTUSn-models.

Definition 2.16 (Frames and Models for hTUSn). A relational Temporal Utilitarian STIT
frame restricted to histories (for short, hTUSn-frame) is a tuple F = ⟨W,R□, {R[i]|i ∈
Ag}, utilh,R[Ag],RG,RH⟩, where F satisfies conditions C1–C6 and T1–T6 of Defini-
tion 2.4 together with the following:

U1 utilh : W 7→ N is a utility function assigning each world a natural number;

U2 For all w, v ∈ W such that v ∈ h(w), we have utilh(w) = utilh(v).

A hTUSn-model is a tuple M = ⟨F, V ⟩ where F is a hTUSn-frame and V is a valuation
function assigning propositional atoms to subsets of W , i.e., V : Atoms 7→ ℘(W ).

The main difference between hTUSn- and TUSn-models is that the utility function is
restricted to assigning the same utility to all worlds belonging to the same history, i.e.,
U2. In other words, we may say that the utility is assigned to the history itself. The
satisfaction of a Ltdn formulae on a hTUSn-model is defined as in Definition 2.14.

2.4.2 Example: A Temporal Contrary-to-Duty Scenario

In what follows, we model a CTD scenario using deliberative obligations. There is a
strong conceptual connection between deliberative obligations and CTD reasoning: both
require that obligations can be violated (Governatori and Rotolo, 2006). A deliberative
obligation is defined as:

⊗d
iφ := ⊗iφ ∧ ♢¬φ

From the point of view of agency, deliberative obligations ensure that the agent’s choices
are somehow influential to whether the obligation is satisfied or violated. Tautological
obligations are vacuously satisfied and, for that reason, do not classify as deliberative. It
can be straightforwardly observed that ⊗d

i forces at least two available choices for the
agent involved. CTD reasoning likewise assumes the violability of obligations: it deals
with those obligations that hold in scenarios where another obligation is violated. We
discuss an explicitly temporal CTD scenario (see Chapter 1 for a general introduction).15

Example 2.4 (A Temporal CTD Scenario). The scenario presented in Example 2.2
is a temporal CTD scenario. John and Paul are obliged to try to work it out. If

15The standard approach is to take CTD reasoning as an atemporal problem (Hilpinen and McNamara,
2013). Although some CTD scenarios can be adequately addressed in an explicitly temporal language, it
does not provide a uniform solution to CTD reasoning, e.g., see Prakken and Sergot (1996). Since our
aim in this chapter is to develop an explicitly temporal deontic STIT logic, we focus on temporal CTD
scenarios. See Chapter 6 for a discussion of atemporal CTD reasoning.
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one of them fails to comply, a CTD obligation ensues, requiring both agents to get
some help from their friends. Furthermore, if both comply with their initial duty, they
become obliged to thank each another. We assume that all involved obligations are
deliberative obligations. The scenario is graphically presented in Figure 2.2 on page 37
(see Example 2.2 for an explanation of the figure). Observe that of the four successor
moments R□(vi),R□(ui),R□(xi), and R□(zi) of R□(ωα), three depict CTD moments.
The scenario consists of the following three formulae:

E1. ⊗d
jtry_j ∧ ⊗d

ptry_p;

E2. □(work_it_out → ([j]try_j ∧ [p]try_p)) ∧ ♢work_it_out;

E3. □(work_it_out → F(⊗d
jthank_j ∧ ⊗d

pthank_p));

E4. □(¬work_it_out → F(⊗d
jhelp_j ∧ ⊗d

phelp_p)).

We point out that the irreflexivity of TDSn- and TUSn-frames ensures that the CTD
obligation expressed in E3 becomes effective strictly after the violation has taken place.
Henceforth, we use ΣEx = {E1, E2, E3,E4} to refer to the above scenario.

Figure 2.2 provides a consistent representation of ΣEx in the logics TDSn, TUSn, and
hTUSn, where M, ωα |= ΣEx for each α ∈ {v, u, z, x}. Recall that by seriality and irreflex-
ivity, the underlying branching time frame is infinite; therefore, the model graphically
represented in this figure is only partial. Below, we define the model formally for each
semantics.

The Models Satisfying ΣEx. Let Agents = {j, p}. We recall that TDSn-, TUSn-, and
hTUSn-models only differ on how ⊗i is interpreted. Hence, we can uniformly define the
non-deontic elements of these models. We do this first. We start by defining the infinite
set of worlds (forming our domain) together with all moments and choices:

• W = Wω ∪ Wv ∪ Wu ∪ Wz ∪ Wx ∪ W ′, where Wω = {wαi | α ∈ {v, u, z, x} and
i ∈ {1, 2, 3, 4}} and Wα = {αi |i ∈ {1, 2, 3, 4}} for each α ∈ {v, u, z, x}. Let
W ′ = {αji | α ∈ {v, u, z, x, }, i ∈ {1, 2, 3, 4} and j ∈ N}.

• R□(wαi ) = Wω for each wαi ∈ Wω, R□(αi) = Wα for α ∈ {v, u, z, x} and i ∈
{1, 2, 3, 4}, and R□(α) = {α} for each α ∈ W ′.

• R[j](ωα) = {wvi | 1 ≤ i ≤ 4} ∪ {wzi | 1 ≤ i ≤ 4} with α ∈ {v, z} and R[j](ωα) =
{wui | 1 ≤ i ≤ 4} ∪ {wxi | 1 ≤ i ≤ 4} with α ∈ {u, x}. R[j](αi) = {α1, α3} and
R[j](αk) = {α2, α4} for α ∈ {v, u, z, x} and i ∈ {1, 3} and k ∈ {2, 4}.

• R[p](ωα) = {wvi | 1 ≤ i ≤ 4} ∪ {wui | 1 ≤ i ≤ 4} with α ∈ {v, u} and R[p](ωα) =
{wzi | 1 ≤ i ≤ 4} ∪ {wxi | 1 ≤ i ≤ 4} with α ∈ {z, x}. R[p](αi) = {α1, α2} and
R[p](αk) = {α3, α4} for α ∈ {v, u, z, x} and i ∈ {1, 2} and k ∈ {3, 4}.
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• R[j](α) = R[p](α) = {α} for each α ∈ W ′.16

• For all w ∈ W we define R[Ag](w) = ⋂
i∈Agents R[i](w).

We define the temporal structure over W as follows:

• First, let R∗
G = {(wαi , αi) | α ∈ {v, u, z, x} and i ∈ {1, 2, 3, 4}} ∪ {(αi, α1

i ) | α ∈
{v, u, z, x}, i ∈ {1, 2, 3, 4}}∪{(αji , α

j+1
i ) | α ∈ {v, u, z, x}, i ∈ {1, 2, 3, 4}, and j ∈ N}.

We define RG as the transitive closure of R∗
G.

• RH = {(α, β) | (β, α) ∈ RG}.

Let Atoms = {work_it_out, try_j, try_p, help_j, help_p, thank_j, thank_p}, the
valuation of atoms is defined as:

• V (work_it_out) = {wvi | 1 ≤ i ≤ 4}, V (try_j) = {wαi | α ∈ {v, z} and 1 ≤ i ≤
4}, V (try_p) = {wαi | α ∈ {v, u} and 1 ≤ i ≤ 4}, V (help_j) = {αi | α ∈ {u, z, x}
and i ∈ {1, 3} }, V (help_p) = {αi | α ∈ {u, z, x} and i ∈ {1, 2} }, V (thank_j) =
{vi | i ∈ {1, 3} }, V (thank_p) = {vi | i ∈ {1, 2} }.

Furthermore, each utilh is a utilm function by Definition 2.16. Therefore, it suffices to
define a TDSn- and hTUSn-model (the latter being a TUSn model too).

• For the TDSn interpretation of ΣEx:

R⊗j = W ′ ∪ {wαi | α ∈ {v, z} and 1 ≤ i ≤ 4} ∪ {αi | α ∈ {v, u, z, x} and i ∈ {1, 3}}.
R⊗p = W ′ ∪ {wαi | α ∈ {v, u} and 1 ≤ i ≤ 4} ∪ {αi | α ∈ {v, u, z, x} and i ∈ {1, 2}}.

• For the hTUSn interpretation of ΣEx:

For each α ∈ {α ∈ h(vi) | 1 ≤ i ≤ 3}, utilh(α) = 4. For each α ∈ h(v4), utilh(α) = 3.
For each α ∈ {α ∈ h(βi) | β ∈ {u, z, x} and 1 ≤ i ≤ 3}, utilh(α) = 2. For each
α ∈ {α ∈ h(β4) | β ∈ {u, z, x}}, utilh(α) = 1.

It can be straightforwardly checked that the above defines a TDSn-, a TUSn-, and a
hTUSn-model. We point out that utilh satisfies both U1 and U2, and thus it is also a
utilm function. Furthermore, both utility functions range over the natural numbers.

One can likewise define a two-valued utility function utilm—ranging over {1, 0}—for the
TUSn-model, while preserving satisfiability of ΣEx. Namely, for each individual moment,
one assigns 1 to each world in an optimal choice and 0 otherwise. Intuitively, the reason
is that we can reset the utility assignment for each moment occurring in the tree. We
now discuss the behavior of binary functions in the context of utilh.

16This clause defines the infinite continuation of each history with single-world moments.

67



2. Time, Choice, and Obligation

2.4.3 The Problem with Two-Valued Utility Functions

Murakami (2005) showed that the axiomatization of atemporal deontic STIT logic (cf.
DSn) is sound and complete for various types of utility functions (see page 64). Hence,
DSn is not expressive enough to distinguish between these functions. This includes the
two-valued utility function, assigning either 0 or 1 to each history. In this last section,
we show that the temporal TDSn is incomplete with respect to the class of hTUSn-frames
using a binary utilh function.

We start with a general observation. There are two limiting cases in the two-valued
approach to hTUSn: (†) at a moment where all histories passing through the moment
have a utility of 1 every obligation becomes vacuously satisfied by definition—in such a
scenario, we have ⊗iφ iff □φ—and every choice for each agent will ensure all optimal
outcomes. The same reasoning applies to moments where (‡) all histories passing through
that moment have a utility of 0.17 By assigning utilities to complete histories (Horty,
2001), in the case of (†) and (‡), each obligation holding at a future moment will be
vacuously satisfied. Namely, as one progresses in time, the set of histories passing through
a moment can only decrease or stay the same, and therefore the assigned utilities will
remain 1 for each future moment in the case of (†) and will remain 0 in the case of (‡).
That all obligations are vacuously satisfied at such moments means that no obligation can
be violated. This also implies that at such moments there are no deliberative obligations
possible. Consequently, contrary-to-duty reasoning becomes impossible at these moments
because CTD scenarios require the possibility of violating an obligation.

As argued above, in order to reason with CTD scenarios in temporal utilitarian STIT
logics, we need to ensure that obligations can be violated. For that reason, we consider
deliberative obligations. For an obligation ⊗d

iφ to hold, there exists a choice that does
not guarantee φ—i.e., ⟨i⟩¬φ—and, by Definition 2.14, the latter choice must be strictly
dominated by φ choices. In the binary setting, this means that for all deontically optimal
choices, there is at least one outcome with a strictly higher utility: in the case of a
two-valued utilh function, this utility must be 1. Unfortunately, this fact has the drawback
that at such moments at least one of the following two statements holds:

S1 All histories in the intersection of all agents acting in accordance with their duty
have a utility of 1;

S2 All histories in the intersection of all agents violating their duty have a utility of 0.

Relative to statements S1 and S2, reconsider the scenario of John and Paul in a two-agents
two-choices setting where ⊗d

jtry_j ∧ ⊗d
ptry_p. Figure 2.3 illustrates the only three

two-valued utility assignments possible for satisfying these two obligations. We argue that
all three assignments are problematic. In what follows, with the “impossibility of future
CTD scenarios”, we mean that all (future) obligations will be vacuously satisfied from

17The observation also applies to moments where all intersections of choices of agents contain both 1
and 0. Nevertheless, this observation is not needed for the argument made in this section.
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Figure 2.3: The only three scenarios (i)-(iii) for which [j]dtry_j and [p]dtry_p are
satisfiable on a two-agent two-choice TUSn-model. ωi denotes an arbitrary non-empty set
of worlds, for 1 ≤ i ≤ 4. Choices of j are vertically presented, and those of p horizontally.
The symbol ∀k at ωi with i ∈ {1, 2, 3, 4} means that every history h(ωi) is assigned value
k, and ∃k at ωi means that some history h(ωi) going through the choice intersection is
assigned k, for k ∈ {0, 1}. Deontically optimal choices are shaded and darker shaded
when overlapping. At all ∀k outcomes with k ∈ {0, 1}, all obligations will be vacuously
satisfied forever onward, and so CTD reasoning becomes impossible.

that moment onward. Sub-figure (i) implies the impossibility of future CTD reasoning in
all cases in which at least one agent satisfies the obligation, i.e., in those cases, all future
obligations will be vacuously satisfied. Sub-figure (ii) implies that there are no future
CTD scenarios possible in each case witnessing at least one agent violating his obligation.
Last, sub-figure (iii) indicates that future CTD scenarios can only occur in those cases
when one of the agents satisfies his obligation provided that the other is in violation. One
may check the exhaustiveness of these scenarios by inspecting the semantic interpretation
of ⊗d

jtry_j ∧ ⊗d
ptry_p. For all other utility assignments, contradictions ensue. The

above analysis generalizes to an arbitrary number of agents with an arbitrary number of
choices. (Observe that Figure 2.3 satisfies S1 and S2.)
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In Figure 2.3, we see that for each of the three scenarios in at least one future moment,
deliberative obligations are impossible, i.e., whenever the future moment satisfies ∀1 or
∀0. Consequently, the temporal CTD scenario of Example 2.4 cannot be satisfied on any
hTUSn-model adopting a two-valued utility function. In other words, ΣEx is unsatisfiable.
However, ΣEx is satisfiable with respect to the class of TDSn- and TUSn-models, as shown
on page 66.

Theorem 2.7. The Hilbert-style axiomatization of TDSn is incomplete with respect to
the class of hTUSn-frames with a utilh function mapping histories to {1, 0}

Proof. By Theorem 2.3, TDSn is sound and complete with respect to the class of TDSn-
frames. Recall ΣEx = {E1,E2,E3,E4}. The formula ∧ ΣEx is TDSn-satisfiable (page 66).
For any hTUSn-model with a binary utility function, we know that if E1 is satisfiable
either S1 or S2 holds. Therefore, at least one future moment contains only vacuously
satisfied choices. Thus, either E3 or E4 cannot be satisfied, and so ∧ ΣEx is unsatisfiable.
Hence, ¬

∧ ΣEx is a valid formula of two-valued hTUSn-models and, since ¬
∧ ΣEx is

not TDSn-derivable, TDSn is incomplete with respect to the class of two-valued hTUSn-
frames. QED

How should we interpret the incompleteness result of Theorem 2.7? Murakami (2005)
showed that atemporal deontic STIT logics are indifferent with respect to utility as-
signments from {0, 1} and N (or R for that matter). Although utility functions relative
to moments come with their own challenges (Horty, 2001), this section demonstrated
that two-valued utility functions are unsuitable for deliberative agency in the context
of explicit temporal reasoning. The results in this section provide strong support for
adopting natural or real numbers for temporal utilitarian STIT logics, e.g., as proposed
by Horty (2001).

2.5 Related Work and Future Research

Decidability. Decidability of STIT logics has been extensively investigated. Basic
STIT logic was shown decidable by Xu (1994b). Xu (1994a) also showed the decidability
of a deliberative STIT logic that takes the deliberative STIT modality as a primitive
instead of a defined modality. An alternative approach to the decidability of these logics
was given by Balbiani et al. (2008), who also showed that the settledness modality
□ can be omitted from the language by defining it in terms of choice operators. A
proof-theoretic decidability result—including proof-search algorithms and automated
counter-model extraction—was developed for basic STIT logic in (Lyon and Berkel, 2019).
A similar system was introduced by Negri and Pavlović (2021). Group STIT logics,
where choice is considered not only in relation to individual agents but also in relation to
arbitrary groups of agents, was shown undecidable by Herzig and Schwarzentruber (2008).
Furthermore, Murakami (2005) provided a semantic proof showing that Utilitarian STIT
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logic is decidable. A proof-theoretic proof of the decidability of the equivalent logic DSn—
including proof-search algorithms and automated counter-model extraction—was given by
Lyon (2021).18 Last, Ciuni and Lorini (2018) investigate decidability of various temporal
extensions of basic STIT logic using different temporal semantics. The decidability of the
Temporal STIT logic (Lorini, 2013) on which TDSn is based is still an open question. In
light of the above, the following proves an interesting future research direction:

Open question 2.1. Is TDSn decidable? If not, is there an alternative axiomatization of
Temporal Deontic STIT logic, in the spirit of (Ciuni and Lorini, 2018), which is decidable?

Other Temporal STIT Logics. The logic TDSn is based on the temporal axiomati-
zation of BT+AC frames as developed by Lorini (2013). However, this is not the only
temporal STIT logic in the literature. A central feature of the basic STIT operator [i] is
that it is instantaneous, i.e., referring to choice at the present moment. The logic of XSTIT
contains a non-instantaneous STIT-operator explicitly affecting next states. Introduced
by Broersen (2011b), the logic is motivated by the observation that affecting next states
is a central aspect of agency in computer science. Moreover, extensions of the logic
XSTIT have been employed to investigate the concepts of purposeful and voluntary acts
and their relation to different levels of legal culpability (Broersen, 2011a). The logic was
initially proposed for a two-dimensional semantics referring to both states and histories.
An alternative semantic characterization of XSTIT—using relational semantics—was
provided in (van Berkel and Lyon, 2019b); there, it was shown that the two semantic
approaches are equivalent. Sequent-style proof systems for temporal STIT logic and
XSTIT logic were likewise given in (van Berkel and Lyon, 2019b). Next, the initial STIT
operator proposed in the seminal work of Belnap and Perloff (1988) is also inherently
temporal. The operator is called the Achievement STIT (for short, ASTIT). The main
characteristic of this logic is that it refers to both the past and alternative courses of
events. In brief, an ASTIT formula [i]aφ expresses that “through a choice in the past
A holds at the present moment (and was guaranteed to hold), even though the agent’s
alternative choices at that moment would not have ensured A (after passing of the same
interval of time)” (where A is a formula). The logic was shown complete by Xu (1995).

Epistemic extensions of temporal STIT logics were introduced and analyzed by Broersen
(2011a) and Broersen (2011b). Furthermore, Broersen (2011a) discusses deontic modalities
in the context of epistemic XSTIT. There, the obligation operator is taken as a defined
operator in the Andersonian tradition (Anderson and Moore, 1957), i.e., obligations are
reduced to choices leading to sanctions (or violations). Lorini (2013) discusses normative
concepts in the context of Temporal STIT logic via adopting an Andersonian reduction of
obligations to choices and violations. In particular, the reduction was adopted to reason

18Alternative proof systems for STIT logic are provided by Arkoudas et al. (2005), who introduce a
natural deduction system for a deontic STIT logic (without soundness and completeness results), and
by Olkhovikov and Wansing (2018) and Wansing (2006), who propose tableaux systems for multi-agent
deliberative STIT logics.
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about commitments. A similar reductionist approach was adopted by Bartha (1993)
and Xu (2015) in atemporal STIT settings. We refer to Chapter 4 and Chapter 5 for an
extensive discussion of Andersonian approaches to deontic logics.

It remains to be determined whether TDSn is sound and complete with respect to
Temporal Utilitarian STIT semantics employing utility functions assigning naturals to
complete histories. Although two-valued utility functions yielded the incompleteness
result in Theorem 2.7, we conjecture that the following holds true:

Conjecture 2.1. The logic TDSn is weakly complete for the class of TUSn-frames.

Last, this chapter did not deal with important themes such as validity time of obligation
versus reference time of obligation, and maintenance versus achievement obligations
(Broersen and Torre, 2011). The developed Temporal Deontic STIT logic may also be
used in future work to investigate these topics.

Conditional Obligations for STIT logics. The deontic modalities used in this
chapter are monadic, i.e., unary modal operators. Several extensions of atemporal STIT
have been introduced for dealing with conditional oughts. We discuss these briefly here.
The earliest account of conditional obligations is given by Bartha (1993). There, different
formalizations of conditional obligations are discussed in light of deontic paradoxes, such
as CTD scenarios. The conditional is interpreted with the use of material implication.
Horty (2001) introduces a notion of choice conditioned on a proposition. The dominance
relation over choices (cf. Section 2.3) can also be conditioned on such a proposition.
Subsequently, a ternary modality O([i]φ/ψ) is introduced, roughly expressing that “under
the condition that ψ is the case, the agent i ought to see to it that φ holds”. Last, Sun
and Baniasadi (2014) extend group STIT logic (where choice ranges over arbitrary groups
of agents) with a monadic and a dyadic group obligation. Their account is based on
Utilitarian STIT semantics. The resulting logic is applied to the Miners Paradox (Kolodny
and MacFarlane, 2010). Also, see the work of Abarca and Broersen (2019) for an analysis
of the Miners Paradox in the context of epistemic deontic STIT logic.

Since the adaptation of conditional obligations has proven to be a fruitful approach for
dealing with deontic paradoxes in general and (atemporal) CTD scenarios in particular
(Hilpinen and McNamara, 2013), it is left to future work to analyze the logical behavior
of such obligations in the context of an explicitly temporal STIT setting.

Open question 2.2. What are the logical properties of expanding TDSn with conditional
obligations?

The Logic of Bringing it About That. A formalism similar to STIT is the logic of
‘bringing it about that’ by Elgesem (1997). As for STIT, Elgesem’s logic represents agency
through a canonical form, namely, “bringing about that” (which is considered by Belnap
and Perloff (1988) as a synonym for seeing to it that). Elgesem stresses problematic
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aspects of using normal modal operators for capturing agency—such as those employed
in basic STIT logic—due to, e.g., necessitation. Goal-directed behavior is a central notion
for Elgesem’s theory of agency. This behavior ensues when the agent causally contributes
to attaining a desired result, the latter of which must be non-trivial and non-accidental.
Furthermore, it is a counterfactual notion ensuring that the result is due to the agent’s
capacity and not an accidental by-product. Non-triviality and non-accidentality warrant
the use of non-normal modal operators (Chellas, 1980). Elgesem’s (1997) logic contains
various primitive non-normal modal operators: e.g., the agent-dependent “Does”-modality.
The logic (extended with coalitions) was shown to be sound and complete with respect
to bi-neighborhood semantics and hyper-sequent systems (Dalmonte et al., 2021). We
point out that in Chapter 3, we provide a non-normal modal characterization of the
deontic modality ⊗i in the context of STIT for reasons similar to those in (Chellas, 1980;
Elgesem, 1997).

* * *

In this chapter, we filled a long-standing gap in the STIT literature by providing a
sound and weakly complete Temporal Deontic STIT logic (Objective 1). We showed
that this STIT logic can be semantically characterized using only relational semantics,
i.e., bypassing both the traditional BT+AC semantics and the utilitarian STIT seman-
tics (Objective 2). We showed how the resulting semantics can be truth-preservingly
transformed into the traditional utilitarian STIT semantics of dominance ought (Horty,
2001) (Objective 3). What is more, we formally investigated the logical consequences
of adopting an explicitly temporal language in the context of deontic STIT and proved
that the two-valued function, ranging over histories, is unsuitable for temporal CTD
reasoning, yielding incompleteness with respect to TDSn (Objective 4).
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CHAPTER 3
Ought Implies Can

The fields of moral philosophy and deontic logic gave rise to various metaethical principles.
Metaethical principles are requirements that any appropriate ethical theory must ideally
satisfy. They are principles of a higher generality than the principles and rules within a
given ethical theory. Intuitively, one may differentiate the two as follows: On the one
hand, particular ethical rules, such as “one should not lie”, are about the normative status
of specific behavior. They are action-guiding and restricted to particular action-types
(McConnell, 1985). Metaethical principles, on the other hand, such as “an ethical theory
must be consistent”, apply independently of a given action-type and are supposed to
hold for any ethical theory.1 Their generality puts them on the same level as axiom
schemes. Following McConnell (1985), metaethical principles serve as preconditions that
ethical theories should ideally satisfy: “[i]t is when a view [ethical theory] fails to satisfy
several (or many) such conditions that we begin to feel confident placing it outside the
realm of the moral” (p.307). Examples of metaethical principles that play a central
role in philosophy and the logical analysis of normative reasoning are: “no vacuous
obligations” (von Wright, 1951), “deontic contingency” (Anderson and Moore, 1957),
“deontic consistency” (Marcus, 1980), “(im)possibility of deontic dilemmas” (Conee, 1982),
and the principle of “alternate possibilities” (Copp, 2017). Yet, the most prevalent and
extensively discussed metaethical principle is “Ought implies Can”.

This chapter is about Ought implies Can (OiC, for short). In its general formulation,
the principle stipulates that what ought to be done, can be done. One of the allures
of OiC is that it releases agents from alleged duties that are impossible, strenuous, or
over-demanding (Dahl, 1974; McConnell, 1989). To see this point, consider OiC in
contraposition: “what cannot be done, an agent is not obliged to do.” In other words,
OiC delimits the possible actions to which an agent can be normatively bound. It ensures
this by taking into account the agent and the circumstances in which the agent finds

1For a discussion of the normative status of metaethical principles see (McConnell, 1985).
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herself when reasoning about obligations and norms. Hence, inferences about obligations
are influenced by what ‘can be done’.

Unfortunately, there is no clear consensus on the philosophical and logical interpretation
of OiC. The principle has a long history within moral philosophy and can be traced
back to, for example, Aristotle (The Nicomachean Ethics, translated by Ameriks and
Clarke 2000, VII-3), and to the ancient Roman legal principle “impossibilium nulla
obligatio est” (Vranas, 2007). Usually, OiC is accredited to the renowned philosopher
Immanuel Kant. For instance, in the Critique of Pure Reason, Kant writes that “of
course the action must be possible under natural conditions if the ought is directed
to it” (translated by Guyer and Wood 1998, A548/B576). While earlier thinkers such
as Aristotle and Kant only discussed OiC implicitly, it became an explicit subject of
investigation in the twentieth century. Aside from debates on whether OiC should be
adopted at all (Graham, 2011; Saka, 2000), most works are about which reading of the
principle should be endorsed. In particular, most discussions revolve around the right
interpretation of ‘can’. Determining the right interpretation of ‘can’ is crucial for systems
that adopt OiC since it influences the degree to which an agent can be burdened with and
relieved from duties. Notable positions have been taken up by Hintikka (1970), Lemmon
(1962), Stocker (1971), von Wright (1963a), and, more recently, Vranas (2007).

The central aim of this chapter is to enhance our understanding of OiC using tools from
formal logic. We focus on frequently recurring readings from authors that are—in our
opinion—central to the debate. Despite the apparent relationships between some of the
considered OiC readings, a precise taxonomy of their logical interdependencies is only
achievable through a formal investigation of their corresponding logics. Such a logical
taxonomy is still missing. Although OiC is one of those properties commonly taken as
‘undisputed’ in the field (van der Torre, 1997) there is a severe discrepancy between
the formal treatment of OiC and its philosophical counterpart, which it aims to model.
This chapter extends the preliminary results obtained in (van Berkel and Lyon, 2021)
and fills this gap. To better understand OiC, we develop deontic logics for various OiC
interpretations. In particular, we employ the formalism of STIT (Belnap and Perloff,
1988) since it allows us to model obligations and various agential concepts such as ability.

Objective 1. Develop sound and complete Deontic STIT logics for each prominent
reading of OiC from the philosophical literature.

The upshot of employing logical methods is that we can formally determine which
interpretations of OiC logically imply others and which readings are logically independent.

Objective 2. Use the developed Deontic STIT logics to determine the logical relations
between the various readings of OiC, thus yielding a formal taxonomy of OiC.

Additionally, we are interested in using the obtained OiC logics to acquire a better
understanding of the relations between other metaethical principles and OiC.
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Objective 3. Employ the developed logics for OiC and determine the logical relations to
other metaethical principles in the literature.

Last, we are interested in reasoning with the obtained OiC logics and determining how
different interpretations of ‘can’ influence inferences about obligations.

Objective 4. Enhance the developed OiC logics with reasoning principles that take into
account what ‘can be done’ in drawing inferences about obligations.

Contributions. In this chapter, we address these four objectives by introducing a class
of logics for the analysis of Ought-implies-Can in STIT. We refer to these logics as OSn
(with n referring to the number of agents in the language). We briefly discuss the five
main contributions made in this chapter.

First, we discuss, compare, and formalize ten OiC principles collected via an extensive
analysis of the philosophical literature (Section 3.1). To the best of our knowledge, such
a classification of OiC principles is novel.

Second, the intrinsically agentive setting provided by the STIT paradigm enables us
to conduct a fine-grained analysis of the various renditions of OiC. The traditional,
utilitarian approach to deontic STIT logic by Horty (2001) enforces specific properties
on its obligation operators, which includes an axiom for Ought implies Can (see axiom
A11 of DSn in Chapter 2). However, most philosophical readings of OiC are either
weaker or stronger than the OiC principle of traditional deontic STIT logic. This makes
it necessary to modify and fine-tune the framework. In this chapter, we take a more
modular approach to deontic STIT logic by adopting possible world semantics instead of
utility functions (cf. Chapter 2). In particular, we adopt a non-normal modal approach
to obligations, using neighborhood semantics (Chellas, 1980). We provide sound and
complete axiomatizations for the entire class of deontic STIT logics accommodating the
various kinds of OiC principles (Sections 3.2 and 3.3).

Third, we use the resulting deontic STIT logics to obtain a formal taxonomy of the OiC
readings discussed. We classify the ten OiC principles according to the respective strength
of the underlying STIT logics in which they are embedded (Section 3.4). Furthermore, we
determine which logics subsume each other. This gives rise to what we call an endorsement
principle. Namely, it demonstrates which endorsement of which OiC readings logically
commits one to endorse other OiC readings (from the vantage of STIT). The logics are
also applied to show the mutual independence of various OiC readings.

Fourth, we compare the variety of OiC with other metaethical principles (Section 3.5).
The results are twofold: First, we determine which readings of OiC imply or are logically
implied by other metaethical principles. Second, we show under which metaethical
principles specific differences between OiC readings disappear. We argue that most
metaethical principles are significantly related to OiC. Similar to the endorsement
principle, we determine which metaethical principles force one to adopt particular
interpretations of OiC and vice versa (in the context of STIT).

77



3. Ought Implies Can

Last, to determine the relations between different OiC readings as accurate as possible, we
must abstain from adopting other deontic reasoning properties (such as the aggregation of
obligations). A common objection to adopting a non-normal modal approach to deontic
logic is that certain intuitively desirable inferences are lost, and the logic in question
becomes too weak (Van Fraassen, 1973; Horty, 1997). To satisfactorily address this
objection, we introduce several extensions of the developed class of deontic STIT logics
that reintroduce deontic reasoning principles that simultaneously take into account what
‘can be done’ (Section 3.5). Among others, we enhance the developed deontic STIT logics
with a restricted form of deontic aggregation conjoining only consistent obligations.

Differences. The present chapter is a continuation of the work in (van Berkel and Lyon,
2021). In that work, we used normal modal operators to characterize obligations and
left the axiomatization of various deliberative OiC principles for future work. In the
present chapter, we adopt a non-normal modal approach which enables the sound and
complete axiomatization of all ten formalized OiC principles in (van Berkel and Lyon,
2021). Furthermore, by adopting a non-normal modal approach, we can provide a more
fine-grained analysis of OiC. This approach led to the following novel contributions:

• We provide an alternative, more accurate, formalization of the OiC principle ‘ought
implies logically possible’ (Section 3.1).

• We semantically characterize the obligation modality using neighborhood semantics
instead of relational semantics (Section 3.2) and show soundness and completeness
of the entire class of logics (Section 3.3).

• The logical taxonomy of OiC principles is exhaustive for all ten principles, including
the deliberative readings of OiC (Section 3.4).

• We discuss other metaethical principles in the context of OiC and extend the class
of logics with several intuitive deontic reasoning principles (Section 3.5).

As a final remark, in (van Berkel and Lyon, 2021), we used (labeled) sequent-style calculi
(Negri, 2005) instead of axiomatic systems. The upshot of that approach is that we can
potentially use proof-search methods in the context of deontic STIT logic. Although
some results were obtained in (Lyon and Berkel, 2019; Lyon, 2021), it is left to future
work to develop calculi for the logics of this chapter.

Outline. We analyze ten readings of OiC in Section 3.1. In Section 3.2, we introduce
the class of OS logics for the analysis of Ought Implies Can in STIT. We prove soundness
and completeness for all the logics of this class in Section 3.3. After that, we analyze the
logical taxonomy of OiC in Section 3.4. In Section 3.5, we extend these logics with other
metaethical principles and several deontic reasoning principles. Related work and future
research are addressed in Section 3.6.
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3.1 Ought Implies Can: Ten Interpretations

Disagreement on OiC can be best understood in terms of the degree to which an agent
must be burdened with or relieved from duties (Vranas, 2007). Such discussions revolve
around the appropriate interpretation of the terms ‘ought’, ‘implies’, and predominantly,
‘can’. In what follows, we take ‘ought’ to represent an agent-dependent obligation and
take ‘implies’ to stand for material implication. We refer to the works of van Ackeren
and Kühler (2015) and Vranas (2007) for a detailed discussion of the terms ‘ought’ and
‘implies’. In this section, we introduce and discuss ten important interpretations of OiC.
We focus on different interpretations of the term ‘can’ and roughly identify four categories:
‘can’ as possibility, ‘can’ as ability, ‘can’ as violability, and ‘can’ as control. These four
concepts give rise to eight OiC principles. We end this section discussing two additional
OiC principles that receive a normative reading of the term ‘can’.

Throughout this section, we introduce logical formalizations of the various OiC readings.
We employ the (atemporal) deontic STIT language Ldn (Definition 2.1, page 29) and
refer to Chapter 2 for a detailed discussion of the language. We briefly recall some
notation: we let φ stand for an arbitrary formula from Ldn. The connectives ¬,∧,
and → are respectively interpreted as ‘not’, ‘and’, and ‘implies’. Let ⊤ and ⊥ denote
‘tautology’, respectively ‘contradiction’. Let [i] be the basic STIT operator expressing
“agent i sees to it that” (some proposition holds). Alternatively, we take [i]φ to express
that “agent i exercises a choice that ensures φ”. We use the operator □ to denote that
(some proposition) “is currently settled true”. Alternatively, we read a formula □φ as
“φ is realized at the present moment”.2 The main use of □ is to discern between those
states of affairs that are realizable through an agent’s choice and those that are realized
irrespective of the agents’ choices. We take ♢ as the dual of □, denoting that some state
of affairs is currently realizable.

Last, the deontic modality ⊗i is read as “it ought to be the case for agent i that”. We
stress that OiC is essentially agentive but does not necessarily refer to choice in particular.
For this reason, we adopt “it ought to be the case for agent i that” instead of the stronger
“agent i ought to see to it that”. The latter reading corresponds to the quasi-agentive
reading of obligation, as advocated by Belnap and Perloff (1988) and adopted by Horty
(2001). In Section 3.6, we investigate the logical consequences for OiC when adopting
the quasi-agentive reading of obligation.

Ought implies Logical Possibility. The first principle, one of the weakest interpreta-
tions of OiC, merely requires the content of an agent’s obligation to be non-contradictory.
It is phrased and formalized as follows:

What is obligatory for an agent, is logically consistent: ⊗iφ → ¬ ⊗i ⊥ (OiLP).
2Our focus is on atemporal readings of OiC and, therefore, it suffices to refer to moments as isolated

events at which agents exercise choices. See Section 3.2 for formal details and Section 3.6 for a discussion
of temporal readings of OiC.
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OiLP expresses that if anything is obligatory, then there is no obligation to bring about
what is (logically) impossible, i.e., ¬ ⊗i ⊥. Within the philosophical literature, this
interpretation is referred to as “ought implies logical possibility” (Vranas, 2007), and the
principle is often equated with the “deontic consistency” principle, e.g., see (van Eck,
1982; Lemmon, 1962).3 As a minimal constraint on deontic reasoning, the principle is a
cornerstone of deontic logic (Anderson and Moore, 1957; Hilpinen and McNamara, 2013;
von Wright, 1951). Still, some have repudiated it, e.g., Lemmon (1962). In Section 3.5,
we discuss Lemmon’s argument and pinpoint what, we believe, goes awry in his rejection
of OiC.

Remark 3.1. OiLP ensures that each obligatory φ is logically consistent and, consequently,
not equivalent to ⊥. To see this point, let ⊗iφ be an obligation and suppose φ is
inconsistent. Then, φ ≡ ⊥ and so we infer ⊗i⊥. This inference is valid in any (non-)
normal modal logic by the validity of the rule of congruence (Blackburn et al., 2004;
Chellas, 1980). We observe that the formalization of OiLP differs from the one given in
(van Berkel and Lyon, 2021). There, we formalized OiLP as (†) ⊗i φ → ¬ ⊗i ¬φ. In
fact, for the deontic STIT logic DSn from Chapter 2 these two formulae are equivalent.
The equivalence is due to the normality of the ⊗i operator. In this chapter, we adopt
a non-normal modal approach to the operator ⊗i, which allows us to introduce certain
refinements in how we axiomatize OiC. In a non-normal modal logic setting OiLP and
(†) are not equivalent. We come back to this in Section 3.5.

Ought implies Realizability. The next interpretation refers to what is realizable at
a given moment. It is formulated as follows:

What is obligatory for an agent, is realizable: ⊗iφ → ♢φ (OiRz).

This reading of OiC requires that everything which is obligatory is realizable at the moment
in which the agent must choose. Consequently, that which is obliged is compatible with
some of the agent’s choices. Nevertheless, OiRz remains an agent-independent principle in
the following sense: Suppose I am obliged to open the window. Then, OiRz requires that
an open window is currently realizable—e.g., it is not jammed—even though I cannot
open it myself due to being tied to the chair. Arguably, the agent-independent readings
of ‘can’ in OiLP and OiRz are too weak to capture the more common philosophical
interpretations of OiC.4 For instance, although a moon eclipse is both logically possible
and realizable, it should not be considered something an agent ought to bring about. For
this reason, most interpretations of ‘can’ involve the agent explicitly.

3We point out that von Wright (1981) calls OiLP ‘Bentham’s Law’ and remarks that Mally already
adopted it in what is known as the first attempt to construct a deontic logic (Lokhorst, 1999).

4Hilpinen and McNamara (2013) refer to OiC as ‘Kant’s law’ and classify OiLP and OiRz as weak
versions of this law. However, it is open to debate which reading of OiC (if any) Kant would endorse,
e.g., see (Kohl, 2015; Timmermann, 2013).
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Ought implies Ability. The following OiC reading enforces an explicitly agentive
precondition on obligations:

What is obligatory for an agent, can be seen to by the agent: ⊗iφ → ♢[i]φ (OiA)

In other words, OiA requires the agent’s ability to guarantee (through choice) the
realization of that which is prescribed.5 The concept of ability has many formulations:
for example, it may denote general ability, current ability, potential ability, learnability,
know-how, and even technical skill.6 In what follows, we take ‘ability’ to mean that the
agent in question can guarantee a certain outcome by exercising a choice at the current
moment.

Observe that OiA is the principle implied by Horty’s (2001) utilitarian deontic STIT
logic (discussed as USn in Chapter 2). However, this OiC reading does not completely
capture the notion of ‘ability’ as predominantly encountered in the philosophical literature.
That is, OiA merely requires that what is prescribed for the agent can be guaranteed
through one of the agent’s choices but does not exclude vacuously satisfied obligations.
Namely, agents can still be obliged to bring about inevitable states of affairs. Think of
an obligation to realize the tautological state of affairs “the door is open or the door is
not open”. In the context of obligations, philosophical notions of ability often exclude
such consequences by strengthening the concept of ability with either (i) the possibility
that the obligation may be violated, (ii) the agent’s ability to violate the obligation (i.e.,
the agent may refrain from fulfilling her duty), (iii) the right opportunity for the agent
to exercise her ability, or (iv) the agent’s control over the situation (i.e., the agent’s
power to decide over the fate of that which is prescribed). In a deontic context, the
above four notions ensure that obligations range over states of affairs that are capable of
being otherwise. According to Horty and Belnap (1995), the latter is a precondition for
deliberative agency. For this reason, we refer to the following OiC interpretations—based
on (i)-(iv)—as deliberative.

Ought implies Violability. This principle requires the violability of an obligation,
which means that the complement of what is prescribed must be realizable.

An agent’s obligations are violable: ⊗iφ → ♢¬φ (OiV)

Governatori and Rotolo (2006) argue that for obligations to be meaningful at all, they must
be violable. Namely, since obligations provide reasons to act and tautological obligations
are gratuitously observed, the latter do not provide any reasons for behaving in one way

5Similarly, von Wright (1968, p.50) distinguishes between human and physical possibility (cf. OiA
and OiRz, respectively), both implying logical possibility (cf. OiLP) as a necessary condition.

6See the works of Broersen (2011b), Brown (1988), Goldman (1970), and von Wright (1963a) for
various notions of ‘ability’. We refer to McConnell (1989), Stocker (1971), and Vranas (2007) for discussions
on the related notion of ‘inability’.
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rather than another. Hence, tautological obligations are meaningless. The principle OiV
excludes such meaningless obligations. That is, given OiV, a tautological obligation ⊗i⊤
would imply the possibility of a contradiction, i.e., ♢⊥ (where ⊥ := ¬⊤). Furthermore,
OiV strongly relates to the metaethical principle of “no vacuous commands,” which
ensures that neither tautologies are obligatory nor contradictions are prohibited (von
Wright, 1963a). We discuss the latter in Section 3.5. Just as for OiLP and OiRz, violations
are not necessarily agent-dependent: a violation might still arise through causes external
to the agent. For instance, the window that ought to be opened by me might be closed
through a strong gust of wind.

Ought implies Refrainability. The following principle strengthens the notion of
violability by making it an agentive matter:

Obligations are deliberately violable by the agent: ⊗iφ → ♢[i]¬[i]φ (OiRef).

This OiC reading requires that the agent can refrain from satisfying her obligation. In
the jargon of STIT, refraining from fulfilling one’s duty requires “an embedding of a
non-acting within an acting” (Belnap et al., 2001, p.43). That is, it requires the possibility
to “see to it that one does not see to it that” (some proposition holds). However, the
two principles OiV and OiRef may be insufficient as OiC principles when that which is
obliged is not possible in the first place.7 For instance, it is not difficult for an agent to
violate an obligation to create a moon eclipse. We often find the ideas from the previous
five OiC interpretations combined to avoid such cases. We discuss three such principles.

Ought implies Opportunity. This principle combines the two interpretations of ‘can’
as ‘realizable’ and ‘violable’. The result is that obligations range over contingent states
of affairs:

What is obligatory for an agent, is contingent in nature: ⊗iφ → (♢φ∧♢¬φ) (OiO).

The two conjuncts in the consequent of OiO constitute what is referred to as the
opportunity for an agent to actively fulfill her duty; see (Vranas, 2007; von Wright,
1963a). Accordingly, we use the terms ‘opportunity’ and ‘contingency’ interchangeably.
We point out that OiO does not state that obligations are contingent but only that
what is prescribed by the obligation is a contingent state of affairs. Like previous terms,
‘opportunity’ and ‘contingency’ have several readings in the literature (Copp, 2017; Dahl,

7We conjecture that this is why Vranas (2007) states that OiRef is strictly not an OiC principle.
Furthermore, observe that violability and refrainability strongly relate to the metaethical principle of
“alternate possibility,” which states that an agent is morally culpable if it could have acted otherwise.
Due to the involvement of auxiliary concepts such as culpability, we will not further discuss this principle
in this chapter. We refer to Copp (2017) and Yaffe (1999) for an introduction.
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1974; Vranas, 2007; von Wright, 1951). What these readings have in common is that they
refer to the propriety of the circumstances in which the agent must fulfill her duty. At a
minimum, both opportunity and contingency require that the prescribed state of affairs
is manipulable, i.e., the state of affairs can become true or false.8 This interpretation of
OiO relates to what von Wright (1963a) has in mind when he talks about the opportunity
to interfere with the course of nature. In Section 3.5, we provide a detailed discussion of
OiO in relation to the principle of “Deontic Contingency”.

Ought implies Ability and Opportunity. Furthermore, ‘can’ may also be taken
as the agent’s ability together with the right opportunity. Following Vranas (2007), the
latter component specifies the situation hosting the event in which the agent has to
exercise her ability. The following principle brings these ideas together:

What is obligatory for an agent, is a contingent state of affairs whose truth the
agent has the ability to secure: ⊗iφ → (♢[i]φ ∧ ♢φ ∧ ♢¬φ) (OiA+O).9

The above formulation is the first completely agentive interpretation of OiC, i.e., making
that which is obligatory fall, in all its facets, within reach of the agent. Such a reading of
OiC can be considered genuinely deliberative, and both Vranas (2007) and von Wright
(1963a) appear to endorse a principle similar to OiA+O.

Ought implies Control. Last, we consider an OiC reading which restricts obligations
to those states of affairs within the agent’s complete control.

The agent has the ability to see to it that the obligation is fulfilled and has the
ability to see to it that the obligation is violated: ⊗iφ → (♢[i]φ ∧ ♢[i]¬φ) (OiCtrl).

This reading, arguably advocated by Stocker (1971), requires that an agent can act freely
when under obligation: “it has often been maintained that we act freely in doing or not
doing an act only if we both can do it and are able not to do it” (p.305).10 This instance
of OiC implies that an agent is only subject to obligations whose subject matter is within
the agent’s power. The principle is arguably too strong: by restricting obligations to
situations in which the agent is in complete control, one excludes those scenarios in

8We point out that ‘opportunity’ and ‘contingency’ are not synonyms and a more fine-grained
distinction is possible. For instance, in temporal settings, a state of affairs can occasionally be true
and false (i.e., contingent), even though, at the present moment, the state of affairs is settled true and
thus beyond the scope of the agent’s influence (i.e., there is no opportunity). We will not explore this
refinement in this chapter.

9In basic STIT logic, the occurrence of ♢φ in the consequent of OiA+O can be omitted since it is
implied by ♢[i]φ. That is, if φ can be the result of an agent’s choice, then by definition, it is realizable.
The formula ♢φ is part of OiA+O for the sake of completion.

10In the above quote, “able not to do [φ]” can also be formally interpreted as ♢[i]¬[i]φ, instead of
♢[i]¬φ. The resulting principle would be equivalent to OiA+O because ♢[i]¬[i]φ is equivalent to ♢¬φ in
basic STIT logic (Belnap et al., 2001).
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which the agent might only partially, but not decisively, contribute to securing an ideal
situation. For instance, think of group behavior in which agents need to coordinate.

Normative Readings of Ought Implies Can. OiC has been regarded as too strong
to be imposed on ethical theories and normative codes. For example, Lemmon (1962)
rejects the legitimacy of OiLP in light of the existence of moral dilemmas (we discuss
Lemmon’s argument at length in Section 3.5). Others have adopted meta-standpoints
toward OiC. For instance, Hintikka (1970) argues that OiC is only dispositional, merely
expressing a normative attitude towards the principle.Two options present themselves in
this respect: (i) “it ought to be that OiC holds” and (ii) “it ought to be possible for an agent
to fulfill her obligations”. Hintikka (1970) seems to advocate the first option, which is
intuitively formalized as O(⊗iφ → ♢φ) (where the first obligation is an agent-independent
‘ought to be’ modality). However, option (i) is not an OiC principle. It only expresses
that OiC should hold as a metaethical principle; cf. (McConnell, 1985). The second
option (ii) is indeed an OiC principle, and we consider two possible interpretations.

The first one we refer to as Ought implies Normatively Can and is phrased accordingly:

What is obligatory for an agent, ought to be realizable: ⊗iφ → ⊗i♢φ (OiNC).

The second interpretation adopts an agent-dependent reading of ‘can’. We call this
principle Ought implies Normatively Able:

What is obligatory for an agent, ought to be realizable through the agent’s choice:
⊗iφ → ⊗i♢[i]φ (OiNA).

We point out that we interpret the obligation in the consequent of OiNC and OiNA as
agent-dependent. Thus, OiNC reads “If φ is obligatory for agent i, then it ought to be the
case for agent i that φ is realizable”. Since obligations in the antecedent of these principles
are agent-dependent, we consider it more accurate to say that what is obligatory ought
to be realizable for that agent, thus making explicit reference to the agent in question.
Normative interpretations of the first eight OiC interpretations are straightforwardly
obtained. For the aims of this chapter, the principles OiNC and OiNA suffice.

In Table 3.1, the ten principles are collected and associated with references to the various
authors discussing them. We stress that the references in Table 3.1 relate to the works that
(philosophically) discuss ideas about these principles. The corresponding formalizations
are our own and may not correspond with those given in the references (if any are given).
Furthermore, the list of discussed principles is not exhaustive, and in Section 3.6, we
briefly discuss some alternative OiC interpretations from the literature. It is not our
aim to decide which OiC principle should be adopted, and notable cases were for each of
them. Instead, we aim to provide a logical investigation of how these principles relate.
To this, we turn now.
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Name Ought implies... Formalized Literature

OiLP Logical Possibility ⊗iφ → ¬ ⊗i ⊥ Anderson and Moore (1957), van
Eck (1982), and von Wright
(1951; 1981)

OiRz Realizability ⊗iφ → ♢φ van Eck (1982), Hilpinen and Mc-
Namara (2013), and Horty (2001,
Ch.3)

OiA Ability ⊗iφ → ♢[i]φ Horty (2001, Ch.4) and von
Wright (1963a, Ch.7)

OiV Violability ⊗iφ → ♢¬φ Anderson and Moore (1957),
Dahl (1974), Goldman (1970),
and von Wright (1963a, Ch.8)

OiRef Refrainability ⊗iφ → ♢[i]¬[i]φ Goldman (1970) and Vranas
(2018a)

OiO Opportunity ⊗iφ → (♢φ ∧ ♢¬φ) Anderson and Moore (1957),
Copp (2017), Dahl (1974), and
von Wright (1951; 1968)

OiA+O Ability and Opp. ⊗iφ → (♢[i]φ ∧ ♢φ ∧ ♢¬φ) van Ackeren and Kühler (2015),
Kohl (2015), Vranas (2007), and
von Wright (1963a)

OiCtrl Control ⊗iφ → (♢[i]φ ∧ ♢[i]¬φ) Dahl (1974), Stocker (1971), and
McConnell (1989)

OiNC Normatively Can ⊗iφ → ⊗i♢φ van Ackeren and Kühler (2015)
and Hintikka (1970)

OiNA Normatively Able ⊗iφ → ⊗i♢[i]φ van Ackeren and Kühler (2015)
and Hintikka (1970)

Table 3.1: List of the ten OiC principles and their treatment in the literature.

3.2 Deontic STIT Logics: a Non-Normal Modal Approach
In this section, we introduce deontic STIT logics for each reading of OiC. To differentiate
the resulting logics from the logics developed in Chapter 2, we write OSn to indicate
that the logic serves the analysis of Ought-implies-Can in STIT (with n referring to the
number of agents). In (van Berkel and Lyon, 2021), we formalized the deliberative OiC
principles—OiV,OiRef,OiO,OiA+O, and OiCtrl—by means of defined modal operators.
This section demonstrates that all OiC principles can be axiomatized and semantically
characterized once we move to a non-normal modal interpretation of the deontic modality
⊗i. This is Objective 1.

Definition 3.1 (The Language Ldn). Let Atoms = {p, q, r, . . . } be a denumerable set of
propositional atoms and let Agents = {1, 2, . . . , n} be a finite set of agent labels. The
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language Ldn is defined via the following BNF grammar:

φ ::= p | ¬φ | φ ∧ φ | □φ | [i]φ | ⊗i φ

where p ∈ Atoms and i ∈ Agents.

Let ♢, ⟨i⟩, and ⊖i be the duals of □, [i], and ⊗i, respectively. For a discussion of the
language Ldn we refer to Section 2.1. Whether ⊗i captures the quasi-agentive reading of
obligation depends on whether the formula ⊗iφ ≡ ⊗i[i]φ is valid in the logic in question
(see Section 2.1, Remark 2.1). In order to capture certain nuances of OiC, we forego
the quasi-agentive reading and interpret ⊗i as “it is obligatory for agent i that” (some
proposition holds). In Section 3.6, we discuss the logical consequences of adopting the
quasi-agentive reading of ⊗i for the analysis of OiC.

3.2.1 Axiomatizations of OiC in Deontic STIT
The Hilbert-style axiomatization of the minimal logic OSn is given below.

Definition 3.2 (The Axiomatization of OSn). We define OSn to be the following collection
of axiom schemes and rules:

A0. All classical propositional tautologies;

R0. From φ and φ → ψ, infer ψ;

A1. □(φ → ψ) → (□φ → □ψ);

A2. □φ → φ;

A3. ♢φ → □♢φ;

A4. [i](φ → ψ) → ([i]φ → [i]ψ);

A5. [i]φ → φ;

A6. ⟨i⟩φ → [i]⟨i⟩φ;

A7. □φ → [i]φ;

A8. ∧
i∈Agents ♢[i]φi → ♢(∧i∈Agents[i]φi);

A10. ⊗iφ → □ ⊗i φ;

R1. From φ, infer □φ;

R2. From φ ≡ ψ, infer ⊗iφ ≡ ⊗iψ;
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where we have a copy of A4–A7, A10, and R2 for each i ∈ Agents. The logic OSn is the
smallest set of formulae from Ldn closed under all instances of the axiom schemes and
applications of the inference rules R0 – R2. Whenever φ ∈ OSn, we say that φ ∈ Ldn
is a OSn-theorem and write ⊢OSn φ. Last, OSn-derivability is defined as usual (see
Definition 2.3).

Axioms A1-A7 and R1, characterize □ and [i] as normal modal S5-operators. In particular,
necessitation holds for [i] by virtue of R1 and A7. The bridge axiom A7 confines choices
to moments. Axiom A8 denotes the independence of agents property of STIT. For a
discussion of these non-deontic axioms of OSn see Section 2.1. There is one deontic axiom
A10 expressing the fact that obligations are moment dependent. Namely, obligations
express which continuations of the present moment are deontically ideal for that agent.
For that reason, obligations do not vary from world to world within a moment but
hold independently of any of the agent’s choices at that moment. Notice that ⊗i

is a non-normal modal operator, i.e., we neither adopt the distribution axiom A9
⊗i(φ → ψ) → (⊗iφ → ⊗iψ) of Definition 2.2 nor a rule of necessitation stating that
⊢OSn φ implies ⊢OSn ⊗iφ (hence, the missing A9 in Definition 3.2). We only adopt the
rule R2, which captures the minimal property of non-normal modal logics, referred to
as the rule of congruence (Chellas, 1980). Intuitively, the rule enables us to substitute
equivalent formulae inside the scope of a deontic modality ⊗i. It ensures, for instance,
that redundant syntactic differences do not influence the derivability of ⊗i-formulae, e.g.,
think of φ ≡ (φ ∧ φ). Variations of R2 hold for □ and [i] due to the fact that these
modalities are normal. Namely, suppose ⊢OSn φ ≡ ψ, by R1 we obtain ⊢OSn □(φ ≡ ψ)
and by modal reasoning using A1 and R0 we derive ⊢OSn □φ ≡ □ψ.

Remark 3.2. We point out in passing that OSn does not satisfy the bridge axiom
□φ → ⊗iφ. A consequence of adopting that axiom is the theorem ⊗i⊤, which conflicts
with any deliberative reading of OiC (cf. the discussion on page 88). Furthermore,
we point out that Horty’s (2001) Utilitarian Deontic STIT—i.e., USn of Section 2.3—
does contain the above bridge axiom. Here, we omit this axiom to capture some of
the nuances we find in the literature of OiC. For instance, due to the bridge axiom
(⊗iφ → ¬ ⊗i ⊥) ≡ (⊗iφ → ♢φ) is a theorem of USn, which means that the logic cannot
differentiate between OiLP and OiRz.

The axiomatic system OSn may be extended with any (combination) of the ten formalized
OiC principles from Table 3.1. The resulting logics are defined in Definition 3.3.

Definition 3.3 (The Logic OSnX). The logic OSnX is defined as the extension of OSn
with the axiom schemes in X ⊆ {Ai | 11 ≤ i ≤ 20}, where A11,. . . ,A20 are the following
axiom schemes:

A11. ⊗iφ → ¬ ⊗i ⊥ (OiLP);

A12. ⊗iφ → ♢φ (OiRz);
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A13. ⊗iφ → ♢[i]φ (OiA);

A14. ⊗iφ → ♢¬φ (OiV);

A15. ⊗iφ → ♢[i]¬[i]φ (OiRef);

A16. ⊗iφ → (♢φ ∧ ♢¬φ) (OiO);

A17. ⊗iφ → (♢[i]φ ∧ ♢φ ∧ ♢¬φ) (OiA+O);

A18. ⊗iφ → (♢[i]φ ∧ ♢[i]¬φ) (OiCtrl);

A19. ⊗iφ → ⊗i♢φ (OiNC);

A20. ⊗iφ → ⊗i♢[i]φ (OiNA);

for each i ∈ Agents. The inference relation ⊢OSnX is defined as usual.

Definition 3.3 yields arbitrary extensions of the minimal logic OSn. We make three points:
First, we are mostly interested in logics OSnX where X contains only a single OiC axiom
scheme for each agent. In other words, these are deontic STIT logics tailored to particular
readings of OiC. Second, on a related note, one could adopt for different agents different
OiC principles. Although the formal results of this chapter hold for all these logics, we
mainly focus on logics in which the same OiC principle applies to every agent. Third, in
Section 3.4, we demonstrate that some OiC principles logically imply others. This means
that not all OSnX axiomatizations are minimal axiomatizations. To give an example,
OiO logically implies OiV and for that reason the logic OSnX with X = { A16,A14 | for
each i ∈ Agents} is equivalent to the logic OSnX′ with X′ = { A16 | for each i ∈ Agents}.

Reasons for Using Non-Normal Modalities. Before providing the semantics for
OSnX, it must be noted that the logics are minimal. Namely, the logics are tailored to
axiomatize OiC principles, and so far, no additional properties have been enforced. In
particular, the logics do not satisfy the following properties:

M. ⊗i(φ ∧ ψ) → (⊗iφ ∧ ⊗iψ);

C. (⊗iφ ∧ ⊗iψ) → ⊗i(φ ∧ ψ);

N. ⊗i⊤.
The axioms M, C, and N represent monotonicity, aggregation, and necessity, respectively.
They are theorems of any normal modal characterization of ⊗i (Chellas, 1980).11

11The common name for Axiom M is monotonicity, e.g., see Chellas (1980). Despite its shared name,
this modal property must be distinguished from the use of monotonicity as a property of the inference
relation ⊢, e.g., see Arieli et al. (2021). The latter property is central to part III of this thesis, e.g., see
Definition 7.2 on page 258. Axiom N corresponds to the rule of necessitation in normal modal logic.
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In (van Berkel and Lyon, 2021), we adopted a normal modal approach to OiC. There, we
proceeded in two ways: first, we defined deontic STIT operators capturing deliberative
aspects of obligation, and second, we introduced a class of axioms determining the
behavior of the ⊗i operator. The two together were sufficient to obtain some first results
about the logical taxonomy of OiC. However, as already noted in (van Berkel and Lyon,
2021), the use of defined deliberative deontic operators was ad hoc. There, it was left to
future work to provide a proper axiomatization of these deliberative OiC principles. We
explain this further: A normal modal interpretation of ⊗i implies that ⊗i⊤ is a theorem
of the logic. Consequently, an axiomatization of, for instance, ‘ought implies violability’
(OiV)—i.e., ⊗iφ → ♢¬φ—would render the logic inconsistent. Namely, by the axiom N
we can derive ⊗i⊤ which together with OiV implies ♢⊥. The latter is inconsistent with
the fact that □ is also a normal modal operator, i.e., □¬⊥ is a theorem. In (van Berkel
and Lyon, 2021), this problem was addressed by introducing the deliberative obligation,

⊗d
iφ := ⊗iφ ∧ ♢¬φ

expressing that an agent’s obligations can be violated. See (van Berkel and Lyon, 2021)
for a discussion of the other defined deliberative obligation. By adopting a non-normal
modal approach to ⊗i in this chapter, we forego these ad hoc definitions and take the
ten OiC readings as axioms proper.

A straightforward objection to the approach in this chapter is that the resulting logics
are too weak for intuitive deontic reasoning tasks (cf. the absence of M, C, and N). Still,
the approach taken here is deliberate: by adopting minimal axiomatizations of OSnX,
we can better understand how various OiC axioms are logically related. We exclude
the risk that certain OiC axioms seem related due to the presence of additional deontic
reasoning principles. In order to restore some inferential power in OSnX, we extend the
logics with restricted versions of M and C that take into account the different OiC axioms
in question. We do this in Section 3.5.

3.2.2 Semantics for OiC in Deontic STIT

We adopt relational semantics (Balbiani et al., 2008) to characterize the non-deontic
fragment of OSn and adopt neighborhood semantics to capture the various non-normal
readings of OiC. Neighborhood frames (Chellas, 1980) were developed to characterize
logics that do not satisfy the properties induced by minimal relational frames, i.e., M, C,
and N. Instead of adopting a directed relation R⊗i over worlds, we adopt a neighborhood
function N⊗i that maps worlds w, v, u, . . . to sets of worlds X,Y, Z ⊆ W . We say that at
w, the set of worlds Z is considered deontically ideal for agent i whenever Z ∈ N⊗i(w). In
what follows, we define minimal OSn-frames and subsequently provide a list of properties
with which these frames may be extended.

Definition 3.4 (Frames and Models for OSn). An OSn-frame is defined as a tuple
F = ⟨W,R□, {R[i] | i ∈ Agents}, {N⊗i | i ∈ Agents}⟩. Let Rα ⊆ W ×W and Rα(w) :=
{v ∈ W | (w, v) ∈ Rα} for α ∈ {□} ∪ {[i] | i ∈ Agents}. Let N⊗i be a neighborhood
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function for each i ∈ Agents such that N⊗i : W 7→ ℘(W ). Let W be a non-empty set of
worlds w, v, u, . . . such that the following hold:

C1 R□ is an equivalence relation;

C2 For all i ∈ Agents, R[i] is an equivalence relation;

C3 For all i ∈ Agents, R[i] ⊆ R□;

C4 For all w ∈ W and all u1, . . . , un ∈ R□(w), ⋂
i∈Agents R[i](ui) ̸= ∅;

O1 For all w, v ∈ W , and all Z ⊆ W , if Z ∈ N⊗i(w) and v ∈ R□(w), then Z ∈ N⊗i(v).

An OSn-model is a tuple M = ⟨F, V ⟩ where F is an OSn-frame and V is a valuation
function mapping propositional atoms to subsets of W , i.e., V : Atoms 7→ ℘(W ).

In Definition 3.4, property C1 stipulates that R□ are moments. For each agent in the
language, C2 and C3 partition moments into choices. C4 imposes the independence of
agents principle. For a discussion of the non-deontic STIT properties C1–C4 we refer to
Section 2.1.

The only deontic property imposed on minimal OSn-frames is O1, which captures the
idea that what is obligatory is settled true for each moment, irrespective of the choices
the agents will make at that moment (cf. axiom A10). The property O1 corresponds
to D1 of DSn-frames (Section 2.1). We emphasize that the class of OSn-frames does
not require that worlds ideal at a certain moment are realizable at that very moment
(Remark 3.2). This means that what is ideal might not be realizable by any of the agents’
(combined) choices and might therefore be beyond the grasp of agency. Last, although
an OSn-frame may contain several moments, we abstain from a temporal extension of
OSn. In Section 3.6, we discuss some temporal OiC principles.

The semantic interpretation of Ldn is defined as usual. The modality ⊗i is evaluated with
respect to its corresponding neighborhood function.

Definition 3.5 (Semantics of OSn-models). Let M be an OSn-model and let w ∈ W
of M. Let ||φ||M = {w ∈ W | M, w |= φ} be the truth set of worlds satisfying φ (we
often omit the subscript M). The satisfaction of a formula φ ∈ Ldn in M at w is defined
accordingly:

1. M, w |= p iff M, w ∈ V (p);

2. M, w |= ¬φ iff not M, w |= φ;

3. M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ;

4. M, w |= □φ iff for all v ∈ R□(w), M, v |= φ;
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5. M, w |= [i]φ iff for all v ∈ R[i](w), M, v |= φ;

6. M, w |= ⊗iφ iff ||φ||M ∈ N⊗i(w).

Global truth, validity, and semantic entailment are defined as usual, e.g., see Definition 2.5.

The following list of properties enables us to semantically characterize the ten proposed
OiC readings of Table 3.1 (Section 3.1). We write Oi with i ∈ N to denote deontic frame
properties required for OiC.

O2 For all w ∈ W,Z ⊆ W , if Z ∈ N⊗i(w), then ∅ ̸∈ N⊗i(w);

O3 For all w ∈ W,Z ⊆ W , if Z ∈ N⊗i(w), then R□(w) ∩ Z ̸= ∅;

O4 For all w ∈ W,Z ⊆ W , if Z ∈ N⊗i(w), there is a v ∈ R□(w) such that R[i](v) ⊆ Z;

O5 For all w ∈ W,Z ⊆ W , if Z ∈ N⊗i(w), then R□(w) ∩ Z ̸= ∅;

O6 For all w ∈ W,Z ⊆ W , if Z ∈ N⊗i(w), then R□(w) ∩ Z ̸= ∅ and R□(w) ∩ Z ̸= ∅;

O7 For all w ∈ W,Z ⊆ W , if Z ∈ N⊗i(w), then there is a v ∈ R□(w) such that
R[i](v) ⊆ Z, and R□(w) ∩ Z ̸= ∅, and R□(w) ∩ Z ̸= ∅;

O8 For all w ∈ W,Z ⊆ W , if Z ∈ N⊗i(w), then there are v, u ∈ R□(w) such that
R[i](v) ⊆ Z and R[i](u) ⊆ Z;

O9 For all w ∈ W,Z ⊆ W , if Z ∈ N⊗i(w), then {v ∈ W | R□(v) ∩ Z ̸= ∅} ∈ N⊗i(w);

O10 For all w ∈ W,Z ⊆ W , if Z ∈ N⊗i(w), then {v ∈ W | there is a u ∈ R□(v) such
that R[i](u) ⊆ Z} ∈ N⊗i(w).

As will be shown in Section 3.3, the properties O2–O10 semantically characterize the
ten OiC principles of Table 3.1. To illustrate, consider property O6. Let Z = ||φ||, then
the condition ensures that if ||φ|| ∈ N⊗i(w) (i.e., φ is obligatory for agent i from the
perspective w), then R□(w)∩||φ|| ̸= ∅ and R□(w)∩||φ|| ̸= ∅—the latter which is equivalent
to R□(w) ∩ ||¬φ|| ≠ ∅—consequently, both φ and ¬φ are realizable at moment R□(w).
In other words, O6 characterizes the frame property for ‘ought implies opportunity’
(OiO). The other properties are read similarly, except for O9 and O10. The latter two
concern normative readings of OiC. For instance, recall that OiNA expresses the idea
that “ought implies ought to be able”. Property O10 captures this idea. Let Z = ||φ||, if
||φ|| ∈ N⊗i(w), then the truth-set {v ∈ W | there is a u ∈ R□(v) such that R[i](u) ⊆ ||φ||}
is in the neighborhood N⊗i of w. Comparing semantic definitions, this truth set is equal
to the set ||♢[i]φ|| ∈ N⊗i(w), which means that ♢[i]φ is obligatory for agent i at w.
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OSnX contains: A11 A12 A13 A15 A14 A16 A17 A18 A19 A20
OSnX-frames satisfy: O2 O3 O4 O5 O5 O6 O7 O8 O9 O10

Table 3.2: Correspondence between the construction of OSnX logics and OSnX-frames.
For instance, if A11 is an axiom of OSnX, then we assume that the corresponding class
of OSnX-frames contains the property O2.

Remark 3.3. We did not include a frame property for the principle OiRef. The reason
is that OiV and OiRef are equivalent for any deontic extension of the basic (atemporal)
STIT logic. This is due to the equivalence ♢¬φ ≡ ♢[i]¬[i]φ which is a valid formula
in the context of the underlying non-deontic STIT logic. Consequently, condition O5,
characterizing OiV, likewise captures OiRef. An alternative frame property for OiRef
would be: O5’ For all w ∈ W , Z ⊆ W , if Z ∈ N⊗i(w), then there is a v ∈ R□(w) such
that for all u ∈ R[i](v) we have R[i](u) ∩ Z ̸= ∅. It can be straightforwardly checked
that the consequent of O5’ is equivalent to that of O5. Soundness and completeness in
Section 3.3 demonstrate that O5 suffices for both.

The above list of frame properties provides a modular way to obtain various extensions
of OSn-frames. We define the entire class of OSnX-frames as follows:

Definition 3.6 (Frames and Models for OSnX). An OSnX-frame is a tuple F =
⟨W,R□, {R[i] | i ∈ Agents}, {N⊗i | i ∈ Agents}⟩ such that F satisfies all properties
of an OSn-frame (Definition 3.4) expanded with the frame properties that correspond to
the axioms in X as stipulated in Table 3.2. An OSnX-model is a tuple ⟨F, V ⟩ where F is
an OSnX-frame and V is a valuation function as in Definition 3.4.

3.3 Soundness and Completeness
Soundness of an OSnX logic is proven in the usual way (Blackburn et al., 2004; Chellas,
1980) (cf. Section 2.2). Due to the modularity of our approach, it suffices to give a single
proof for the entire class of OSnX logics.

In this section, we make (often implicit) use of the following lemma.

Lemma 3.1. Let M be an OSnX-model from Definition 3.6. For each w, v ∈ W ,
[α] ∈ {□} ∪ {[i] | i ∈ Agents}, and φ,ψ ∈ Ldn we have:

1. v ∈ R[α](w) iff R[α](w) = R[α](v);

2. R[α](w) ∩ ||φ|| ̸= ∅ iff for all v ∈ R[α](w),M, v |= ⟨α⟩φ;

3. R[α](w) ⊆ ||φ|| iff M, w |= [α]φ;

4. R[α](w) ̸= ∅;
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5. ||φ|| = ||¬φ|| and ||φ ∧ ψ|| = ||φ|| ∩ ||ψ||.

Proof. The proofs of (1)-(5) are straightforward by the fact that R□ and R[i] are equiva-
lence classes, the semantic definitions of □, [i], ¬, and ∧. QED

Theorem 3.1 (Soundness of OSnX). Let OSnX be a logic from Definition 3.3. For any
formula φ ∈ Ldn, and any Γ ⊆ Ldn: if Γ ⊢OSnX φ, then Γ |=OSnX φ.

Proof. It suffices to demonstrate the following claim:

(†) if ⊢OSnX φ, then |=OSnX φ.

We prove (†) by demonstrating that all axioms are OSnX-valid, and the logical rules of
OSnX preserve truth on the respective frame classes. We observe that the non-deontic
frame properties C1–C4 of OSnX-frames are the same as for the logic DSn (Chapter 2).
Validity of the corresponding axioms is shown in the same way as for DSn. These cases
are therefore omitted (cf. Theorem 2.1). The same reasoning applies to the rules R0 and
R1. We show the validity of the deontic axioms and rule R2.

Take an arbitrary OSnX-model M and an arbitrary w ∈ W of M. Note that we assume
X to correspond to the frame properties of M for which we prove validity, as stipulated
in Table 3.2. For example, in proving the validity of A11 ∈ X we assume M satisfies O2.
In what follows, we omit reference to M.

A10 ⊗iφ → □ ⊗i φ. Assume M, w |= ⊗iφ and consider an arbitrary v ∈ R□(w). By the
semantic definition of ⊗i we know ||φ|| ∈ N⊗i(w) and so, by property O1, we know
||φ|| ∈ N⊗i(v). Since v is arbitrary, we know by the semantic definition of □ that
Mo,w |= □ ⊗i φ.

A11 ⊗iφ → ¬ ⊗i ⊥. Assume Mo,w |= ⊗iφ. By the semantic definition of ⊗i we know
||φ|| ∈ N⊗i(w) and so, by property O2, we know that ∅ ̸∈ N⊗i(w). Since ∅ = ||⊥||
we know that M, w |= ¬ ⊗i ⊥.

A12 ⊗iφ → ♢φ. Assume M, w |= ⊗iφ. By the semantic definition of ⊗i we know
||φ|| ∈ N⊗i(w) and so, by property O3, we know that R□(w) ∩ ||φ|| ̸= ∅. Hence, by
Lemma 3.1-(2) we have M, w |= ♢φ.

A13 ⊗iφ → ♢[i]φ. Assume M, w |= ⊗iφ. By the semantic definition of ⊗i we know
||φ|| ∈ N⊗i(w) and so, by property O4, we know there is a v ∈ R□(w) such
that R[i](v) ⊆ ||φ||. By Lemma 3.1-(3) it follows that M, v |= [i]φ and therefore
M, w |= ♢[i]φ.

A14 ⊗iφ → ♢¬φ. Assume M, w |= ⊗iφ. By the semantic definition of ⊗i we know
||φ|| ∈ N⊗i(w). By property O5, we know that R□(w) ∩ ||φ|| ̸= ∅ and by Lemma 3.1-
(5) we have R□(w) ∩ ||¬φ|| ̸= ∅. So, by Lemma 3.1-(2), M, w |= ♢¬φ.
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A15 ⊗iφ → ♢[i]¬[i]φ. Assume M, w |= ⊗iφ. By the semantic definition of ⊗i we know
||φ|| ∈ N⊗i(w). By property O5 and Lemma 3.1-(5), we know that R□(w)∩||¬φ|| ̸= ∅.
Without loss of generality, let v ∈ R□(w) ∩ ||¬φ||. Hence, by C3 we know that
R[i](v) ∩ ||¬φ|| ≠ ∅. Thus, by Lemma 3.1-(2) we know for all u ∈ R[i](v), u |= ⟨i⟩¬φ
and so M, v |= [i]⟨i⟩¬φ. Consequently, M, w |= ♢[i]¬[i]φ.

A16 ⊗iφ → (♢φ ∧ ♢¬φ). Combine the reasoning for A11 and A14 with O6.

A17 ⊗iφ → (♢[i]φ ∧ ♢φ ∧ ♢¬φ). Combine the reasoning for A13 and A16 with O7.

A18 ⊗iφ → (♢[i]φ ∧ ♢[i]¬φ). Assume M, w |= ⊗iφ. The first conjunct follows from
similar reasoning as for A13 using O8. For the second conjunct, by the semantic
definition of ⊗i we know ||φ|| ∈ N⊗i(w) and so, by property O8, we know there is a
v ∈ R□(w) such that R[i](v) ⊆ ||φ||, which by Lemma 3.1-(5) gives us R[i](v) ⊆ ||¬φ||.
By Lemma 3.1-(3), M, v |= [i]φ and so M, w |= ♢[i]¬φ. By the semantic definition
of ∧ we have M, w |= ♢[i]φ ∧ ♢[i]¬φ.

A19 ⊗iφ → ⊗i♢φ. Assume M, w |= ⊗iφ. By the semantic definition of ⊗i we know
||φ|| ∈ N⊗i(w) and so, by property O9, we know {v ∈ W | R□(v) ∩ ||φ|| ≠ ∅} ∈
N⊗i(w). By Lemma 3.1-(2) and the definition of a truth set we know ||♢φ|| =
{v ∈ W | R□(v) ∩ ||φ|| ≠ ∅} ∈ N⊗i(w). By the semantic definition of ⊗i, we have
M, w |= ⊗i♢φ.

A20 ⊗iφ → ⊗i♢[i]φ. Assume M, w |= ⊗iφ. By the semantic definition of ⊗i we know
||φ|| ∈ N⊗i(w) and so, by property O10, we know Σ = {v ∈ W | there is a
u ∈ R□(v) such that R[i](u) ⊆ ||φ||} ∈ N⊗i(w). By Lemma 3.1-(2)-(3), and the
definition of a truth set, we have Σ = ||♢[i]φ|| ∈ N⊗i(w). By the semantic definition
of ⊗i we have M, w |= ⊗i♢[i]φ.

R2 Assume M |= φ ≡ ψ. This means ||φ|| = ||ψ||. Hence, ||φ|| ∈ N⊗i(w) if and only if
||ψ|| ∈ N⊗i(w). Therefore, M |= ⊗iφ ≡ ⊗iψ.

The above holds for each i ∈ Agents. This finishes the proof of (†). The main claim
follows from (†) in the usual way (cf. Theorem 2.1). QED

In order to prove strong completeness for the class of OSnX logics, we adapt the method
of canonical models for non-normal modal logics (Chellas, 1980). The strategy is as
follows: Let OSnX be a logic from Definition 3.3. First, we define the notion of a
OSnX-maximally consistent set of Ldn formulae (Definition 3.7). These sets are used as
worlds in the construction of models that are canonical for the logic OSnX (Definition 3.8).
Subsequently, we prove a truth lemma (Lemma 3.7), ensuring that every OSnX-consistent
set of formulae can be satisfied on the corresponding canonical model. The main aim
is to demonstrate that the obtained canonical model is an OSnX-model (Lemma 3.8).
Finally, the model is used to prove completeness via contraposition (Theorem 3.2).

First, we define OSnX-consistent sets and OSnX-maximally consistent sets.
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Definition 3.7 (OSnX-CS and OSnX-MCS). Let OSnX be a logic from Definition 3.3. A
set ∆ ⊂ Ldn is an OSnX-consistent set (for short, OSnX-CS) iff ∆ ̸⊢OSnX ⊥. A set ∆ ⊂ Ldn
is an OSnX-maximally consistent set (for short, OSnX-MCS) iff ∆ is an OSnX-CS and
for any set ∆′ ⊆ Ldn such that ∆ ⊂ ∆′ it is the case that ∆′ ⊢OSnX ⊥.

OSnX-MCSs have some useful properties. The following Lemma is an adaptation of a
general Lemma in (Blackburn et al., 2004). We use these properties implicitly throughout
this section.

Lemma 3.2 (Properties of MCSs). Let OSnX be a logic from Definition 3.3. Let ∆ ⊆ Ldn
be an OSnX-MCS and φ ∈ Ldn. The following holds:

• ∆ ⊢OSnX φ iff φ ∈ ∆;

• φ ∈ ∆ iff ¬φ ̸∈ ∆;

• φ ∧ ψ ∈ ∆ iff φ ∈ ∆ and ψ ∈ ∆.

Proof. The proof is identical to that of Lemma 2.2. QED

Adapting Lindenbaum’s Lemma, every OSnX-CS can be extended to an OSnX-MCS.

Lemma 3.3 (Lindenbaum’s Lemma for OSnX). Let OSnX be a logic from Definition 3.3.
Let ∆ ⊆ Ldn be an OSnX-CS: there is an OSnX-MCS ∆′ ⊆ Ldn such that ∆ ⊆ ∆′.

Proof. See (Blackburn et al., 2004, Lem. 4.17) for a general proof. QED

Definition 3.8 (Canonical model for OSnX). Let OSnX be a logic from Definition 3.3.
Let [α] ∈ Boxes = {□} ∪ {[i] | i ∈ Agents} and let ⟨α⟩ be the operator dual to [α]. We
define the canonical model for the logic OSnX to be the tuple Mc := ⟨W c,Rc

□, {Rc
[i] | i ∈

Agents}, {N c
⊗i

| i ∈ Agents}, V c⟩ such that:

• W c := {Γ ⊂ Ldn | Γ is an OSnX-MCS};

• for each [α] ∈ Boxes and each ∆ ∈ W c, Rc
[α](∆) := {Γ ∈ W c | for all [α]φ ∈ ∆,

φ ∈ Γ};

Let {|φ|}Mc = {Γ ∈ W c | φ ∈ Γ} be the proof set12 of φ (we omit the subscript Mc):

• for each ∆ ∈ W c, N c
⊗i

(∆) := {Z ⊆ W c | ⊗i φ ∈ ∆, {|φ|} = Z};

• V c is a valuation function such that for all p ∈ Atoms, V c(p) := {∆ ∈ W c | p ∈ ∆}.
12It can be straightforwardly shown that proof sets satisfy {|φ|} = {|¬φ|} and {|φ ∧ ψ|} = {|φ|} ∩ {|ψ|}.

95



3. Ought Implies Can

The semantic evaluation of Ldn formulae on Mc is defined as in Definition 3.5.

We show that the defined canonical model possesses certain properties helpful in demon-
strating that the canonical model belongs to the class of OSnX-models (Lemma 3.8).

Lemma 3.4. The canonical model Mc of Definition 3.8 is well-defined.

Proof. Through the construction of a simple OSnX-model, it is straightforward to show
that the logic OSnX is consistent, and so there exists at least one OSnX-MCS Γ, such
that Γ ∈ W c, i.e., W c ̸= ∅. By a quick comparison with Definition 3.6 it can be seen
that Rc

[α] ⊆ W c ×W c and V c(p) ⊆ W c for each p ∈ Atoms. It remains to show that the
definition of N c

⊗i
, defined relative to proofsets only, is not ambiguous. That is, we show

that for each ψ,φ ∈ L and ∆ ∈ W c,

if {|φ|} = {|ψ|}, then {|φ|} ∈ N c
⊗i

(∆) iff {|ψ|} ∈ N c
⊗i

(∆).

Assume that {|φ|} = {|ψ|}. Hence, ⊢OSnX φ ≡ ψ and so by R2 ⊢OSnX ⊗iφ ≡ ⊗iψ. By the
properties of OSnX-MCSs, ⊗iφ ∈ ∆ iff ⊗iψ ∈ ∆ for each ∆ ∈ W c. Therefore, by the
definition of N c

⊗i
(Definition 3.8), {|φ|} ∈ N c

⊗i
(∆) iff {|ψ|} ∈ N c

⊗i
(∆). QED

From the above, it follows immediately that for each ∆ ∈ W c,

⊗iφ ∈ ∆ iff {|φ|} ∈ N c
⊗i

(∆).

Consequently, we know that the OSnX rule R2 is valid on the canonical model for OSnX.
Next, the existence lemma holds for OSnX.

Lemma 3.5 (Existence Lemma □ and [i]). Let Mc be the canonical model. For any
world ∆ ∈ W c of Mc and each i ∈ Agents the following holds:

• If ♢φ ∈ ∆, then there is a Γ ∈ W c such that φ ∈ Γ and Γ ∈ Rc
□(∆);

• If ⟨i⟩φ ∈ ∆, then there is a Γ ∈ W c such that φ ∈ Γ and Γ ∈ Rc
[i](∆).

Proof. See (Blackburn et al., 2004, Lem. 4.20) for a general proof. QED

Corollary 3.1. Let Mc be the canonical model. For any world ∆ ∈ W c of Mc and each
i ∈ Agents the following holds:

• If for all Γ ∈ Rc
□(∆), φ ∈ Γ, then □φ ∈ ∆;

• If for all Γ ∈ Rc
[i](∆), φ ∈ Γ, then [i]φ ∈ ∆.

Proof. Suppose not, then for all Γ ∈ Rc
□(∆), φ ∈ Γ, but □φ ̸∈ ∆. Hence, ¬□φ ∈ ∆ and

consequently ♢¬φ ∈ ∆. By Lemma 3.5, there is a Γ with ¬φ ∈ Γ. Contradiction. QED
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The above existence lemma holds for the normal modal operators of Ldn. For the non-
normal modalities ⊗i, we observe the following:

Lemma 3.6 (Existence Lemma ⊗i, (Chellas, 1980)). Let Mc be the canonical model.
For any world ∆ ∈ W c of Mc and each i ∈ Agents the following holds:

• ⊖iφ ∈ ∆ iff {|φ|} ̸∈ N c
⊗i

(∆).

Proof. See (Chellas, 1980, Thm 9.4) for a general proof. QED

The following truth lemma shows that the defined model is canonical for the logic OSnX,
i.e., each OSnX-MCS is satisfiable on this model.

Lemma 3.7 (Truth Lemma). Let Mc be the canonical model. For any φ ∈ Ldn and
∆ ∈ W c of Mc: Mc,∆ |= φ iff φ ∈ ∆.

Proof. The proof is by induction on the complexity of φ. It is identical to the truth
lemma (Lemma 2.5) proven in Chapter 2. The only exception is the case for ⊗i.

(φ = ⊗iψ) We prove the two directions simultaneously. Mc,∆ |= ⊗iψ iff ||ψ|| ∈ N c
⊗i

(∆)
iff {Γ ∈ W c | Mc,Γ |= ψ} ∈ N c

⊗i
(∆) iff, by IH, {Γ ∈ W c | ψ ∈ Γ} ∈ N c

⊗i
(∆) iff

{|ψ|} ∈ N c
⊗i

(∆) iff ⊗iψ ∈ ∆.

The above holds for each i ∈ Agents. QED

A direct consequence of Lemma 3.7 is that the notion of a truth set coincides with its
syntactic counterpart, the notion of a proof set, i.e., ||φ||Mc = {|φ|}Mc . We use this fact in
demonstrating that the canonical model Mc is an OSnX-model. Due to the modularity
of our approach, it suffices to present a single proof for the entire class of OSnX logics.

Lemma 3.8 (Canonical OSnX-model). Let Mc be the canonical model: Mc belongs to
the class of OSnX-models.

Proof. We observe that the cases for the non-deontic frame properties C1–C4 are as for
Lemma 2.6 of Section 2.2. We make use of these properties in the cases below. First, Mc

is well-defined by Lemma 3.4. We only need to show the properties O1–O10. As we did
for proving soundness, we assume that when we demonstrate, for instance, property O3
that A12 ∈ X of OSnX according to Table 3.2. Take an arbitrary ∆ ∈ W c of Mc:

O1 Suppose Z ∈ N c
⊗i

(∆) and Γ ∈ Rc
□(∆). By construction of Mc there is an ⊗iφ ∈ ∆

such that {|φ|} = Z. By the fact that ∆ is an OSnX-MCS, the axiom A10 ⊗iφ →
□⊗iφ ∈ ∆ and therefore □⊗iφ ∈ ∆. By assumption Γ ∈ Rc

□(∆) and by definition
of Rc

□, ⊗iφ ∈ Γ and so Z ∈ N c
⊗i

(Γ) too.
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O2 Suppose Z ∈ N c
⊗i

(∆). By the construction of Mc, there is an ⊗iφ ∈ ∆ such that
{|φ|} = Z. By the fact that ∆ is an OSnX-MCS, the axiom A11 ⊗iφ → ¬ ⊗i ⊥ ∈ ∆
and therefore ⊖i⊤ ∈ ∆. By Lemma 3.6, {|⊤|} ̸∈ N c

⊗i
(∆) and since {|⊤|} = W ,

{|⊤|} = ∅. Consequently, ∅ ̸∈ N c
⊗i

(∆).

O3 Suppose Z ∈ N c
⊗i

(∆). By the construction of Mc, there is an ⊗iφ ∈ ∆ such that
{|φ|} = Z. By the fact that ∆ is an OSnX-MCS, the axiom A12 ⊗iφ → ♢φ ∈ ∆
and therefore ♢φ ∈ ∆. By Lemma 3.5, there is a Γ ∈ W c such that Γ ∈ Rc

□(∆)
and φ ∈ Γ. Hence, Γ ∈ Rc

□(∆) ∩ Z ̸= ∅.

O4 Suppose Z ∈ N c
⊗i

(∆). By the construction of Mc, there is an ⊗iφ ∈ ∆ such that
{|φ|} = Z. By the fact that ∆ is an OSnX-MCS, the axiom A13 ⊗iφ → ♢[i]φ ∈ ∆
and therefore ♢[i]φ ∈ ∆. By Lemma 3.5, there is a Γ ∈ W c such that Γ ∈ Rc

□(∆)
and [i]φ ∈ Γ. Take an arbitrary Σ ∈ Rc

[i](Γ), by definition of Rc
[i], φ ∈ Σ and so

Rc
[i](Γ) ⊆ Z.

O5 Suppose Z ∈ N c
⊗i

(∆). By the construction of Mc, there is an ⊗iφ ∈ ∆ such that
{|φ|} = Z. By the fact that ∆ is an OSnX-MCS, the axiom A14 ⊗iφ → ♢¬φ ∈ ∆
and therefore ♢¬φ ∈ ∆. By Lemma 3.5, there is a Γ ∈ W c such that Γ ∈ Rc

□(∆)
and ¬φ ∈ Γ. By Lemma 3.1-(5), {|¬φ|} = {|φ|}, and so Γ ∈ Rc

□(∆) ∩ Z ̸= ∅.13

O6 Suppose Z ∈ N c
⊗i

(∆). By the construction of Mc, there is an ⊗iφ ∈ ∆ such that
{|φ|} = Z. By the fact that ∆ is an OSnX-MCS, the axiom A16 ⊗iφ → (♢φ∧♢¬φ) ∈
∆ and therefore ♢φ,♢¬φ ∈ ∆. Proceed as for O3 and O5.

O7 Combine the reasoning for O4 and O6 with axiom A17.

O8 Suppose Z ∈ N c
⊗i

(∆). By the construction of Mc, there is an ⊗iφ ∈ ∆ such
that {|φ|} = Z. By the fact that ∆ is an OSnX-MCS, the axiom A18 ⊗iφ →
(♢[i]φ ∧ ♢[i]¬φ) ∈ ∆. Therefore, ♢[i]φ ∧ ♢[i]¬φ ∈ ∆ and so ♢[i]φ,♢[i]¬φ ∈ ∆. For
the first conjunct, proceed as for O4. For the second conjunct, by Lemma 3.5 there
is a Γ ∈ W c such that Γ ∈ Rc

□(∆) and [i]¬φ ∈ Γ. Take an arbitrary Σ ∈ Rc
[i](Γ),

by definition of Rc
[i], ¬φ ∈ Σ and so Rc

[i](Γ) ⊆ Z = {|¬φ|}.

O9 Suppose Z ∈ N c
⊗i

(∆). By the construction of Mc, there is an ⊗iφ ∈ ∆ such that
{|φ|} = Z. By the fact that ∆ is an OSnX-MCS, the axiom A19 ⊗iφ → ⊗i♢φ ∈
∆ and therefore ⊗i♢φ ∈ ∆. By definition of N c

⊗i
we know {|♢φ|} ∈ N c

⊗i
(∆).

By {|♢φ|} = {Γ ∈ W c | ♢φ ∈ Γ} and Lemma 3.5 and the definition of Rc
□,

♢φ ∈ Γ iff there is a Σ ∈ W c such that φ ∈ Σ and Σ ∈ Rc
□(Γ). Consequently,

{|♢φ|} = {Γ ∈ W c | φ ∈ Σ and Γ ∈ Rc
□(Σ)} = {Γ ∈ W c | Σ ∈ {|φ|} and

Γ ∈ Rc
□(Σ)} = {Γ ∈ W c | Σ ∈ {|φ|} and Σ ∈ Rc

□(Γ)} = {Γ ∈ W c | Σ ∈
{|φ|} ∩ Rc

□(Γ)} = {Γ ∈ W c | Z ∩ Rc
□(Γ) ̸= ∅} ∈ N c

⊗i
(∆).

13Similar reasoning applies for the case where the axiom A15 ⊗iφ → ♢[i]¬[i]φ ∈ X of OSnX. One can
make use of the fact that ⊢OSnX OiV ≡ OiRef (Remark 3.3).
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O10 Suppose Z ∈ N c
⊗i

(∆). By the construction of Mc, there is an ⊗iφ ∈ ∆ such that
{|φ|} = Z. By the fact that ∆ is an OSnX-MCS, the axiom A20 ⊗iφ → ⊗i♢[i]φ ∈ ∆
and therefore ⊗i♢[i]φ ∈ ∆. By construction of N c

⊗i
we know {|♢[i]φ|} ∈ N c

⊗i
(∆).

{|♢[i]φ|} = {Γ ∈ W c | ♢[i]φ ∈ Γ}. By Lemma 3.5 and construction of Rc
□,

♢[i]φ ∈ Γ iff there is a Σ ∈ W c such that [i]φ ∈ Σ and Σ ∈ Rc
□(Γ). Consequently,

{|♢[i]φ|} = {Γ ∈ W c | [i]φ ∈ Σ and Σ ∈ Rc
□(Γ)} = {Γ ∈ W c | Rc

[i](Σ) ⊆ {|φ|} and
Σ ∈ Rc

□(Γ)} = {Γ ∈ W c | Rc
[i](Σ) ⊆ Z and Σ ∈ Rc

□(Γ)} ∈ N c
⊗i

(∆). QED

Since all the above results were shown for an arbitrary logic OSnX from Definition 3.3,
we can now demonstrate strong completeness for all OSnX logics.

Theorem 3.2 (Strong Completeness of OSnX). Let OSnX be a logic from Definition 3.3.
For any formula φ ∈ Ldn, and any Γ ⊆ Ldn: if Γ |=OSnX φ, then Γ ⊢OSnX φ.

Proof. The proof is by contraposition. Suppose φ is not OSnX-derivable from Γ. This
means that Γ ∪ {¬φ} is an OSnX-CS. Namely, if Γ ∪ {¬φ} would be OSnX-inconsistent,
then Γ,¬φ ⊢OSnX ⊥ and so Γ ⊢OSnX φ. By Lemma 3.3 there is a Γ′ ⊆ Ldn such that Γ′

is an OSnX-MCS and Γ ∪ {¬φ} ⊆ Γ′. By construction of the canonical model, Γ′ ∈ W c

and by Lemma 3.7 we know that Mc,Γ′ |= Γ and Mc,Γ′ |= ¬φ. By Lemma 3.8, Mc is an
OSnX-model and so Γ ̸|=OSnX φ. QED

3.4 A Formal Taxonomy of Ought Implies Can
In this section, we put our OSnX logics to work and address Objective 2. First, we
organize the logics in terms of their strength: observing which are equivalent, distinct,
or subsumed by another. Second, we discuss the logical (in)dependencies between the
various OiC principles by comparing the minimal systems in which each principle is
validated. In Figure 3.1, we provide a lattice ordering the ten OSnX logics extended with
a singular OiC axiom (reflexive and transitive edges are left implicit). An ordering of the
entire class of OSnX logics can be obtained in a similar way. Concerning Objective 2, it
suffices to consider OSn logics extended with individual OiC axiom schemes.

We consider a logic OSnX stronger than another logic OSnY whenever the former generates
at least the same set of valid formulae as the latter. In Figure 3.1, the directed edges
denote subsumption relations, e.g., OSn (without any OiC axiom) is the smallest logic
subsumed by all others, whereas OSn{Ai} for i ∈ {18, 19, 20} are the logics not subsumed
by any other logic in the lattice (see Remark 3.4 below). To determine the existence of
a directed edge from one logic OSnX to another OSnY in the lattice, it suffices to show
that every valid formula of the former is a valid formula of the latter. As an example, we
consider the edge from OSn{A12} to OSn{A11}.

Example 3.1. Observe that the axiomatizations of OSnX and OSnY with X = {A12}
and Y = {A11} only differ on the OiC axioms A12 and A11. We demonstrate that the
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latter axiom is also a valid formula in the logic of the former. We know |=OSnX □⊤ by
the normality of □, and by duality, we know that |=OSnX ¬♢⊥. By the (straightforward)
validity of modus tollens and A12, we know |=OSnX ¬ ⊗i ⊥. Hence, |=OSnX ⊗iφ → ¬ ⊗i ⊥
for any ⊗iφ ∈ Ldn.

The non-existence of a directed edge in the opposite direction is implied by the fact that
|=OSnX ⊗iφ → ♢φ and ̸|=OSnY ⊗iφ → ♢φ. For the latter claim it suffices to construct
an OSnY counter-model: Let M = ⟨W,R□, {R[i] | i ∈ Agents}, {N⊗i | i ∈ Agents}, V ⟩
where W = {w, v}, V (p) = {v} for each p ∈ Atoms, R□ = {(w,w), (v, v)} = R[i] for each
i ∈ Agents, and N⊗i(w) = {v} and N⊗i(v) = {w} for each i ∈ Agents. It can be easily
checked that M is an OSnY model with k ≥ 1 and M, w |= ⊗ip ∧ ¬♢p.

To determine that two logics OSnX and OSnY are equivalent—i.e., OSnX = OSnY—one
shows that every valid formula of the former is a valid formula of the latter, and vice
versa. Last, to prove that two logics OSnX and OSnY are independent—i.e., yielding
incomparable logics—it is sufficient to show that there exist formulae φ and ψ such that
|=OSnX φ, ̸|=OSnY φ, |=OSnY ψ, and ̸|=OSnX ψ. To illustrate this, we consider the logics
containing A19 and A14.

Example 3.2. For brevity, assume a single-agent setting for which {i} = Agents. Let
OSnX and OSnY be such that X = {A19} and Y = {A14}. We know that |=OSnX
⊗ip → ⊗i♢p and |=OSnY ⊗ip → ♢¬p for each p ∈ Atoms. It suffices to provide counter-
models that show ̸|=OSnX ⊗ip → ♢¬p and ̸|=OSnY ⊗ip → ⊗i♢p for some p ∈ Atoms.
Let Mj = ⟨W,Rj

□,R
j
[i],N

j
⊗i
, V j⟩ with j ∈ {1, 2}. First, let W 1 = {w, v}, R1

□ =
{(w,w), (v, v), (w, v), (v, w)}, R1

[i] = {(w,w), (v, v)}, V 1(p) = {v} for each p ∈ Atoms,
and N 1

⊗i
(w) = {v} = N 1

⊗i
(v). We have M1, w |= ⊗ip ∧ ¬ ⊗i ♢p, since ||♢p|| = {w, v} ̸∈

N 1
⊗i

(w), and M1 is an OSnY-model. Second, let W 2 = {w},R2
□ = {(w,w)} = R2

[i],
V 2(p) = {w} for each p ∈ Atoms, and N 2

⊗i
(w) = {w}. We have M2, w |= ⊗ip ∧ □p and

M2 is an OSnX model. The models M1 and M2 are graphically depicted below (only
relevant formulae are explicitly represented and deontically ideal worlds are shaded).

¬p
w

p
v M1¬p

w
p
v

¬p
w M2¬p
w

Excluding the normative readings of OiC—i.e., OiNC and OiNA—we may say that OiCtrl
is the strongest OiC principle since it entails all other OiC principles. Furthermore, all
OiC principles are compatible with each other. That is, any combination of OiC axioms
generates a consistent logic. This can be straightforwardly checked. Last, the taxonomy
shows that both OiNC and OiNA are strictly independent of any other OiC principle.

Remark 3.4. In (van Berkel and Lyon, 2021) we concluded that ⊗iφ → ⊗i♢[i]φ (A20)
is a stronger reading of OiC than ⊗iφ → ⊗i♢φ (A19), the former entailing the latter.
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OSn{A18} OiCtrl

OSn{A17} OiA+O

OSn{A13}OiA

OSn{A12}OiRz

OSn{A11}OiLP

OSn{A16} OiO

OSn{A15} OiRef

OSn{A14} OiV

OSn

OSn{A19}OiNC OSn{A20} OiNA

Figure 3.1: The lattice of OSnX logics for OiC. Directed edges point from stronger logics
to weaker logics with respect to their expressivity. Reflexive and transitive edges are left
implicit. The two arrows between OSn{A15} and OSn{A14} denote that the logics are
equivalent. The logic OSn (without any OiC axiom) is subsumed by all others, whereas
the logics OSn{A18}, OSn{A19}, and OSn{A20} are subsumed by no other logic. Dotted
nodes make explicit which logic corresponds to which OiC principle.

However, our present analysis—depicted in Figure 3.1—concludes that the two OiC
interpretations are independent. We are now in a better position to understand the two.
In (van Berkel and Lyon, 2021), ⊗i was characterized as a normal modal operator. Since
♢[i]φ → ♢φ is a theorem of an any normal modal deontic extension of basic STIT logic
(e.g., DSn and USn) we can prove that ⊗iφ → ⊗i♢[i]φ implies ⊗iφ → ⊗i♢φ (in the logic
in question). The formal proof is omitted. In other words, the dependence concluded
in our previous work was due to the endorsement of deontic properties other than OiC,
i.e., the properties M, C, and N for ⊗i (see page 88). The added value of the approach
taken in this chapter is that we can compare OiC readings without endorsing additional
properties influencing their interdependencies.

In this section, it suffices only to consider OSn logics extended with individual OiC axiom
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schemes. However, there are further analyses possible. To give an example, the logic
OSnX for which X = {A12,A14} is equivalent to the logic OSnY with Y = {A16}. In
other words, certain combinations of OiC principles correspond to other OiC principles.
We omit such an analysis here and return to it in Section 3.5.

From a philosophical perspective, Figure 3.1 gives rise to what we refer to as an en-
dorsement principle. Namely, the taxonomy explicates which endorsement of which OiC
reading logically commits one to endorsing other OiC readings (from the vantage of
STIT). For instance, endorsing OiA tells us that we must also endorse the weaker OiLP
and OiRz since they are logically implied in any logic containing OiA.

Definition 3.9 (The Endorsement Principle). For any two logics OSn{Ai} and OSn{Aj},
for 11 ≤ i, j ≤ 20, if the former subsumes the latter according to Figure 3.1, then an
endorsement of the OiC principle Ai also commits one to endorsing OiC principle Aj.

Alternatively, one may take the endorsement principle in Definition 3.9 to reveal which
standpoints are untenable. To illustrate, one cannot endorse OiCtrl as a metaethical
principle and at the same time refute OiLP as a valid deontic principle (or any other
except for OiNC and OiNA). In the next section, we discuss several other metaethical
principles and prove how these logically relate to OiC.

3.5 Other Metaethical Principles and Ought implies Can
Reasoning

Now that we have a clearer picture of how the different readings of OiC are logically
related to one another in the logic of STIT, we can start exploiting the logical taxonomy
to make observations about other metaethical principles and OiC. This is Objective 3.
We discuss four such principles:

• No Vacuous Commands (NVC);

• Deontic Contingency (DCg);

• Deontic Consistency (DCs);

• No Deontic Dilemmas (NDD).

Along the way, we prove soundness and strong completeness for the class of OSnX logics
extended with the above principles.

Furthermore, we address Objective 4 throughout our discussion. Recall that a common
objection to adopting non-normal modal logics is that the logics become too weak and
certain intuitively desirable inferences are lost (Van Fraassen, 1973; Horty, 1994). We
address Objective 4 and the above objection by considering extensions of OSnX with
restricted deontic reasoning principles that take into account OiC. In particular, we
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consider restricted versions of monotonicity (M) and aggregation (C), as well as a variation
of disjunctive response.

3.5.1 No Vacuous Commands

This principle, to which we refer as the “No Vacuous Commands” principle (NVC),
excludes commands that prescribe states of affairs that will be the case irrespective of
an agent’s behavior, as well as those which prescribe actions that agents will necessarily
perform. The principle is, therefore, closely related to deliberate agency. Following
von Wright (1963a), a command to either open a window or keep it closed is satisfied
irrespective of what the agent does in that situation, and so “[t]he command, therefore,
does not, properly speaking, ‘demand’ anything at all” (p.153). The NVC principle
excludes such obligations. The axiom A21 expresses a version of this principle.

A21. ¬ ⊗i ⊤

Following von Wright (1963a), one may adopt a stronger, agentive interpretation of NVC.
Namely, “[t]here is no such thing as making or (‘actively’) letting people do things which
they will necessarily do in any case” (p.154). The following axiom characterizes this last
quote:

□φ → ¬ ⊗i φ

This axiom expresses that everything that is currently settled true does not fall within
the scope of an obligation. In fact, the formula is nothing but the contraposition of axiom
A14 characterizing OiV, i.e., ⊢OSnX □φ → ¬ ⊗i φ ≡ ⊗iφ → ♢¬φ for any OSnX. It can
be straightforwardly checked that □φ → ¬ ⊗i φ implies the axiom A21, i.e., ¬ ⊗i ⊤ (due
to the normality of □).

The class of OSnX logics can be extended with NVC, i.e., the axiom A21. The corre-
sponding frame property is,

O11 For all w ∈ W,W ̸∈ N⊗i(w)

The resulting logics preserve soundness and completeness.

Theorem 3.3. Any OSnX logic extended with A21 is sound and complete with respect to
its corresponding class of OSnX-frames extended with O11.14

Proof. Due to the modularity of the soundness and completeness proofs in Section 3.3 it
suffices to only consider the additional case for A21 and O11. For soundness, we need to
prove that A21 is valid on all OSnX-models extended with O11. For completeness, it

14We assume the inclusion of A21 and O11 for each i ∈ Agents. We leave this implicit.
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suffices to show that the canonical model Mc—constructed from the logic OSnX extended
with A21—satisfies O11. 15

Soundness. Take an arbitrary OSnX-model M extended with O11 and let w ∈ W . Since
W ̸∈ N⊗i(w) and W = ||⊤||, by semantic definition of ⊗i we have M, w |= ¬ ⊗i ⊤.

Completeness. Let Mc be a canonical model for the logic OSnX extended with A21. Let
∆ ∈ W c. By duality, ¬ ⊗i ⊤ is equivalent to ⊖i⊥. By Lemma 3.6 and the fact that
⊖i⊥ ∈ ∆, we have {|⊥|} ̸∈ N c

⊗i
(∆). Since {|⊥|} = ∅, we have {|⊥|} = W ̸∈ N c

⊗i
(∆). QED

NVC, expressed as ¬ ⊗i ⊤, is a logical consequence of OiV but not the other way around
(as a straightforward OSn{A21}-countermodel would confirm). The logic OSn{A21} can
therefore be located in the formal taxonomy of Figure 3.1 between OSn and OSn{A14}.
Consequently, the endorsement principle tells us that all OiC logics implying OiV (e.g.,
those containing OiRef,OiO, and OiA+O) commit one to endorse the principle of No
Vacuous Commands. As discussed in Section 3.1, these OiC readings require that what
is obliged must be voliable, either by mere contingency, the agent’s refraining from
satisfying the obligation, or by the possibility of the agent seeing to it that the obligation
is violated.

The non-deliberative readings of OiC (i.e., OiLP,OiRz,OiA,OiNC, and OiNA) do allow
for a consistent modeling of tautologous obligations. Nevertheless, due to the absence of
the necessity axiom N in OSnX logics, the formula ⊗i⊤ is not a theorem of those logics.
In fact, these logics satisfy von Wright’s weaker interpretation of NVC as proposed in
the seminal work “Deontic Logic” (von Wright, 1951): tautologies are not necessarily
obligatory. We discuss this interpretation further in Section 3.6. It must be noted that
normal modal logics for deontic STIT logic (e.g., DSn of Chapter 2), trivially violate NVC
due to the inclusion of necessitation for ⊗i.

Reasoning with NVC. In case ⊗i satisfies monotonicity M, whenever a set of assump-
tions Γ ⊆ Ldn contains a formula ⊗iφ, the obligation ⊗i⊤ is implied and NVC is violated.
To see this point, let ⊢ denote the consequence relation of a OSnX logic satisfying M and
let ⊗iφ ∈ Γ. Since ⊢ φ ≡ (φ ∧ ⊤), by R2 we have Γ ⊢ ⊗i(φ ∧ ⊤), which by monotonicity
of ⊗i gives us Γ ⊢ ⊗iφ ∧ ⊗i⊤. Moreover, in case the logic in question also contains the
A14, we have ⊢OSnX ⊗iφ → (⊗i⊤ ∧ ¬ ⊗i ⊤) (for the second conjunct in the consequent
see page 103). Consequently, contraposition gives us ⊢OSnX ⊤ → ¬ ⊗i φ for each φ ∈ Ldn.
Hence, although such a logic is consistent, nothing is obligatory. In order to have both
monotonicity and NVC we must therefore adopt a restricted version of axiom M. For
instance, consider the following axiom:

A22. (□(φ → ψ) ∧ ¬□ψ ∧ ⊗iφ) → ⊗iψ

15By their generality, the existence lemmata 3.5 and 3.6 and truth lemma 3.7 hold for all the logics
considered in this section.

104



3.5. Other Metaethical Principles and Ought implies Can Reasoning

Axiom A22 enables the derivation of an obligation ⊗iψ from another obligation ⊗iφ,
whenever it is settled true that φ implies ψ and ψ is not vacuously true at the present
moment. The corresponding frame property would be:

O12 For all w ∈ W,Z,X ⊆ W, if Z ∈ N⊗i(w),R□(w) ̸⊆ X, and R□(w) ⊆ Z ∪X, then
X ∈ N⊗i(w)

Axiom A22 is compatible with all OiC readings. Nevertheless, from a conceptual point
of view, it is doubtful whether an axiom like A22 must be adopted in combination with
OiNC and OiNA. Namely, these readings of OiC deliberately do not refer to the moment
of evaluation. Therefore, a principle expressing monotonicity restricted to the present
moment is unsuitable in this context. In what follows, we refrain from adding such a
principle for normative OiC.

Proving soundness and completeness for the resulting logics requires additional machinery
that accounts for monotonicity in non-normal modal logics (Chellas, 1980).

Theorem 3.4. Let X ⊆ {Ai | 11 ≤ i ≤ 18}. Any OSnX logic extended with axiom A22 is
sound and complete with respect to their corresponding class of OSnX-frames extended
with O12.

Proof. Soundness. Due to the modularity of the soundness proof in Section 3.3, it
suffices to only consider the additional case for A22. Take an arbitrary OSnX-model M
extended with O12 and let w ∈ W . Assume M, w |= □(φ → ψ) ∧ ¬□ψ ∧ ⊗iφ. By the
semantic definitions of ⊗i and □, ||φ|| ∈ N⊗i(w) and there is a v ∈ R□(w) such that
M, v |= ¬ψ, i.e., R□(w) ̸⊆ ||ψ||. Furthermore, M, w |= □(φ → ψ) if and only if for all
u ∈ R□(w), if u ∈ ||φ|| then u ∈ ||ψ||, which is equivalent to u ∈ ||φ|| ∪ ||ψ||. In other words,
R□(w) ⊆ ||φ|| ∪ ||ψ||. By O12, ||ψ|| ∈ N⊗i(w) and so M, w |= ⊗iψ.

Completeness. So far we considered only smallest canonical models Mc, i.e., where
N c

⊗i
(∆) consists of only those proof sets {|φ|} for which ⊗iφ ∈ ∆ (see page 96). In order

to characterize restricted monotonicity, we must extend N c
⊗i

with a specific collection
of non-proof sets. Non-proof sets are sets of MCSs that do not characterize a specific
formula from Ldn (Chellas, 1980, Ch.9). We show that extensions with non-proof sets
preserve the canonicity of the resulting model. We use supplemented models (Chellas,
1980, Ch.9), which suffice for all logics extended with axioms from {Ai | 11 ≤ i ≤ 18}.

Let Mc = ⟨W c,Rc
□, {Rc

[i] | i ∈ Agents}, {N c
⊗i

| i ∈ Agents}, V c⟩ be the canonical model
as defined in Definition 3.8. The supplement canonical model for the logic OSnX extended
with A22 is the tuple Mc,+ = ⟨W c,Rc

□, {Rc
[i] | i ∈ Agents}, {N c,+

⊗i
| i ∈ Agents}, V c⟩.

Where for each ∆ ∈ W c,

N c,+
⊗i

(∆) = N c
⊗i

(∆) ∪ N +
⊗i

(∆)

with

N +
⊗i

(∆) = {Z | ⊗iφ ∈ ∆, there is a Γ ∈ Rc
□(∆) s.t. Rc

[i](Γ) ⊆ Z and Rc
□(∆) ⊆ {|φ|}∪Z}

105



3. Ought Implies Can

We show that the supplemented model Mc,+ is a canonical model for OSnX extended
with A22. For this, it suffices to show the following:

⊗iψ ∈ ∆ iff {|ψ|} ∈ N c,+
⊗i

(∆)

Left-to-right. It suffices to show N c
⊗i

(∆) ⊆ N c,+
⊗i

(∆), which holds trivially.

Right-to-left. Assume some Z = {|ψ|} ∈ N c,+
⊗i

(∆) such that for some ⊗iφ ∈ ∆, there is
a Γ ∈ Rc

□(∆) with Rc
[i](Γ) ⊆ {|ψ|}, and R□(∆) ⊆ {|φ|} ∪ {|ψ|}. We show that ⊗iψ ∈ ∆.

Since Rc
[i](Γ) ⊆ {|ψ|}, there is a Σ ∈ Rc

□(∆) such that ¬ψ ∈ Σ. Hence, ♢¬ψ ∈ ∆ and so
¬□ψ ∈ ∆. Last, since Rc

□(∆) ⊆ {|φ|}∪{|ψ|}, we have for all Γ ∈ Rc
□(∆), φ → ψ ∈ Γ (this

can be straightforwardly proven by a reductio ad absurdum). Hence, □(φ → ψ) ∈ ∆.
Therefore, □(φ → ψ) ∧ ¬□ψ ∧ ⊗iφ ∈ ∆ and by A22 we have ⊗iψ ∈ ∆.

Since we are using a different kind of canonical model, the modularity of our approach in
Section 3.4 does not extend to the present proof. Consequently, we must prove that the
properties Oi with i ∈ {2, . . . , 8, 12} also hold for Mc,+ whenever the corresponding axiom
is in OSnX extended with A22 (see Table 3.2). We prove that Mc,+ is an OSnX-model
extended with O12. We only consider the more involved cases O2 and O8, the cases Oi
with i ∈ {3, . . . , 7} are similar to O8. First, we demonstrate O12:

O12 Assume Z ∈ N c,+
⊗i

(∆), there is a Σ ∈ Rc
□(∆) such that Rc

[i](Σ) ⊆ X, and (i)
Rc

□(∆) ⊆ Z ∪ X. We show that X ∈ N c,+
⊗i

(∆). It suffices to consider the case
where Z ̸∈ N c

⊗i
(∆) (notice that N c

⊗i
is the non-supplemented function). Hence,

there is a ⊗iφ ∈ ∆ such that there is a Γ ∈ Rc
□(∆) with Rc

[i](Γ) ⊆ Z, and (ii)
Rc

□(∆) ⊆ {|φ|} ∪ Z. If we show that Rc
□(∆) ⊆ {|φ|} ∪ X, then by definition of

N c,+
⊗i

(∆) we are done. Suppose towards a contradiction that (iii) Rc
□(∆) ̸⊆ {|φ|}∪X.

Hence, there is a Σ ∈ Rc
□(∆) such that Σ ̸∈ {|φ|} ∪X which means Σ ∈ {|φ|} ∩X.

By (ii), we know Σ ∈ Z, and thus by (i), we have Σ ∈ X. Which is a contradiction
with (iii).

O2 Assume Z ∈ N c,+
⊗i

(∆) and suppose towards a contradiction that ∅ ∈ N c,+
⊗i

(∆). Two
options occur: i) ∅ ∈ N c

⊗i
(∆) or ii) ∅ ̸∈ N c

⊗i
(∆).

i) By definition ∅ = {|⊥|}, hence ⊗i⊥ ∈ ∆ and by A11 ¬ ⊗i ⊥ ∈ ∆. Contradiction.
ii) There is a ⊗iφ ∈ ∆ such that there is a Γ ∈ Rc

□(∆) with Rc
[i](Γ) ⊆ ∅ = W ,

and Rc
□(∆) ⊆ {|φ|}. Hence, □¬φ ∈ ∆ which gives us □(φ → ⊥) ∈ ∆. It is

straightforward to show that ¬□⊥ ∈ ∆ too. So, ⊗iφ ∧ ¬□⊥ ∧ □(φ → ⊥) ∈ ∆ and
by A22, ⊗i⊥ ∈ ∆. By ⊗iφ and A11 we have ¬ ⊗i ⊥ ∈ ∆. Contradiction.

O8 Assume Z ∈ N c,+
⊗i

(∆). We show that (i) there is a Γ ∈ Rc
□(∆) such that Rc

[i](Γ) ⊆ Z,
and (ii) there is a Σ ∈ Rc

□(∆) such that Rc
[i](Σ) ⊆ Z. It suffices to consider the

case where Z ̸∈ N c
⊗i

(∆) (N c
⊗i

is the non-supplemented function). Hence, there
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is a ⊗iφ ∈ ∆ such that (a) there is a Ω ∈ Rc
□(∆) with Rc

[i](Ω) ⊆ Z, and (b)
Rc

□(∆) ⊆ {|φ|} ∪ Z.
i) Suppose towards a contradiction that for all Γ ∈ Rc

□(∆), R[i](Γ) ̸⊆ Z. Hence,
for all Γ ∈ Rc

□(∆) there is a Σ ∈ Rc
[i](Γ), such that Σ ∈ Z. By (b) it must be

that Σ ∈ {|φ|} and so □¬[i]φ ∈ ∆. However, since ⊗iφ ∈ ∆, we know by A17 that
♢[i]φ ∈ ∆ and so contradiction.
ii) By (a). QED

In adopting A22, the logics for OiLP and OiRz become equivalent, i.e., OSn{A22,A11}
≡ OSn{A22,A12}: For the left-to-right direction, it suffices to show that ⊗iφ → ♢φ
is a valid formula of OSn{A22,A11}. Suppose not, then there is an M and a w ∈ W
of M, such that M, w |= ⊗iφ ∧ ¬♢φ. Hence, M, w |= ⊗iφ ∧ □¬φ and, consequently,
M, w |= □(φ → ⊥). By the normality of □, we have M, w |= ¬□⊥. By an application
of axiom A22, we obtain M, w |= ⊗i⊥ which is in contradiction with the OiLP implied
M, w |= ¬⊗iφ. The direction from right-to-left follows directly from the logical taxonomy
of OiC (Figure 3.1).

Theorem 3.4 demonstrates that certain OSnX logics can be extended with the restricted
monotonicity principle expressed by O12. We emphasize that the aim of this extension is
to demonstrate that and how it is possible to restore certain intuitive forms of reasoning
in the current non-normal modal setting. Although similar extensions are possible of
the logics introduced further down below, this is not the aim of the present section. We
leave such extensions for some future occasion.

3.5.2 Deontic Contingency

The principle of “Deontic Contingency” (DCg) restricts commands to contingent states
of affairs. This means that both what is obligatory and its complement are realizable.
The principle implies that neither tautologies nor contradictions can occur within the
scope of a deontic operator.16 Anderson and Moore (1957) discuss DCg in the context
of sanctions, requiring that sanctions—i.e., consequences of norm violations—must be
both provokable and avoidable. They define deontic concepts in terms of states of affairs
implying sanctions (see Chapter 4 for a thorough discussion). We refer to the work of
Pascucci (2017) for an extensive formal discussion of the deontic contingency principle.
DCg creates room for agency: it ensures that what is obligatory can be potentially
influenced by the agents’ behavior. Still, the principle allows for contingent states of
affairs—such as the occurrence of a moon eclipse—that conceptually lie beyond the grasp
of individual agency.

In this respect, DCg captures the same gist as the ‘ought implies opportunity’ OiO axiom
A16. The logical taxonomy of OiC principles (Figure 3.1) tells us that DCg is also satisfied

16Von Wright’s seminal paper “Deontic Logic” (1951) contains another principle of Deontic Contingency.
In Section 3.6, we discuss why his formulation falls short of characterizing contingency.
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OSn{A18,A16}
OiCtrl

OSn{A17,A16} ≡ OSn{A13,A16}

OiA+O
OiA

OSn{A19,A16}

OiNC

OSn{A20,A16}

OiNA

OSn{A11,A16} ≡ OSn{A12,A16} ≡
OSn{A15,A16} ≡ OSn{A14,A16} ≡

OSn{A16}OiLP,OiRz
OiRef,OiV
OiO

Figure 3.2: Lattice of the ten OiC logics additionally satisfying DCg, i.e., axiom A16.

by OiA+O and OiCtrl. We find that if we adopt DCg as a minimal requirement of deontic
logic, several readings of OiC become equivalent. This is expressed in Figure 3.2. That
is, enforcing DCg on the ten OiC logics of Figure 3.1 results in five distinct OiC readings
as represented in Figure 3.2. The proofs are left out.

3.5.3 Deontic Consistency

The principle of “Deontic Consistency” (DCs) fulfills a central role throughout the history
of deontic logic. It requires that obligations are consistent. In a normal modal logic
setting, DCs is expressed through the ‘the D-axiom’ ¬(⊗iφ ∧ ⊗i¬φ) (Hilpinen and
McNamara, 2013). However, DCs can be interpreted in two distinct ways: first, it can
mean that any single obligation cannot oblige what is inconsistent, and second, it can
mean that any combination of obligations cannot jointly oblige what is inconsistent. The
two corresponding axioms are, respectively:

A23. ¬ ⊗i ⊥

A24. ¬(⊗iφ ∧ ⊗i¬φ)

In normal deontic STIT logics such as DSn of Chapter 2, these two axioms are equivalent,
i.e., ⊢DSn ¬ ⊗i ⊥ ≡ ¬(⊗iφ ∧ ⊗i¬φ). This is due to the normality of the ⊗i operator
(the proof is straightforward). However, the move to non-normal modal logics makes it
possible to distinguish between “deontic consistency” and the principle of “no deontic
dilemmas”. In fact, Chellas (1980) takes the conceptual distinction between the two as
a reason for adopting non-normal deontic logics. In non-normal deontic logics, ¬ ⊗i ⊥
ensures that no obligation is inconsistent, whereas ¬(⊗iφ ∧ ⊗i¬φ) ensures that there
are no deontic dilemmas. Hence, only A23 expresses DCs proper. The principle of “No
Deontic Dilemmas” is discussed extensively in the next section.
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All OSnX logics from Figure 3.1 that imply OiRz also imply ¬ ⊗i ⊥ (A23). The logic
OSn{A11} for OiLP is strictly subsumed by the logic OSn{A23}. The proof is straight-
forward. Hence, the logic OSn{A23} is located in between OSn{A12} and OSn{A11}
in Figure 3.1. Still, we would argue that OiLP captures the same gist as DCs since it
expresses that either there is some obligation ⊗iφ, and so ¬ ⊗i ⊥ is implied, or there are
no obligations at all, and so a fortiori no inconsistent obligations either.

The frame property characterizing axiom A23 is:

O13 For all w ∈ W, ∅ ̸∈ N⊗i(w)

All considered logics can be extended with this axiom. (Recall that in some cases, the
axiomatization is not minimal since A23 is already implied.) The lattice of Figure 3.1 is
preserved with the exception of additional arrows from OSn{A14,A23}, OSn{A19,A23},
and OSn{A20,A23} to OSn{A11,A23}. The resulting logics are sound and complete.

Theorem 3.5. Any OSnX logic extended with axiom A23 is sound and complete with
respect to their corresponding class of OSnX-frames extended with O13.

Proof. It suffices to only consider the additional case for A23 and O13.

Soundness. Take an arbitrary OSnX-model M extended with O13 and let w ∈ W . Since
∅ ̸∈ N⊗i(w) and ∅ = ||⊥||, by semantic definition of ⊗i we have M, w |= ¬ ⊗i ⊥.

Completeness. Let Mc be a canonical model for the logic OSnX extended with axiom A23.
Let ∆ ∈ W c. By duality, ¬ ⊗i ⊥ is equivalent to ⊖i⊤. By Lemma 3.6 and the fact that
⊖i⊤ ∈ ∆, we have {|⊤|} ̸∈ N c

⊗i
(∆). Since {|⊤|} = W , we have {|⊤|} = ∅ ̸∈ N c

⊗i
(∆). QED

3.5.4 No Deontic Dilemmas

A deontic dilemma is a situation in which an agent “both ought to do something and
ought not to do that thing” (Lemmon, 1962, p.148). So far, all the developed OSnX logics
can consistently model deontic dilemmas. In other words, each OSnX logic is compatible
with the existence of deontic dilemmas.

The principle of “No Deontic Dilemmas” (NDD) stipulates that no two obligations can
prescribe jointly inconsistent state of affairs. Its corresponding axiom is:

A24. ¬(⊗iφ ∧ ⊗i¬φ)

The corresponding frame property for this principle is defined as follows:

O14 For all w ∈ W,Z ⊆ W, if Z ∈ N⊗i(w), then Z ̸∈ N⊗i(w)

The resulting logics are sound and complete.
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Theorem 3.6. Any OSnX logic extended with axiom A24 is sound and complete with
respect to their corresponding class of OSnX-frames extended with O14.

Proof. It suffices to only consider the additional case for A24 and O14.

Soundness. Take an arbitrary OSnX-model M extended with O14 and let w ∈ W .
Observe that |=OSnX ¬(⊗iφ ∧ ⊗i¬φ) ≡ ⊗iφ → ¬⊗i¬φ. Assume M, w |= ⊗iφ, then
||φ|| ∈ N⊗i(w) and by O14, ||φ|| ̸∈ N⊗i(w). Since ||φ|| = ||¬φ|| by Lemma 3.1-(v), we have
||¬φ|| ̸∈ N⊗i(w) and so M, w |= ¬ ⊗i ¬φ.

Completeness. Let Mc be a canonical model for the logic OSnX extended with the
axiom A23. Let ∆ ∈ W c. Suppose Z ∈ N c

⊗i
(∆), hence there is an ⊗iφ ∈ ∆ such that

Z = {|φ|}. Since ⊗iφ → ¬ ⊗i ¬φ ∈ ∆, we have ¬⊗i¬φ ∈ ∆ and by Lemma 3.6, we have
{|φ|} ̸∈ N c

⊗i
(∆). QED

Interestingly, adding NDD to OSnX does not change the logical taxonomy of OiC in
Figure 3.1. In other words, the metaethical principle of “No Deontic Dilemmas” is
logically independent from OiC. This means that the existence of moral dilemmas does
not necessarily entail the rejection of OiC. In fact, of those philosophers endorsing the
existence of moral dilemmas, some reject and some accept OiC (see (Marcus, 1980) for
an overview). We now discuss Lemmon’s rejection of OiC.

Reasoning with Dilemmas and OiC: Aggregation. NDD is a minimal principle
for most deontic logics (Hilpinen and McNamara, 2013). However, some accounts refute
NDD as a basic principle of deontic logic. Most notably, Lemmon (1962) advocates the
existence of moral dilemmas: “It is a nasty fact about human life that we sometimes
both ought and ought not to do things; but it is not a logical contradiction” (p.150).
Consequently, he argues that if “ought implies can” holds, a contradiction is obtainable
from a moral dilemma. According to Lemmon, a deontic dilemma between ⊗iφ and ⊗i¬φ
logically implies the inconsistent obligation ⊗i(φ∧¬φ) and since φ∧¬φ is impossible—i.e.,
¬♢(φ ∧ ¬φ)—an adaptation of ⊗iφ → ♢φ (OiRz) would imply that ⊗iφ and ⊗i¬φ are
logically inconsistent. And so, Lemmon concludes, “I view this [. . . ] as a refutation of
the principle that ‘ought’ implies ‘can’ ” (Lemmon, 1962, p.150). Let us look at this
argument in more detail.

The logic considered by Lemmon is a normal modal deontic logic. The inconsistency
is a consequence of two deontic reasoning principles interacting: the aggregation of
deontic modalities (i.e., C) together with the principle of OiC. The analysis provided
in this chapter demonstrates that OiC is, in fact, logically compatible with deontic
dilemmas, even in the light of the principle of Deontic Consistency ¬ ⊗i ⊥. However,
the aggregation principle C is incompatible with deontic dilemmas in light of Deontic
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Consistency. Therefore, we must conclude that inconsistency as a result of the formal
representation of deontic dilemmas is more a problem of aggregation than of OiC.17

A common approach is to loose the aggregation principle C, e.g., (Chellas, 1980). However,
as remarked on page 78, the logic may become too weak for logical reasoning with
obligations.18 Fortunately, not all is lost: it remains possible to adopt forms of restricted
aggregation, which only allow for the aggregation of jointly consistent obligations. In the
context of OiRz, we can adopt the following axiom:

A25. (♢(φ ∧ ψ) ∧ ⊗iφ ∧ ⊗iψ) → ⊗i(φ ∧ ψ)

Axiom A25 enables the aggregation of two obligations, provided they are jointly realizable.
Such an aggregation principle should ideally take into account the reading of OiC adopted
in the logics to which the principle is added. For instance, in light of OiA, the previous
axiom may be considered insufficient. In that context, if ⊗iφ and ⊗iψ hold, then agent i
is only under the obligation of φ and ψ together, whenever i has the ability to see to it
that both φ and ψ hold. In that case, we can adopt the following axiom:

A26. (♢[i](φ ∧ ψ) ∧ ⊗iφ ∧ ⊗iψ) → ⊗i(φ ∧ ψ)

In other words, we can reintroduce deontic reasoning principles to OSnX by taking into
account specific readings of OiC. It is also possible to add unrestricted C to all logics.
However, the latter principle is arguably too strong since it excludes the possibility of
dilemmas altogether.

The corresponding frame properties are,

O15 For all w ∈ W,Z,X ⊆ W, if Z,X ∈ N⊗i(w) and R□(w) ∩ Z ∩ X ≠ ∅, then
Z ∩X ∈ N⊗i(w)

respectively,

O16 For all w ∈ W,Z,X ⊆ W, if Z,X ∈ N⊗i(w) and there is a v ∈ W , such that
R[i](v) ⊆ R□(w) ∩ Z ∩X, then Z ∩X ∈ N⊗i(w)

All OSnX logics extended with these versions of restricted aggregation are sound and
complete.

17Still, Lemmon (1962) remarks that “there are surely clear counterexamples [to OiC] even without
the introduction of the present instances [dilemmas]” (p.150). Such examples are not given in that paper,
but we refer to the work of Vranas (2007) and Vranas (2018a) for several objections to OiC.

18Van Fraassen’s (1973) account is arguably the first attempt to weaken deontic logic in order to
accommodate deontic dilemmas. See the work of Horty (1994) for an alternative approach. The aim is to
provide a formalism that blocks deductive explosion from deontic dilemmas (such as in normal modal
deontic logics that contain a D-axiom) while maximizing inferential power. See also the discussion of the
Alternative Service Paradox on Section 1.2.1.

111



3. Ought Implies Can

Theorem 3.7. Any OSnX logic extended with axiom A25, respectively axiom A26 is
sound and complete with respect to its corresponding class of OSnX-frames extended with
O15, respectively O16.

Proof. It suffices to only consider the additional case for A25 and O15. The proof of
A26 and O16 is similar.

Soundness. Take an arbitrary OSnX-model M extended with O15 and let w ∈ W .
Assume M, w |= ♢(φ ∧ ψ) ∧ ⊗iφ ∧ ⊗iψ, then by semantic definitions of ⊗i and □, we
know that ||φ||, ||ψ|| ∈ N⊗i(w) and there is a v ∈ R□(w) such that M, v |= φ ∧ ψ, and so
R□(w) ∩ ||φ|| ∩ ||ψ|| ̸= ∅. By O15, ||φ|| ∩ ||ψ|| ∈ N⊗i(w), and so M, w |= ⊗i(φ ∧ ψ).

Completeness. Let Mc be a canonical model for the logic OSnX extended with the axiom
A25. Let ∆ ∈ W c. Suppose Z,X ∈ N c

⊗i
(∆) and Rc

□(∆) ∩ Z ∩ X ≠ ∅. Hence, there
are ⊗iφ,⊗iψ ∈ ∆ such that Z = {|φ|} and X = {|ψ|}, by construction of Mc. Since
Rc

□(∆) ∩ {|φ|} ∩ {|ψ|} ̸= ∅, there is a Γ ∈ Rc
□(∆) such that Γ ∈ {|φ ∧ ψ|} and so, by

Lemma 3.7, ♢(φ∧ψ) ∈ ∆ too. Hence, since ♢(φ∧ψ) ∧ ⊗iφ∧ ⊗iψ → ⊗i(φ∧ψ) ∈ ∆, we
have ⊗i(φ ∧ ψ) ∈ ∆, and therefore Z ∩X ∈ N⊗i(∆). QED

Reasoning with Dilemmas and OiC: Disjunction. As a final remark on deontic
dilemmas, we discuss the notion of disjunctive response. A common answer to deontic
dilemmas is that the agent is at least under the obligation to choose. To choose can be
seen as the lesser of two evils. Namely, although it is impossible to comply with both
obligations, complying with one is better than not complying.19 The idea of disjunctive
response is captured through the axiom,

A27. (⊗iφ ∧ ⊗i¬φ) → ⊗i(φ ∨ ¬φ)

and the frame property

O17 For all w ∈ W , Z ⊆ W , if Z,Z ∈ N⊗i(w), then Z ∪ Z ∈ N⊗i(w)

Two remarks are in place here. First, in a non-normal modal logic such as OSn, the
formula (†) ⊗iφ → ⊗i(φ ∨ ψ) is not a theorem due to the absence of the property of
monotonicity M. Consequently, Ross’ paradox—i.e., if one ought to post a letter, one
ought to either post it or burn it—does not necessarily hold in a non-normal modal setting
(Chapter 1). The above axiom, however, is different from (†) since it only introduces a
disjunction from two conflicting obligations.

Theorem 3.8. Any OSnX logic extended with axiom A27 is sound and complete with
respect to its corresponding class of OSnX-frames extended with O17.

19See Chapter 5 for a discussion of similar principle called Vikalpa, adopted by the ancient South
Asian school called Mı̄mām. sā.
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Proof. It suffices to only consider the additional case for A27 and O17.

Soundness. Take an arbitrary OSnX-model M extended with O17 and let w ∈ W . Assume
M, w |= ⊗iφ ∧ ⊗i¬φ. By semantic definition ||φ||,||¬φ|| ∈ N⊗i(w), be the definition of
truth set, ||φ|| ∈ N⊗i(w). By O17, ||φ|| ∪ ||φ|| ∈ N⊗i(w) and so M, w |= ⊗i(φ ∨ ¬φ).

Completeness. Let Mc be a canonical model for the logic OSnX extended with the axiom
A27. Let ∆ ∈ W c. Assume Z,Z ∈ N c

⊗i
(∆). Then by construction of Mc, there are

⊗iφ,⊗i¬φ ∈ ∆ such that Z = {|φ|}. By (⊗iφ ∧ ⊗i¬φ) → ⊗i(φ ∨ ¬φ) ∈ ∆, we have
⊗i(φ ∨ ¬φ) ∈ ∆ and so Z ∪ Z ∈ N c

⊗i
(∆) too. QED

Remark 3.5. In the light of NVC, adding axiom A27 excludes the possibility of deontic
dilemmas. Namely, since NVC is expressed as ¬ ⊗i ⊤, by contraposition on A27 we
have ¬ ⊗i ⊤ → ¬(⊗iφ ∧ ⊗i¬φ), and so we obtain ¬(⊗iφ ∧ ⊗i¬φ). In other words, all
deliberative readings of OiC implying NVC imply the endorsement of NDD.

A more restricted version of A27 is the following axiom:

A28. □([i]φ → ¬[i]ψ) ∧ ⊗iφ ∧ ⊗iψ ∧ (¬□(φ ∨ ψ)) → ⊗i(φ ∨ ψ)

The axiom expresses the following: if the agent is subject to two obligations that cannot
be jointly seen to, then she is obliged to satisfy at least one of the two obligations,
provided it is not trivial that either of the two obligations is satisfied. The last conjunct
of the antecedent of A28 ensures that introducing a deontic disjunction does not imply a
tautological obligation. We stress that extending an OSnX logic with A28 does preserve
the possibility of consistently modeling deontic dilemmas, even in the context of NVC.

The corresponding frame property is as follows:

O18 For all w ∈ W,Z,X ⊆ W , if R□(w) ̸⊆ Z∪X,Z,X ∈ N⊗i(w), and for all v ∈ R□(w),
R[i](v) ⊆ X, implies R[i](v) ̸⊆ X, then Z ∪X ∈ N⊗i(w)

The resulting logics are sound and complete.

Theorem 3.9. Any OSnX logic extended with axiom A28 is sound and complete with
respect to its corresponding class of OSnX-frames extended with O18.

Proof. It suffices to only consider the additional case for A28 and O18.

Soundness. Take an arbitrary OSnX-model M extended with O18 and let w ∈ W .
Assume M, w |= □([i]φ → ¬[i]ψ)∧⊗iφ∧⊗iψ∧¬□(φ∨ψ). By the semantic definitions of
⊗i,□, and [i] we know that ||φ||, ||ψ|| ∈ N⊗i(w), R□(w) ̸⊆ ||φ∨ψ||, and for all v ∈ R□(w),
R[i](v) ⊆ ||φ|| implies R[i](v) ̸⊆ ||ψ||. By O18 we have ||φ|| ∪ ||ψ|| ∈ N⊗i(w) and so
M, w |= ⊗i(φ ∨ ψ).
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OSn{A18} OiCtrl

OSn{A17} OiA+O

OSn{A13}OiA

OSn{A12}OiRz

OSn{A23}DCs

OSn{A11}OiLP

OSn{A16} OiO = DCg

OSn{A15} OiRef

OSn{A14} OiV

OSn{A21} NVC

OSnOSn{A24}NDD

OSn{A19}OiNC OSn{A20} OiNA

Figure 3.3: The lattice of metaethical principles NVC, DCg, DCs, and NDD, together with
the ten OiC principles of Table 3.1. Directed edges point from subsuming to subsumed
logics, e.g., OSn ⊆ OSn{A18}. Reflexive and transitive edges are omitted. Dotted nodes
make explicit which logics correspond to which metaethical principle.

Completeness. Let Mc be a canonical model for the logic OSnX extended with the
axiom A25. Let ∆ ∈ W c. Assume Rc

□(∆) ̸⊆ Z ∪ X, Z,X ∈ N c
⊗i

(∆), and for all
Γ ∈ Rc

□(∆),Rc
[i](Γ) ⊆ Z implies Rc

[i](Γ) ̸⊆ X. By the construction of Mc, there are
⊗iφ,⊗iψ ∈ ∆ such that {|φ|} = Z and {|ψ|} = X. Since Rc

□(∆) ̸⊆ {|φ|} ∪ {|ψ|}, there is a
Γ ∈ Rc

□(∆) such that ¬(φ ∨ ψ) ∈ Γ. By Lemma 3.7 and the semantic definition of □,
¬□(φ ∨ ψ) ∈ ∆. With similar reasoning, we obtain □([i]φ → ¬[i]ψ) ∈ ∆. Since axiom
A28 ∈ ∆, we know that ⊗i(φ ∨ ψ) ∈ ∆ and so Z ∪X ∈ N c

⊗i
(∆). QED

3.5.5 A Logical Taxonomy of Metaethical Principles

In conclusion, we present Figure 3.3, which demonstrates the logical relations between
all OiC principles, as well as all the other metaethical principles discussed (Objective 3).
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Generalizing the endorsement principle of Definition 3.9, Figure 3.3 demonstrates which
endorsed metaethical principles commit one to endorsing other metaethical principles in
the context of STIT.

We find that the metaethical principles NVC, DCg, and DCs are logically related to OiC.
Namely, they imply or are implied by certain readings of OiC. In particular, DCs is
implied by all OiC readings implying OiRz, whereas NVC is implied by all OiC readings
implying OiV. This logical dependency is presented in Figure 3.3. Furthermore, all
metaethical principles can be consistently added to the class of OSnX logics.

We also showed that the adaptation of metaethical principles, such as NVC and DCg,
make certain readings of OiC equivalent in the context of STIT, thus enforcing certain
interpretations of OiC. For instance, if one adopts DCg together with OiA, then one is
logically committed to endorsing OiA+O (see Figure 3.3).

Furthermore, Figure 3.3 shows that the principle NDD does not logically relate to any
OiC interpretations. This is contrary to the claim made by Lemmon (1962) that the
existence of moral dilemmas logically refutes OiC. We argued that Lemmon’s claim
strongly depends on the endorsement of reasoning principle C for ⊗i, which enables the
aggregation of (conflicting) obligations. By using non-normal modal logics, we obtain a
deeper understanding of the logical interdependencies of various metaethical principles
important in ethics and the field of deontic logic.

Last, we illustrated how the class of OSnX logics can be extended with deontic reasoning
principles that take into account the different OiC readings (Objective 4). For instance,
we provided a restricted monotonicity principle A22 that is compatible with readings
of OiC that imply NVC. Furthermore, we extended OSnX with restricted aggregation
principles A25 and A26, and a principle modeling disjunctive response A27. All the
resulting logics are sound and strongly complete.

3.6 Related Work and Future Research

Vranas and OiC. In a series of papers (Vranas, 2007; Vranas, 2018a; Vranas, 2018b),
Vranas discusses and refutes several objections to OiC. Most objections relate to coun-
terfactual reasoning, temporal aspects such as obligations with deadlines, conditional
obligations, and notions of culpability, blame, and moral judgment. He argues that, al-
though OiC remains a controversial principle for several reasons, the discussed objections
can all be refuted. Vranas (2018b) adopts a temporal reading of OiC. His account deals
with pro tanto and all things considered obligations and how certain obligations remain,
cease to be, and are overridden in conflicting scenarios. Vranas’ (2018a) account of OiC
is “if an agent at a given time has an obligation, then the agent at that time can obey the
obligation” (p.23) where ‘can obey’ equals ability plus opportunity (cf. OiA+O). Vranas’
(2007; 2018a) account of OiC is inherently defeasible since it deals with agents losing
their obligations over time due to agents becoming unable to obey the obligation.

115



3. Ought Implies Can

We agree with Vranas that there is a strong connection between OiC, temporal reasoning,
and the defeasibility of obligations. One can think of OiC as a restriction on all-things-
considered reasoning with obligations. Consider a scenario in which I am obliged to
keep a promise until Sunday. In a CTD scenario (Chapter 2), one might have the CTD
obligation to apologize if one does not keep the promise, e.g., after Sunday. However,
what happens if I know on Saturday already that I cannot keep the promise due to
circumstances beyond my control? In some cases, one may argue that OiC entails that my
initial obligation to keep the promise ceases to be (Vranas, 2018b). In that sense, being
unable is a constraint that makes obligations defeasible. Temporal questions concerning
CTD reasoning and OiC are challenging, and the investigation of OiC as a defeasible
principle deserves further investigation.

Open question 3.1. Can we give a formal account of defeasible interpretations of OiC,
e.g., where ‘can’ is considered a normality and ‘cannot’ an abnormality that causes the
revision of the inferred obligations?

Concerning the above, Vranas (2007) discusses a scenario in which an agent is obliged to
submit an essay within a given time interval t1, . . . , tn, where the agent can fulfill her
obligation within this interval. One of the challenges of OiC is determining whether the
obligation is annulled if the agent waits until she cannot fulfill her obligation anymore (for
instance, when she procrastinates writing the essay until an hour before the deadline tn).
What is the difference between an agent not being able to fulfill her obligations and an
agent deliberately seeing to it that she cannot fulfill her obligations? There is an interesting
connection here with other agentive concepts such as culpability, blameworthiness,
responsibility, and causal contribution. We leave such investigations for future work.

Other OiC Readings. We briefly mention some OiC principles not discussed in this
chapter. Prakken and Sergot (1996) adopt an OiC principle similar to OiRz. Their
conditional logic contains a principle of the form ⊗ψ

i φ → ♢φ which means that “if in
context ψ, φ is ideal then φ is possible (even though φ might not be possible in context
ψ)”. The conditional obligation requires ‘can’ in OiC to be global, i.e., irrespective of the
context of the obligation.

Vranas (2018a) proposes several other metaethical principles which generalize OiC.
For instance, the principle ‘ought-implies-can-obey’, ‘ought-implies-can-satisfy’, ‘ought-
implies-possible-violation’, and ‘ought-implies-can-avoid’. See also (Vranas, 2018b) for a
discussion of the influence of agents’ epistemic limitation on OiC and all things considered
obligations. There is some immediate terminological overlap between the terms used in
the above principles and the OiC readings discussed in this chapter. However, the exact
relations remain to be determined. In particular, Vranas discusses these principles in
the context of conditional obligations and temporal agentive reasoning. The logic in this
chapter is atemporal. For these reasons, we must postpone a proper formal investigation
of the principles defended in (Vranas, 2018a).
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Last, Broersen (2003) discusses an ‘ought implies may’ principle in a modal action logic
setting. The principle captures the idea that if some action α is obligatory, it is permitted
to perform α, i.e., the agent may perform α. The principle is formally represented
as Oφ → Pφ. Here, permission (P) and obligation (O) are reduced to statements
concerning actions leading to violations; cf. (Meyer, 1988). In Chapter 4, we discuss such
reductions in detail. It must be noted that in the ‘ought implies may’ reading, permission
is not definable in terms of obligations, such as in Standard Deontic Logic (Hilpinen and
McNamara, 2013) (see page 13).

Other Metaethical Principles. In the seminal work “Deontic Logic” (1951), von
Wright argues for the adaptation of, what he calls, the principle of deontic contingency
(cf. page 107). He phrases it accordingly “[a] tautologous act is not necessarily obligatory,
and a contradictory act is not necessarily forbidden” (p.11). Let O be an obligation
operator and F a prohibition operator. The principle concerns necessitation and can
be expressed as ̸⊢ O⊤ and ̸⊢ F⊥. In Standard Deontic Logic, the two remarks about
obligations and prohibition are equivalent since Fφ = O¬φ. Von Wright’s proposal
amounts to omitting necessitation as a property of the obligation operator. For that
reason, von Wright’s original Deontic Logic (1951) can be taken as a non-normal modal
logic. We point out that although von Wright refers to this principle as a principle of
contingency, it is too weak to guarantee contingency. Namely, that tautologous acts
are not necessarily obligatory leaves room for some obligations to be tautologies and,
consequently, not contingent. None of the logics OSnX satisfies necessitation N and, thus,
von Wright’s principle holds for these logics.

The ancient south Asian school of Mı̄mām. sā—devoted to the structural analysis of
normative statements in the prescriptive part of the Vedas—proposed various metaethical
principles. For instance, for the Mı̄mām. sā, actions occurring in commands must be
meaningful. An action is not meaningful whenever the agent is naturally inclined to
comply in any given case or whenever the prescribed action is impossible to fulfill (van
Berkel et al., 2022a; Freschi and Pascucci, 2021). The former is related to NVC, whereas
the latter expresses DCs. In Chapter 5, we provide a formalization of the deontic theory
of the Mı̄mām. sā philosopher Man.d. ana and discuss various related metaethical principles
in detail.

Quasi-Agentive Obligations and OiC. Last, we point out that none of the logics
presented in this chapter is equivalent to the traditional deontic STIT logic DSn (Horty,
2001; Murakami, 2005) (cf. Chapter 2). The logic DSn is a normal modal logic, which
requires that the modality ⊗i satisfies normality, e.g., the axioms M, C, and N (Section 3.2).
What is more, in DSn, the formula

⊗iφ ≡ ⊗i[i]φ

is a theorem. It characterizes the quasi-agentive reading of the obligation (Belnap and
Perloff, 1988), by equating each obligation for an agent with an obligatory choice for

117



3. Ought Implies Can

that agent: “agent i ought to see to it that”. In this chapter, we deliberately abstained
from adopting the quasi-agentive obligation operator. We now discuss the implications
of adopting this operator for the analysis of OiC and pose some open questions.

In order to obtain the quasi-agentive reading of ⊗i in OSnX, we must impose additional
properties. We argue that to obtain the quasi-agentive reading of obligation, it is enough
to consider ⊗iφ → ⊗i[i]φ because it sufficiently ensures that each obligation ⊗iφ has a
corresponding quasi-agentive obligation ⊗i[i]φ. Guaranteeing the quasi-agentive reading
of ⊗i is not trivial. We can adopt the following axiom:

A29. ⊗iφ → ⊗i[i]φ

We conjecture that axiom A29 corresponds to the following frame property:

O19 For all w ∈ W,Z ⊆ W, if Z ∈ N⊗i(w), then {v ∈ W | R[i](v) ⊆ Z} ∈ N⊗i(w)

It is left for future work to determine whether OSnX extended with axiom A29 is sound
and complete with respect to the class of OSnX-models extended with O19.

Open question 3.2. Under which conditions can the quasi-agentive reading of the STIT
obligation ⊗i be restored for non-normal modal STIT logics OSnX?

In the remainder, we briefly discuss the effects of adding A29 to the axiomatic charac-
terization of OSnX. It can be directly observed that certain readings of OiC become
equivalent. To illustrate, consider a logic OSnX with ⊗iφ → ♢φ (OiRz) as a theorem.
Furthermore, assume ⊗iφ → ⊗i[i]φ is an axiom of that system. By straightforward
propositional reasoning, we obtain the following theorem:

⊗iφ → ♢[i]φ

In other words, adding the quasi-agentive reading of ⊗i implies that the OiC readings of
OiRz and OiA become equivalent. Given axiom A29, one can construct similar arguments
that show the equivalence of OiNC and OiNA and of OiO and OiA+O. Consequently, under
the quasi-agentive reading of ⊗i, there are strictly fewer variations of OiC. In fact, of the
ten principles discussed, at most six readings are preserved. This is expressed in Figure 3.4.
We conjecture that the lattice in Figure 3.4 represents the resulting interdependencies of
OiC logics strengthened with the quasi-agentive obligation ⊗iφ → ⊗i[i]φ.

* * *

This chapter provided a comprehensive logical study of the variety of Ought implies
Can (OiC). We analyzed ten principles from the philosophical literature and provided
formalizations of each of them. We developed a class of sound and complete deontic STIT
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OSn{A18} OiCtrl

OSn{A17}
OSn{A16}

OiA+O
OiO

OSn{A13}
OSn{A12}

OiA
OiRz

OSn{A11}OiLP

OSn{A15}
OSn{A14}

OiRef
OiV

OSn

OSn{A19}
OSn{A20}

OiNC
OiNA

Figure 3.4: The lattice of OSnX logics for OiC strengthened with the quasi-agentive
obligation ⊗iφ → ⊗i[i]φ (A29). Directed edges point from stronger logics to weaker
logics with respect to their expressivity. Reflexive and transitive edges are left implicit.
Dotted nodes make explicit which logics correspond to which OiC principle.

logics—referred to as OSnX—axiomatizing the ten principles (Objective 1). The logics
were subsequently employed to provide a formal taxonomy of OiC, logically determining
the (in)dependencies between the various OiC principles (Objective 2). This gave rise
to an endorsement principle expressing which endorsement of OiC logically commits
one to endorse other readings of OiC. We then extended the class of OSnX logics with
other metaethical principles—i.e., No Vacuous Commands, Deontic Contingency, Deontic
Consistency, and No Deontic Dilemmas—determining their relation to OiC (Objective 3).
Whereas No Deontic Dilemmas is logically independent of OiC, we saw that by adopting
Deontic Contingency, particular readings of OiC become equivalent, leading to strictly
fewer principles. Last, we extended OSnX with restricted forms of monotonicity and
aggregation to restore some of the inferential power lost by adopting a non-normal modal
approach (Objective 4).
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Part II

Action and Normative Reasoning

121





CHAPTER 4
Norms and Instruments

Since the introduction of deontic logic in the 1950s by von Wright (1951), developments
in deontic logic have been guided by the conviction that action is a pivotal component of
normative reasoning (Castañeda, 1972; von Wright, 1968). In relation to this, a significant
development took place in the 1970s: the introduction of Propositional Dynamic Logic
(PDL) (Fischer and Ladner, 1979). Modal logics of PDL focus on analyzing complex
actions (or programs) and their relation to results. The framework has been adapted to
deontic reasoning (Meyer, 1988) and continues to receive attention to the present day
(Giordani and Canavotto, 2016; Giordani and Pascucci, 2022; Hughes et al., 2007). The
emphasis on action in normative reasoning led to the distinction between two categories
of obligation: ought to be and ought to do (d’Altan et al., 1996; Castañeda, 1972).
Obligations of the first category address states of affairs, without referring to how the
agent obtains such states of affairs. The second category prescribes actions to agents
without specifying the possible outcomes that the action might produce. We use norms to
be and norms to do as generalizations of the two categories (also including prohibitions).

There is a third category of norms merging both approaches. The category contains norms
that describe a normative relation between an action and a goal, where the action serves
as an instrument for achieving the goal. We propose the name norms of instrumentality
to characterize obligations and prohibitions of this type. To the best of our knowledge
this category has not yet been investigated. Consider the following example:

It is prohibited to use nonpublic information as an instrument to acquire
financial profit on the stock market.

The above prohibition belongs to this third category. It is a simplified representation of the
law on ‘insider trading’. This prohibition is neither an instance of norms to be nor of norms
to do. That is, it is neither prohibited to use nonpublic information nor is it prohibited
to acquire financial profit on the stock market. Only as a means to attain financial
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4. Norms and Instruments

profit the use of such information is forbidden. Prohibitions of the form expressed above
articulate which actions may not be employed as instruments for achieving particular
goals. Despite the ubiquity of normative constraints on instrumentality in legal, social,
and ethical systems—think of protocols, rules of games, and fairness constraints—an
investigation of their philosophical ramifications in formal logic is absent. This work sets
out to provide the formal foundations for the analysis of norms of instrumentality.

Objective 1. Develop a formal logic of actions to represent and analyze norms of
instrumentality.

The dichotomy between norms to be and norms to do is a central theme of Deontic Logic
(Hilpinen and McNamara, 2013; Horty, 2001) and forms a key challenge for Normative
Multi-agent Systems (NorMAS) (Pigozzi and van der Torre, 2018). One of the main
questions is whether the latter is reducible to the former. An immediate question for
our endeavor is whether—and if so, to what extent—norms of instrumentality can be
reduced to the two aforementioned norm categories.

Objective 2. Provide a formal comparison of norms to be and norms to do in relation
to norms of instrumentality.

D’Altan et al. (1996) provide an extensive formal analysis of norms to be and norms
to do. The formalism employed there brings together Anderson’s (1958) reduction of
norms of the first category and Meyer’s (1988) reduction of norms of the second category.
The resulting system is the multi-modal logic referred to as PDeL, i.e., deontic PDL.
Anderson’s reduction reduces deontic operators to alethic formulae containing violation
constants, e.g., “a result φ is obligatory when ¬φ strictly implies a violation”. Meyer’s
reduction reduces deontic operators to formulae using action modalities and violation
constants, e.g., “an action ∆ is obligatory when not performing ∆ strictly implies a
violation”.

We introduced a third reduction: the reduction of action modalities in the style of PDL
to alethic formulae containing action constants, e.g., “action ∆ is performed by agent
i when the next moment witnesses the successful performance of ∆ by agent i”. The
witness is interpreted as a distinctive state of affairs that preserves the idea of actions as
first-class citizens in the formal language. The resulting logic facilitates reasoning about
agent-dependent actions within the object language and can be used to formally captures
different notions of instrumentality. The reduction was first published in (van Berkel and
Pascucci, 2018).

This chapter introduces a logic that brings together the above three reductions: The
Logic of Action and Norms, (LAN, for short). We use this logic to address the above two
objectives.

The philosophical foundation of LAN is Georg Henrik von Wright’s theory of agency. Von
Wright is well-known for his contributions to modal logic and the philosophy of action
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(Stoutland, 2010). He is often referred to as one of the founders of the fields of deontic
logic and action logic, and his agency theory (1963; 1968) has proven to be a fruitful base
for developing action logics (Åqvist, 2002; Segerberg, 1992). What is more, von Wright
(1972b) provides and analysis of instrumentality relations in the context of agents.

Contributions. In this chapter, we address the above objectives. Our main contribu-
tions are the following:

First, we develop the logic LAN, which brings together the three reductions (Anderson,
1958; Meyer, 1988; van Berkel and Pascucci, 2018). The resulting logic extends previous
approaches by permitting us to reason with agent-dependent actions, as well as agent-
dependent obligations and prohibitions, within a multi-agent setting. Furthermore, the
logic LAN is sound, strongly complete, and decidable.

Second, we propose and investigate various formalizations of norms of instrumentality.
In particular, we formally investigate the three norm categories: we pose desiderata
describing the relations between them and evaluate their validity vis-à-vis several deontic
principles from the literature (cf. metaethical principles in Chapter 3). We illustrate
norms of instrumentality and their relation to the other norm categories through the
analysis of a formal example.

Third, we discuss how more refined notions of instrumentality, based on von Wright’s
philosophy of agency, are formalized in an extension of LAN.

Last, the logic LAN is an action logic in the spirit of PDL. The main difference is that
we do not adopt modal operators to express (complex) actions but instead use action
constants and a single necessity operator to define action modalities. We investigate the
relation between LAN and (a fragment of) PDL that uses relativized action negation.

Differences. This chapter is based on three articles: (van Berkel and Pascucci, 2018;
van Berkel et al., 2020; van Berkel et al., 2022b). All three articles concern the formal
treatment of instrumentality and adopt a similar formalism. The content of Sections 4.2-
4.5 were first published in (van Berkel et al., 2020). The (formal) analysis of von Wright’s
theory of agency and instrumentality in Section 4.1 and Section 4.6 derives from (van
Berkel and Pascucci, 2018; van Berkel et al., 2022b). The novel contributions of this
chapter are the formal comparison of LAN with (a fragment of) PDL and a more extensive
discussion of related work.

Outline. In Section 4.1, we provide an overview of von Wright’s theory of agency.
The logic LAN is defined in Section 4.2 and soundness and completeness are proven in
Section 4.3. After that, we employ the logic for a formal analysis of the three norm
categories (Section 4.4). In Section 4.5, we formalize an example protocol containing the
three norm types. We discuss how to extend LAN to accommodate several notions of
instrumentality discussed by von Wright (Section 4.6). Last, we investigate the relation
between LAN and PDL in Section 4.7.
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4. Norms and Instruments

An Example: A Hospital’s Health and Safety Protocol

In order to clarify the distinct nature of the three types of norms, we provide an example
protocol that serves as a benchmark in evaluating our formal framework. Consider the
following (artificial) scenario: The Health and Safety Committee of a public hospital
recently established a new set of guidelines to govern and redirect the behavior of surgeons
and nurses in treating its patients. In particular, motivated by the increased awareness
of the dangers of accidental self-inflicted wounds—caused by using sharp tools during
surgery—the committee proposed a new policy: the use of scalpels in the operation room
is limited to surgeons and prohibited for assisting nurses. The protocol is summed up
accordingly:

N1 Surgeons are obliged to use a prescribed scalpel for bringing about necessary
incisions during surgery.

N2 Assisting nurses are not allowed to use scalpels during surgery when the situation
is not dire.

N3 Nurses and surgeons alike have the obligations to (i) promote the health of their
patients, and (ii) preserve hygiene and safety in the operation room.

First, we observe that N1 expresses a norm belonging to the third, novel category of
norms of instrumentality. Namely, it is an obligation that specifically relates an action
as an instrument to a particular outcome: if an incision is required, then the surgeon is
obliged to use the scalpel as a means to bring about the incision. N2 is a prohibition
subsumed under norms to do and holds independently of the instrument’s intended
purpose. N3 is an obligation of norms to be and holds independently of the instruments
used to obtain (i) and (ii).

To emphasize the irreducibility of norms of instrumentality to norms to be and norms to
do, consider the following: although a surgeon might be obliged to use a scalpel to ensure
a required incision, it does not follow that she must use the scalpel independently of its
intended purpose (some outcomes obtained by using the scalpels could be prohibited),
nor does it mean that she must bring about the incision by any means necessary (some
means could be forbidden). In fact, N1 states that the surgeon has only the obligation to
ensure the required incision by means of using the scalpel.

Remark 4.1. Instrumentality is a general notion that refers to actions serving goals;
cf. (Bratman, 1981; Rao and Georgeff, 1995; von Wright, 1972b). Thus, although in
the above example reference is made to a tool—i.e., a scalpel—the instrument under
consideration is the action of “using the scalpel” (for the purpose of incision).

The committee makes two additional (naive) assumptions in drafting the protocol:

T1 The protocol offers rules of conduct that suffice to resolve all normative conflicts
that may arise during surgery.
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4.1. Action and Instrumentality

T2 The protocol assumes that the actions prescribed to the agents can be consistently
and jointly performed.

The committee knows that sub-ideal situations can occur, e.g., whenever an employee
(in)voluntarily violates an initial rule. To accommodate such scenarios, the committee
additionally provides the following contrary-to-duty (CTD) obligation (see Chapter 1 for
an introduction):

E1 In case of failing to preserve hygiene standards during surgery (e.g., in the case of
self-inflicted wounds), the employee in question is obliged to leave the operation
room and call the safety-emergency number immediately.

The purpose of the above rule is to minimize damage in sub-ideal scenarios. Namely,
principle E1 prescribes measures to be taken in case of failure to comply with the
prescription in N3. We formalize the example in Section 4.5. There, we analyze the
consistency of the protocol and apply it to two different scenarios.

4.1 Action and Instrumentality

The philosophical foundation of our envisioned logic is von Wright’s general theory of
action, as laid out in (von Wright, 1963a; von Wright, 1968; von Wright, 1972b). In
this section, we briefly discuss the basic concepts of this theory and refer to the works
of Åqvist (2002) and Stoutland (2010) for a more extensive discussion. At the end of
this section, we provide some preliminaries concerning von Wright’s (1972b) ideas on
instrumentality statements. In brief, instrumentality statements express a relationship
between a goal and an action as an instrument for obtaining that goal, cf. (Bratman,
1981; Rao and Georgeff, 1995; von Wright, 1972a).

4.1.1 Von Wright’s General Theory of Action

According to von Wright (1963a), acting is interfering with the course of nature. Such
interference manifests in bringing something about or in preventing something from
happening. What is brought about or prevented is a particular state of affairs, i.e., a
partial description of the world such as “the window is open”. To bring about a result p,
means to act “in such a manner that the state of affairs that p is the result of one’s action”
(1963a, p. 13). Likewise, prevention of p indicates that one’s action has succeeded in
ensuring ¬p.

The above concept of action is founded on the notion of change. In fact, for von Wright,
any theory of agency and action must presuppose an account of change (Åqvist, 2002).
He takes change to define a transition from an initial state (i.e., the present moment) to
an end-state (i.e., a future moment). Such transitions can be either agent-independent
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Figure 4.1: Von Wright’s four types of elementary action. The node w0 denotes the initial
state and w1 and w2 the possible end-states. The transition from w0 to w1, denoted
by an arrow ‘→’, expresses the performance of the agent’s action δ. The alternative
transition from w0 to w2 indicates the agent’s non-interference with nature and is labeled
n. The variable p is the state of affairs under consideration.

(e.g., a moon eclipse) or agent-dependent (e.g., me opening the window). The agent-
dependent account forces a non-deterministic worldview. That is, to bring something
about presupposes at least the following three states: the initial state (in which the agent
finds herself), the actual end-state (which is the state that emerges after the performed
action), and an alternative end-state (which would result if the agent would refrain from
performing the action in question).

Von Wright discusses various relations that may hold between these three states. By
bringing together the above account of change with the twofold distinction between
bringing about and prevention, he characterizes four types of action: producing, destroying,
suppressing, and preserving. The first two bring about something, whereas the latter
two prevent something. The four types of elementary action are those characterized in
Figure 4.1. For instance, at (iii), the act of suppressing p indicates that at the initial
state ¬p holds, through the agent’s action δ ¬p continues to hold, and if the agent had
acted differently, p would have come about. Von Wright’s reading of the four action
types is arguably too strong since it overlooks the uncertainty of action: for von Wright,
the agent’s action δ in Figure 4.1 ultimately decides the faith of p. For instance, in the
case of producing, by performing δ the agent ensures p, whereas by not-acting the agent
can ensure ¬p. In other words, von Wright’s account takes agency as causally sufficient
in both directions (Åqvist, 2002).

Since a general analysis of agency involves many distinct agents and distinct agents can
simultaneously perform distinct actions, an individual agent’s action is often not causally
sufficient. This is known as the uncertainty of action (Horty, 2001) (cf. Section 2.1). We
adopt a generalization of von Wright’s approach. A transition involves the following three
elements: (i) an initial state, (ii) a set of actions, and (iii) a set of possible final states.
Henceforth, we also refer to such states as moments in indeterministic time. A single
agent does not completely control the course of events, but even the complete set of
actions performed by all agents involved does not necessarily entail a unique end-state (cf.
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Figure 4.2: Indeterministic time and action. The initial state is w0, the possible end-states
through performing action δ are w1, w2, w3, and those possible through not performing δ
(denoted by δ) are w4, . . . , wn. The state of affairs p holds at those moments indicated.

the influence of nature). For this reason, we say that a set of actions causally contributes
to the attainment of the (actual) end-state of a transition only if the end-state would
have been different without the performance of that set of actions.

For instance, in Figure 4.2, we say that the action δ brings the agent from the present
moment w0 to either one of the future moments w1, w2, w3 without strictly determining
either of the three. Still, we see that all three moments satisfy p and that performing
δ—which is the complement of δ—could lead to at least one future moment where ¬p
holds, namely, w4. Thus, we say that the agent can produce p by performing δ at w0,
even though the agent cannot secure a unique future moment with action δ.

Last, we follow the usual distinction between action types and action tokens. The former
denote generic categories, such as ‘writing’, and the latter concern concrete instances in
specific circumstances, such as the action of a particular person writing on a particular
blackboard on a specific date. See the work of Goldman (1970) for an extensive discussion
of types and tokens. Thus, action types can be regarded as categories under which tokens,
as individual cases, can be subsumed. von Wright (1963a) adopts a similar demarcation
by distinguishing between act-categories, on the one hand, and act-individuals, on the
other hand. In this chapter, we consider action types as well as tokens. In the current
setting, we restrict ourselves to the analysis of the following types:

• Atomic actions such as “crossing the street”;

• Negative actions such as “not crossing the street”;

• Complex actions such as disjunctive action, joint action, and sequential action,
respectively “turning left or turning right”, “turning left and hitting the break”,
“first turning left and then turning right”.
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4. Norms and Instruments

4.1.2 Instrumentality

Central to the study of instrumentality is the relation between an action and a result. The
former is the instrument for the desired outcome expressed in the latter. The outcome
can therefore be seen as the purpose of performing the action in question. Thus, we
refer to the action as an instrument serving a particular purpose. An alternative way of
referring to this relation is through a means-end relation, where the instrument is the
means to attain the desired result called end. For example, “pulling down the leaver of a
door and drawing the door towards you” is the instrument for the result “the door is
open”. In Figure 4.2, we find a scenario in which δ is an instrument for purpose p at w0.
Paraphrasing von Wright (1972b, p.21), we say that “δ qualifies as a p-instrument”.
We adopt the following definition of a basic instrumentality relation:

An action ∆ is a φ-instrument for agent i at moment w if the performance of ∆
by i at w suffices to guarantee the truth of φ.

In the above definition, we refer to ∆ as sufficient for establishing the truth of φ.1 It
differs from necessary means, which are both necessary and sufficient in serving a given
purpose. A necessary means is an instrument without which a particular goal cannot be
reached. In this chapter, we concentrate on sufficient instruments. Formally, we write

[∆i]φ

to indicate that ∆ is a φ-instrument for agent i. Despite its simplicity, the above definition
suffices for our formal analysis of norms of instrumentality.
In Section 4.6, we extend our discussion of instrumentality. Although instrumentality
statements are critical to practical reasoning (Bratman, 1981; von Wright, 1972a), to the
best of our knowledge, von Wright (1972b) is the only philosopher explicitly discussing
how such statements can be obtained, compared, and assessed by agents. In Section 4.6,
we provide a formal discussion of von Wright’s analysis.2

Remark 4.2. Means-end reasoning plays a central role in Belief-Desire-Intention (BDI)
systems (Rao and Georgeff, 1995). There, means are plans that stipulate a sequence
of (sub)actions needed to attain a given goal (where a goal is a consistent, achievable
desire) (Rao and Georgeff, 1998). In this chapter, we do not deal with instrumentality in
the context of planning (such as in BDI logics). Instead, we investigate instrumentality
statements as subject to obligations and prohibitions, i.e., norms of instrumentality.
Future research may be directed to investigating the role of such norms in BDI systems.

1This definition of basic instrumentality does not contain a counterfactual element such as found in
von Wright’s notion of producing. We come back to this in Section 4.2.1.

2Furthermore, von Wright is said to be the first to use the term anankastic conditional, which refers
to means-end conditionals of the form “if you want X, you must do Y ”. In the Groundwork for the
Metaphysics of Morals (1785/1999), Kant discusses hypothetical imperatives, which can be seen as
anankastic conditionals with imperatives in their consequent. Condoravdi and Lauer (2016) provide a
linguistic analysis of the semantics of anankastic conditionals. See (van Berkel et al., 2021b) for a formal
analysis of anankastic conditionals in a modal logic setting. We do not pursue this topic in this thesis.
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4.2 A Logic of Action and Norms

The analysis in Section 4.1 provides the theoretic foundation of the normal multimodal
logic developed in this section: the Logic of Action and Norms (Objective 1). We write
LAN for short. First, we list the fundamental concepts we intend to capture.

Purposes. These are the desired results of actions. We use formulae of arbitrary
complexity for their encoding and refer to them using φ,ψ, χ, . . . (occasionally indexed).
We express purposes through descriptions of states of affairs, e.g., “the window is open”.
Furthermore, descriptions of states of affairs may refer to actions. In those cases, the
description functions as a witness to the completed performance of an action, e.g., “the
door has been opened”.

Actions and agents. These are potential instruments for achieving a purpose. We use
δ, γ, . . . (possibly indexed) to represent atomic action types. We build complex action
types ∆,Γ, . . . (possibly indexed) from atomic action types with the use of the following
action operations: action negation ‘−’, disjunctive action ‘∪’, and joint action ‘&’.
Examples of these operations are given on page 129. Agents perform actions. We denote
agents by numbers i ∈ N. Different actions may be available to different agents. The
performance of an atomic action-type δ by agent i gives us an action-token dδi which is a
propositional constant witnessing the successful performance of the action by that agent.
We define a correspondence between action types and action tokens (i.e., witnesses) on
page 133.

Reference to possible moments in the immediate future. Action causes change, and change
is a temporal transition between moments. In particular, an instrumentality statement
refers to how a specific action, as an instrument, may lead to a particular state of affairs
as its outcome. This ‘leading to’ is a temporal component referring to possible future
moments. We adopt the modal operator □S expressing “in all possible immediate successor
moments” (some proposition holds). For instance, let dδi stand for “the door has been
opened by agent i”, then the formulae □S dδi is interpreted as “in all possible immediate
successor moments the door has been opened by agent i”. We adopt the dual operator
□S to denote “in some immediate successor moment” (some proposition holds).

Reference to an immediate actual future. To differentiate between possible successor
moments and the actual successor of the moment of evaluation, we adopt the modal
operator □A , which reads “in the actual immediate successor moment” (some proposition
holds). This modality is used to distinguish various concepts of agency, such as cases in
which an agent could act from those in which she (actually) will act.

Norm violations. Following Anderson and Moore (1957), one can reduce obligations
and prohibitions to statements about actions provoking sanctions. For instance, “φ is
obligatory” can be reduced to “the occurrence of ¬φ necessarily implies a sanction”.
Castañeda (1972) argues that certain problems with this approach are avoided by replacing
sanctions with violations. We follow the latter approach. We adopt agent-dependent
violations and denote them by propositional constants vi for each agent i.
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Based on the above list, we define two languages: an action language LAct, which is an
algebra of actions for agent-dependent action types, and the logical language LLAN into
which these actions are translated. This approach enables us to reason about complex
actions from LAct as Boolean formulae in the logical language. We use this language to
define the central concepts of instrumentality, obligations, and prohibitions in Section 4.4.

Definition 4.1 (Algebra of Actions LAct). Let Act = {δ, γ, . . . } be a non-empty, countable
set of atomic action-types and let Agents = {1, . . . , n} be a non-empty, finite set of agent
labels. The multi-agent language LAct of complex action types is given via the following
BNF grammar:

∆ ::= δi | ∆ ∪ ∆ | ∆

with δ ∈ Act and i ∈ Agents.

The above defines combinations of action types as assigned to various agents. We define
joint action & in terms of action negation and disjunctive action, i.e., ∆&Γ := ∆ ∪ Γ.3

As motivated in the introduction, we employ a reductionist approach to norms via
violation constants (Anderson, 1958; Meyer, 1988) and a reduction of actions via action
constants (van Berkel and Pascucci, 2018). Let vi be a propositional constant witnessing
a norm violation for agent i ∈ Agents and let Vio = {vi | i ∈ Agents} be the set of all
agent violation constants. We read vi as “agent i has violated a norm”. Furthermore, for
any i ∈ Agents let Witi = {dδi , d

γ
i , . . . } be the set of propositional constants that witness

the performance of atomic action-types δ, γ, . . . by i ∈ Agents. We take dδi to read “agent
i has performed action δ”. We use Wit to denote the set ⋃

i∈Agents Witi. In Definition 4.3,
we make the correspondence between agent-dependent action types and propositional
constants formally precise. First, we define the language LLAN.

Definition 4.2 (The Language LLAN). Let Atoms = {p, q, r, . . . } be a countable set of
atomic propositions and let Agents = {1, . . . , n} be a non-empty, finite set of agent labels.
The language LLAN is given by the following BNF grammar:

φ ::= p | vi | dδi | ¬φ | φ ∨ φ | □S φ | □A φ

where p ∈ Atoms, i ∈ Agents, vi ∈ Vio and dδi ∈ Wit.

The connectives ∧, →, and ≡ are defined in the usual way. Tautology and contradiction
are defined as ⊤ := p ∨ ¬p, respectively ⊥ := p ∧ ¬p. Formulae of the form □S φ and □A φ
express, respectively, “in all possible immediate successor moments φ holds” and “in
the actual immediate successor moment φ holds”. In what follows, we sometimes omit
reference to ‘immediate’. We take □S and □A as the duals of □S and □A , respectively.

3Following Åqvist (2002) and von Wright (1951), we adopt the above three action operations. We
discuss sequential action in Section 4.7. Both Åqvist and von Wright argue that Boolean operations over
actions—including negation—are meaningful. Belnap (1991) claims that actions have no negation.
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Definition 4.3 (Translation between LAct and LLAN
n ). The translation t encoding action-

types from LAct into agent-indexed formulae of LLAN is established recursively:

• For any δi ∈ LAct, t(δi) = dδi , with dδi ∈ LLAN;

• For any ∆ ∈ LAct, t(∆) = ¬t(∆);

• For any ∆,Γ ∈ LAct, t(∆ ∪ Γ) = t(∆) ∨ t(Γ).

The advantage of this translation is that it enables us to reason with actions in the logical
language while simultaneously distinguishing such formulae from other (non-action)
formulae in the language. This distinction will prove beneficial for defining various
agentive and deontic modalities and axiomatizing action-specific properties.

Remark 4.3 (Individual Agency). The language LAct defines multi-agent expressions
that arbitrarily combine actions of various agents, e.g., (δi ∪ χj)&γk for i, j, k ∈ Agents.
In the remainder of this chapter, we are mainly interested in individual agency, i.e.,
complex actions performed by a single agent. To accommodate this, we adopt the following
notation: we write ∆i ∈ LAct whenever all atomic action types occurring in ∆ are labeled
with agent i. We also say that ∆i is an i-dependent action of type ∆.

The translation enables us to define the notion of basic φ-instruments (page 130) through
a reduction to boolean formulae of action constants and the immediate successor relation:

[∆i]φ := □S (t(∆i) → φ)

There is a strong connection between formulae of the form [∆i]φ and formulae used in
languages of Propositional Dynamic Logic (PDL) (Fischer and Ladner, 1979). When used
in combination with actions, the modality □S may be taken as an indeterministic execution
operator in the spirit of PDL: namely, “every successful execution of ∆, guarantees φ”.
The approach undertaken in this chapter can be seen as a reduction of PDL-like logics
to alethic modal logic with action constants, similar to the Andersonian reduction of
translating deontic formulae into alethic modal formulae with violation constants. We
discuss the relation between our logic and PDL in more detail in Section 4.7.

4.2.1 Agentive Modalities in LAN

To illustrate the potential of our formal language, we discuss various agentive notions
that can be defined in LLAN. We use these definitions to formalize the example protocol
in Section 4.5. The first three modalities define the notions of would, could, and will:

Would
[∆i]wouldφ := □S (t(∆i) → φ) (d1)
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Could
[∆i]couldφ := □S (t(∆i) → φ) ∧ □S t(∆i) (d2)

Will
[∆i]willφ := □S (t(∆i) → φ) ∧ □A t(∆i) (d3)

The formula [∆i]wouldφ (d1) means that “at the current state, by performing ∆, i would
bring about φ”.4 The formula [∆i]couldφ (d2) means that “at the moment of evaluation,
by performing ∆, i would bring about φ and i could (i.e., is able to) perform ∆”. Finally,
the formula [∆i]willφ (d3) means that “at the moment of evaluation, by performing ∆, i
would bring about φ and i will perform ∆”. Although we can define multi-agent variants
such as [∆i&Γj ]couldφ—referring to the agents i and j’s ability to jointly secure φ—we
focus on single-agent actions for now (see Remark 4.3).

Furthermore, we can formally define agentive modalities corresponding to von Wright’s
four elementary action types (Section 4.1). Von Wright’s action types are deliberative
in nature by excluding trivial outcomes (e.g., ⊤) and ensuring that outcomes are about
contingent states of affairs φ, namely, for which □S φ and □S ¬φ hold.5 Recall from our
discussion on causal contribution on page 129, that we take a slightly weaker standpoint
than von Wright’s. Following Åqvist (2002), we say that agent i produces p by performing
∆ if the action ∆ suffices to bring about p and not performing ∆ may result in ¬p. This
is reflected in definitions (d4), (d5), (d6), and (d7) below.6

Produce
[∆i]prodp := ¬p ∧ [∆i]willp ∧ □S ¬p (d4)

Destroy
[∆i]destrp := p ∧ [∆i]will¬p ∧ □S p (d5)

Suppress
[∆i]suppp := ¬p ∧ [∆i]will¬p ∧ □S p (d6)

Preserve
[∆i]presp := p ∧ [∆i]willp ∧ □S ¬p (d7)

4The notion of ‘would’ equals the basic instrumentality relation. Namely, action ∆ is a φ-instrument
for agent i at a moment, whenever every performance of ∆ by i at this moment would bring about φ.
This suffices for now. In Section 4.6, we present some more involved definitions of instrumentality.

5See Section 3.5 for a discussion of trivial outcomes and contingency in deontic STIT logic.
6We define the four elementary action types relative to propositional atoms. The use of arbitrary

formulae φ would make (d4) and (d5) equivalent. The same applies to (d6) and (d7). Consequently, a
generalization of these four action types to arbitrary formulae would result in von Wright’s two general
categories of “bringing about something”, respectively “preventing something” (see page 128).
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By using the notions of ‘would’ (d1) and ‘could’ (d2), one can define variations of the
above four action types. For instance, (d8) expresses the idea that “agent i could destroy
p by performing the action ∆”. The first conjunct of (d8) states that p is presently the
case, the second ensures that by performing ∆ agent i would bring about ¬p and i could
perform ∆, and last, it is possible that p is not destroyed.

Could Destroy
[∆i]coulddestrp := p ∧ [∆i]could¬p ∧ □S p (d8)

Last, consider forbearance. This agentive notion expresses more than merely not acting.
Forbearing assumes the agent’s ability to perform the forborne action. In (d9), the
occurrence of ⊤ denotes that forbearance refers to action irrespective of its outcome.

Forbear
[∆i]forb⊤ := [∆i]could⊤ ∧ [∆i]will⊤ (d9)

Definition (d9) reads “agent i forbears performing action ∆ whenever i could perform
action ∆, but will instead perform the action’s complement ∆”. One can see how the
notion of forbearance can be extended to incorporate the four elementary action types.
In Section 4.4, we show how this language can be used to express various deontic notions.

4.2.2 Axiomatization of LAN

The Hilbert-style axiomatization of the logic LAN is given below.

Definition 4.4 (The Axiomatization of LAN). The logic LAN is axiomatized by the
following collection of axiom schemes and rules:

A0. All classical propositional tautologies;

R0. From φ and φ → ψ, infer ψ;

A1. □S (φ → ψ) → (□S φ → □S ψ);

A2. □A (φ → ψ) → (□A φ → □A ψ);

A3. □A φ → □A φ;

A4. □S φ → □A φ;

A5. For any 1, . . . , n ∈ Agents and ∆1, . . . ,Γn ∈ LAct, ( □S t(∆1) ∧ · · · ∧ □S t(Γn)) →
□S (t(∆1) ∧ · · · ∧ t(Γn));

A6. □S vi → □S ¬vi;
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R1. From φ, infer □S φ;

where we have a copy of A6 for each i ∈ Agents. The logic LAN is the smallest set of
formulae from LLAN closed under all instances of the axiom schemes and applications of
the inference rules R0 – R1. Whenever φ ∈ LAN, we say that φ ∈ LLAN is a LAN-theorem
and write ⊢LAN φ. Last, LAN-derivabiliry is defined as usual (see Definition 2.3).

The axioms A1, A2, A4, and R1 specify that both □S and □A are normal modal operators.
In addition, axiom A3 ensures that every moment has at most one actual successor.
Axiom A4 guarantees that every actual successor moment is also a possible successor
moment.7 Axiom A5 captures a principle called ‘independence of agents’. It ensures that
if an agent can perform a particular action at a specific moment in time, that agent can
perform that action irrespective of the actions performed by any of the other agents. In
other words, any combination of actions available to different agents at a given moment
is consistent. Independence of agents is a fundamental property of the agency formalism
called STIT logic (Belnap et al., 2001) (see Chapter 2). We adopt this property to
the setting where we have explicit actions available to agents. In the context of LAN,
independence of agents additionally ensures that, if an action ∆ is a φ-instrument for i,
then failing to produce φ by performing ∆ cannot be caused by the interference of other
agents. In other words, ∆ is a proper φ instrument for agent i. We point out that axiom
A5 requires the agents 1, . . . , n to be distinct, whereas the agent-independent actions
∆, . . . ,Γ as performed by 1, . . . , n, respectively, may or may not be distinct. Last, A6
enforces that if there is a possible future in which a norm violation occurs for some agent,
then there is also an alternative future available in which a norm violation is avoided
for that agent. This last condition is in the spirit of the deontic contingency principle
proposed by Anderson and Moore (1957). There, a principle is adopted ensuring that it
is both possible to violate a norm and possible to avoid such a violation. Observe that
A6 is phrased as a conditional property, which is weaker than the one by Anderson and
Moore (1957) (see Section 3.6 for a discussion of deontic contingency).

4.2.3 Semantics for LAN

We adopt relational semantics to characterize LAN. First, we define some preliminaries.
7Branching time structures are a standard solution to modeling indeterministic scenarios (Belnap

et al., 2001; Thomason, 1984). In such representations of time, finding an appropriate way of referring
to actuality is not straightforward. In indeterministic time, every moment may have several possible
future continuations. The actions performed by the agents reduce the possible futures. Conceptually, the
actual successor modality allows us to single out that successor moment that actually obtains, e.g., as the
result of the actions performed by the involved agents. We note that the approach adopted here does not
solve the philosophical issues of actuality in branching time structures. However, we point out that the
use of the actual successor modality □A is not required for the analysis of instrumentality in Section 4.4
and is primarily used to model the agentive concept of “will” in Section 4.2 and the example scenario in
Section 4.5. We refer to (Belnap et al., 2001; Belnap and Green, 1994) for a discussion of the problems
associated with actuality.
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Definition 4.5. Let W be a non-empty set of worlds w, v, u, . . . and let for each dδi ∈ Wit,
Wdδ

i
⊆ W be a subset of worlds. For arbitrary ∆,Γ ∈ LAct we define the set Wt(∆) using

the following recursive clauses:

• Wt(δi) := Wdδ
i
;

• Wt(∆) := W \Wt(∆);

• Wt(∆∪Γ) := Wt(∆) ∪Wt(Γ).

We write Wt(∆i) whenever ∆ ∈ LAct is an agent i-dependent action (see Remark 4.3).

The above defines sets of worlds that witness action types. We use this definition for
capturing independence of agents for agent-dependent action types. In Lemma 4.1 we
show that this recursive definition is well-defined.

Definition 4.6 (Frames and Models for LAN). A LAN-frame is defined as a tuple
F = ⟨W, {Wdδ

i
| dδi ∈ LLAN}, {Wvi | vi ∈ LLAN},R□S ,R□A ⟩. Let R[α] ⊆ W × W and

R[α](w) := {v ∈ W | (w, v) ∈ R[α]} for [α] ∈ {□S ,□A }. Let W be a non-empty set of
worlds w, v, u, . . . such that the following hold:

R1 For each dδi ∈ Wit, Wdδ
i

⊆ W ;

R2 For each vi ∈ Vio, Wvi ⊆ W ;

R3 For all w, u, v ∈ W , if u ∈ R□A (w) and v ∈ R□A (w), then u = v;

R4 For all w, v ∈ W , if v ∈ R□A (w), then v ∈ R□S (w);

R5 For all w,∈ W , all 1, . . . , n ∈ Agents with ∆1, . . . ,Γn ∈ LAct, if u1, . . . , un ∈ R□S (w)
and u1 ∈ Wt(∆1), . . . , un ∈ Wt(Γn), then there is a world v ∈ W such that v ∈ R□S (w)
and v ∈ Wt(∆1) ∩ · · · ∩Wt(Γn);

R6 For all w ∈ W and all i ∈ Agents, if there exists a v ∈ W such that v ∈ R□S (w)
and v ∈ Wvi, then there is a world u ∈ W such that u ∈ R□S (w) and u ∈ W\Wvi;

A LAN-model is a tuple M = ⟨F, V ⟩ where F is a LAN-frame and V is a valuation function
mapping propositional atoms and constants to subsets of W , i.e., V : Atoms∪Wit∪Vio 7→
P(W ). The following two restrictions hold:

• V (dδi ) = Wdδ
i
, for any dδi ∈ Wit;

• V (vi) = Wvi, for any vi ∈ Vio.
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In what follows, we use the terms ‘worlds’ and ‘moments’ interchangeably. The conditions
R1 and R2 stipulate that the sets Wdδ

i
, respectively Wvi contain moments from W that

witness the performance of the atomic action dδi , respectively the violation of a norm
for agent i. The restrictions on the valuation function V ensure that those moments
witnessing dδi and vi satisfy those constants (cf. Definition 4.7 below). In other words, in
LAN-models, the valuation of constants is fixed on the level of LAN-frames. Consequently,
the semantic interpretation of constants is fixed for every model defined over such a frame.
(That this observation generalizes to arbitrary actions is demonstrated in Lemma 4.1.)
This particular feature enables us to provide frame properties (and corresponding axioms)
that characterize the behavior of actions and violations (cf. hybrid logics (Braüner,
2022)). The binary relation R□S represents possible immediate transitions from the
current moment, and the relation R□A represents the actual transition from the current
moment. Property R3 stipulates that for each moment, there is at most one actual
future moment (cf. A3). R4 ensures that the actual future moment must be one of the
possible future moments (cf. A4). Furthermore, R5 expresses independence of agents (cf.
A5). Last, condition R6 expresses the weak contingency principle for agent-dependent
norm violations (cf. A6).

The semantic interpretation of LLAN is defined below.

Definition 4.7 (Semantics of LAN-models). Let M be a LAN-model and let w ∈ W of
M. The satisfaction of a formula φ ∈ LLAN in M at w is defined accordingly:

1. M, w |= p iff w ∈ V (p);

2. M, w |= dδi iff w ∈ V (dδi ) = Wdδ
i
;

3. M, w |= vi iff w ∈ V (vi) = Wvi;

4. M, w |= ¬φ iff not M, w |= φ;

5. M, w |= φ ∨ ψ iff M,w |= φ or M, w |= ψ;

6. M, w |= □S φ iff for all v ∈ R□S (w), M, v |= φ;

7. M, w |= □A φ iff for all v ∈ R□A (w), M, v |= φ.

Global truth, validity, and semantic entailment are defined as usual (see Definition 2.5).

The following lemma states that the set Wt(∆i) of Definition 4.5 is well-defined.

Lemma 4.1. For each ∆ ∈ LAct, each LAN-model M, and each moment w ∈ W of M,
we have: M, w |= t(∆) iff w ∈ Wt(∆).
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Proof. The proof is by induction on the complexity of ∆. We omit reference to M. Base
case. Let ∆ = t(δi) = dδi . Then, w |= t(δi) iff w ∈ Wdδ

i
follows directly from the definition

of Wdδ
i

and V . Inductive step. We consider the two complex action operators:

(∆ = Γ) Left-to-Right. Assume w |= t(Γ). By the translation function, this means
w |= ¬t(Γ). Hence, we have w ̸|= t(Γ). By IH this gives us w ̸∈ Wt(Γ). Hence, w ∈
W \Wt(Γ) = Wt(Γ). Right-to-Left. Assume w ∈ Wt(Γ). This means w ∈ W \Wt(Γ)
and so w ̸∈ Wt(Γ). By IH this means w ̸|= t(Γ). Which, gives us w |= ¬t(Γ) and by
the definition of translation function this implies w |= t(Γ).

(∆i = Γ1 ∪ Γ2) Left-to-Right. By the translation function, w |= t(Γ1 ∪ Γ2) iff w |=
t(Γ1) ∨ t(Γ2). By semantic definition, w |= t(Γ1) ∨ t(Γ2) iff w |= t(Γ1) or w |= t(Γ2).
By IH, w |= t(Γ1) or w |= t(Γ2) iff w ∈ Wt(Γ1) or w ∈ Wt(Γ2). By definition
of sets, w ∈ Wt(Γ1) or w ∈ Wt(Γ2) iff w ∈ Wt(Γ1) ∪ Wt(Γ2). By Definition 4.5,
w ∈ Wt(Γ1) ∪Wt(Γ2) iff w ∈ Wt(Γ1∪Γ2). QED

Corollary 4.1. In the logic LAN, we have for each ∆,Γ ∈ LAct: t(∆&Γ) = t(∆) ∧ t(Γ)
and Wt(∆&Γ) = Wt(∆) ∩Wt(Γ).

Furthermore, as a consequence of Lemma 4.1, we obtain the following semantic interpre-
tation of the defined action modality [∆]:

M, w |= [∆]φ iff for all v ∈ R□S (w), if v ∈ Wt(∆) then M, v |= φ

In other words, every immediate successor witnessing the performance of ∆ by an agent
i guarantees the truth of φ.

Remark 4.4. The following logical relation holds between the agentive modalities ‘would’,
‘could’, and ‘will’ in the logic LAN: |= [∆i]willφ → [∆i]couldφ and |= [∆i]couldφ →
[∆i]wouldφ. The proof of the first claim is a consequence of property R4. The second
claim follows directly from the definitions of these modalities.

Example 4.1. Consider the single-agent LAN-model presented in Figure 4.3. Let
Agents = {i}, Atoms = {p}, Act = {δ}, Vio = {vi}, and Wit = {dδi }. We define the model
M as follows: W = {w0, w1, w2, w3, w4, . . . , wn},R□S = {(w0, wi) | 1 ≤ i ≤ n}, R□A =
{(w0, w4)}, V (dδi ) = Wδi

= {w1, w2, w3}, Wvi = V (vi) = ∅, and V (p) = W \{w4}. It can
be straightforwardly checked that M is a LAN-model. We list some observations: at w0 it
is true that by performing δ agent i could produce p, i.e., M, w0 |= ¬p∧ [δi]couldp∧ □S ¬p
(cf. Section 4.2.1). However, since w4 is the actual successor of w0, agent i will not
produce p. For this, it suffices to observe that M, w0 ̸|= [δi]willp due to M, w0 |= □A ¬dδi .
In Section 4.4, we consider deontic examples that employ violation constants.
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w0 ¬p,¬dδi

w1

p, dδi

w2

p, dδi

w3

p, dδi

w4

¬p,¬dδi

. . . wn

p,¬dδi

□S □S □S □S □A □S □S

Figure 4.3: The single-agent LAN-model of Example 4.1.

4.3 Soundness and Completeness
Soundness of LAN is demonstrated as usual. Completeness is shown through adopting
the canonical model approach adapted to the use of propositional constants. Last, we
note that LAN was shown decidable in (van Berkel et al., 2020). We refer to this work
for its proof.

Theorem 4.1 (Soundness of LAN). For any formula φ ∈ LLAN, and any Γ ⊆ LLAN: if
Γ ⊢LAN φ, then Γ |=LAN φ .

Proof. It suffices to demonstrate that all axioms are LAN-valid, and the logical rules of
LAN preserve truth on the respective frame classes. Take an arbitrary LAN-model M
and an arbitrary w ∈ W of M. In what follows, we omit reference to M. The axiom
schemes A0, A1, and A2, and rules R0 and R1 are valid, respectively preserve validity on
all relational frames (Blackburn et al., 2004). We omit their proofs.

A3 □A φ → □A φ. Assume M, w |= □A φ. By semantic definition of □A , there is a v ∈ R□A (w)
such that M, v |= φ. Take an arbitrary u ∈ R□A (w). By R3 we know that v = u
and so, M, u |= φ. Since u was arbitrary we have M, w |= □A φ.

A4 □S φ → □A φ. Assume M, w |= □S φ. By semantic definition of □S we know that for all
v ∈ R□S (w), M, v |= φ. By clause R4 we know that R□A (w) ⊆ R□S (w), and so for
all v ∈ R□A (w), M, v |= φ too. Hence, M, w |= □A φ.

A5 For any 1, . . . , n ∈ Agents and ∆1, . . . ,∆n ∈ LAct, ( □S t(∆1) ∧ · · · ∧ □S t(Γn)) →
□S (t(∆1) ∧ · · · ∧ t(∆n). Assume 1, . . . , n ∈ Agents, ∆1, . . . ,Γn ∈ LAct, and M, w |=
□S t(∆1) ∧ · · · ∧ □S t(Γn). Consequently, by Lemma 4.1, we can infer that there

are v1, . . . , vn ∈ R□S (w) such that v1 ∈ Wt(∆1), . . . , vn ∈ Wt(Γn). By R5, we
know that there is u ∈ R□S (w) and u ∈ Wt(∆1) ∩ · · · ∩ Wt(Γn). Hence, M, w |=
□S (t(∆1) ∧ · · · ∧ t(Γn)).

A6 □S vi → □S ¬vi. Assume w |= □S vi for some vi ∈ LLAN. Then, there is a v ∈ W such
that v ∈ R□S (w) and w |= vi. By the semantic definition of vi, this means v ∈ Wvi .

140



4.3. Soundness and Completeness

By R6, there is a u ∈ W such that u ∈ R□S (w) and u ∈ W \ Wvi . By semantic
definition, this means w |= □S ¬vi.

The above holds for each i ∈ Agents and each ∆j ∈ LAct. Strong soundness follows
through reasoning similar to Theorem 2.1 on page 39 (Chapter 2). QED

We adapt the method of canonical models for normal modal logics (Blackburn et al.,
2004) for proving completeness. The strategy is as follows: we define the notion of a
LAN-maximally consistent set of LLAN formulae (Definition 4.8). These sets are used as
worlds in constructing a canonical model for the logic LAN (Definition 4.9). Subsequently,
we prove a truth lemma (Lemma 4.5), ensuring that every LAN-consistent set of formulae
can be satisfied on this canonical model. The main aim is to demonstrate that the
obtained canonical model is an LAN-model (Lemma 4.7). Last, this model is used to
prove strong completeness via contraposition.

We reserved the notation ∆,Γ, . . . for arbitrary action types of LAct. To enhance clarity
in the completeness proof, we reserve Σ,Θ,Π, . . . for LAN-CSs and LAN-MCSs.

Definition 4.8 (LAN-CS and LAN-MCS). A set Σ ⊂ LLAN is a LAN-consistent (LAN-
CS) iff Σ ̸⊢LAN ⊥. A set Σ ⊂ LLAN is an LAN-maximally consistent (LAN-MCS) iff Σ is
an LAN-CS and for any set Σ′ ⊆ LLAN such that Σ ⊂ Σ′ it is the case that Σ′ ⊢LAN ⊥.

In what follows, we make use of the standard properties of MCSs. See Section 2.2 for all
the proofs. We use these properties implicitly throughout the section.

Lemma 4.2 (Properties of MCSs). Let Σ ⊆ LLAN be an LAN-MCS and φ,ψ ∈ LLAN:

• Σ ⊢LAN φ iff φ ∈ Σ;

• φ ∈ Σ iff ¬φ ̸∈ Σ;

• φ ∧ ψ ∈ Σ iff φ ∈ Σ and ψ ∈ Σ.

Adopting Lindenbaum’s Lemma to the context of LAN, we know that every LAN-CS can
be extended to an LAN-MCS.

Lemma 4.3 (Lindenbaum’s Lemma). Let Σ ⊆ LLAN be an LAN-CS: there is an LAN-MCS
Σ′ ⊆ LLAN such that Σ ⊆ Σ′.

Definition 4.9 (Canonical model for LAN). We define the canonical model to be the
tuple Mc := ⟨W c, {W c

dδ
i

| dδi ∈ LLAN}, {W c
vi

| i ∈ Agents},Rc
□S ,R

c
□A , V

c⟩ such that:

• W c := {Σ ⊂ LLAN | Σ is a LAN-MCS};

• For all dδi ∈ Wit, W c
dδ

i
:= {Σ ∈ W c | dδi ∈ Σ};
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• For all vi ∈ Vio, W c
vi

:= {Σ ∈ W c | vi ∈ Σ};

• For all Σ ∈ W c, Rc
□S (Σ) := {Θ ∈ W c | for all □S φ ∈ Σ, φ ∈ Θ};

• For all Σ ∈ W c, Rc
□A (Σ) := {Θ ∈ W c | for all □A φ ∈ Σ, φ ∈ Θ};

• V c is a valuation function such that for all χ ∈ Atoms ∪ Wit ∪ Vio, V c(χ) := {Σ ∈
W c | χ ∈ Σ}.

The semantic evaluation of LLAN formulae on Mc is defined as in Definition 4.7.

The canonical model possesses the usual properties. The proofs of Lemma 4.4 and 4.5
are similar to those in Section 2.2.

Lemma 4.4 (Existence Lemma □S and □A ). For each Σ ∈ W c of Mc the following holds:

• If □S φ ∈ Σ, then there is a Θ ∈ W c such that φ ∈ Θ and Θ ∈ R□S (Σ);

• If □A φ ∈ Σ, then there is a Θ ∈ W c such that φ ∈ Θ and Θ ∈ R□A (Σ).

Corollary 4.2. For any world Σ ∈ W c of Mc the following holds:

• If for all Θ ∈ R□S (Σ), φ ∈ Θ, then □S φ ∈ Σ;

• If for all Θ ∈ R□A (Σ), φ ∈ Θ, then □A φ ∈ Σ.

The following lemma shows that the defined model is canonical for LAN, i.e., each
LAN-MCS is satisfiable on this model.

Lemma 4.5 (Truth Lemma). For any φ ∈ LLAN and Σ ∈ W c: Mc,Σ |= φ iff φ ∈ Σ.

We show that the canonical model satisfies the desired behavior of action types.

Lemma 4.6. For any ∆ ∈ LAct, let W c
t(∆) be defined as in Definition 4.5. For each

Σ ∈ W c the following holds: Mc,Σ |= t(∆) iff Σ ∈ Wt(∆).

Proof. The proof is similar to Lemma 4.1 on page 138. QED

Last, we demonstrate that the defined canonical model is, in fact, a LAN-model.

Lemma 4.7 (Canonical LAN-model). The canonical model Mc is a LAN-model.

Proof. It can be easily observed that W c and V c (for χ ∈ Atoms ∪ Wit ∪ Vio) are
well-defined (cf. Lemma 4.6). We show that Mc satisfies the properties R1–R6.

R1 For each dδi ∈ Wit, W c
dδ

i
⊆ W c follows directly from the definition of W c

dδ
i
.
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R2 For each vi ∈ Vio, W c
vi

⊆ W c. Similar to R1.

R3 Take arbitrary Σ,Θ,Π ∈ W c and assume Θ ∈ Rc
□A (Σ) and Π ∈ Rc

□A (Σ). Suppose
towards a contradiction that Θ ̸= Π. Then, there is a φ ∈ Θ such that φ ̸∈ Π,
and so, ¬φ ∈ Π. By Lemma 4.5, Mc,Θ |= φ and Mc,Π |= ¬φ. Consequently,
Mc,Σ |= □A φ and Mc,Σ |= □A ¬φ and so □A φ, □A ¬φ ∈ Σ. Since Σ is LAN-MCS,
we have □A φ → □A φ ∈ Σ (axiom A3) and so □A φ ∈ Σ. However, by duality, this
means ¬ □A ¬φ ∈ Σ. Contradiction.

R4 Take arbitrary Σ,Θ ∈ W c and assume Θ ∈ Rc
□A (Σ). Take an arbitrary □S φ ∈ Σ. Since

Σ is a LAN-MCS, □S φ → □A φ ∈ Σ (axiom A4) and so □A φ ∈ Σ. Since Θ ∈ Rc
□A (Σ)

by definition φ ∈ Θ and since □S φ was arbitrary, Θ ∈ Rc
□S (Σ).

R5 Assume 1, . . . , n ∈ Agents, ∆1, . . . ,Γn ∈ LAct, and Σ,Θ1, . . . ,Θn ∈ Rc
□S (Σ) and Θ1 ∈

W c
t(∆1), . . . ,Θn ∈ W c

t(Γn). By Lemma 4.6, we have Mc,Θ1 |= t(∆1), . . . ,Mc,Θn |=
t(Γn) and so Mc,Σ |= □S t(∆1) ∧ · · · ∧ □S t(Γn). By Lemma 4.5, □S t(∆1) ∧ · · · ∧
□S t(Γn) ∈ Σ. By the fact that Σ is a LAN-MCS, we have ( □S t(∆1)∧· · ·∧ □S t(Γn)) →
□S (t(∆1) ∧ · · · ∧ t(Γn)) ∈ Σ (axiom A5) and so:

(†) □S (t(∆1) ∧ · · · ∧ t(Γn)) ∈ Σ

We show there exists a Π ∈ W c such that Π ∈ Rc
□S (Σ) and Π ∈ W c

t(∆1) ∩· · ·∩W c
t(Γn).

Let,
Π′ = {φ | □S φ ∈ Σ} ∪ {(t(∆1) ∧ · · · ∧ t(Γn))

and suppose towards a contradiction that Π′ is not LAN-consistent. Then, ⊢LAN
(φ1 ∧· · ·∧φm) → ¬(t(∆1)∧· · ·∧t(Γn)) for some φ1, . . . , φm ∈ {φ | □S φ ∈ Σ}. By the
normality of □S , we obtain ⊢LAN □S (φ1 ∧ · · · ∧φm) → □S ¬(t(∆1) ∧ · · · ∧ t(Γn)). Again,
by normality, ⊢LAN (□S φ1 ∧ · · · ∧ □S φm) → ¬ □S (t(∆1) ∧ · · · ∧ t(Γn)). Since □S φi ∈ Σ
for 1 ≤ i ≤ m we have ¬ □S (t(∆1) ∧ · · · ∧ t(Γn)) ∈ Σ which contradicts (†). Hence,
Π′ is LAN-consistent. Let Π be the LAN-MCS extending Π′. By construction of Π′

we know Π ∈ Rc
□S (Σ). Furthermore, since t(∆1) ∧ · · · ∧ t(Γn) ∈ Π, by Lemma 4.5

we have Mc,Π |= t(∆1) ∧ · · · ∧ t(Γn). By Lemma 4.6, Π ∈ W c
t(∆1), . . . ,Π ∈ W c

t(Γn)
and so Π ∈ W c

t(∆1) ∩ · · · ∩W c
t(Γn).

R6 Take an arbitrary Σ ∈ W c and i ∈ Agents. Suppose there is a Θ ∈ W c such that
Θ ∈ Rc

□S (Σ) and Θ ∈ W c
vi

. Hence, vi ∈ Θ, which implies □S vi ∈ Σ. Since Σ is a
LAN-MCS we know □S vi → □S ¬vi ∈ Σ (axiom A6) and so,

(†) □S ¬vi ∈ Σ.

We show there exists a Σ ∈ Rc
□S (Σ) such that Σ ∈ W c \W c

vi
. Let,

Σ′ = {φ | □S φ ∈ Σ} ∪ {¬vi}

and suppose towards a contradiction that Σ′ is not LAN-consistent. Hence, ⊢LAN
(φ1∧· · ·∧φn) → vi for some φ1, . . . , φn ∈ {φ | □S φ ∈ Σ}. By the normality of □S , ⊢LAN
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4. Norms and Instruments

□S (φ1 ∧ · · · ∧ φn) → □S vi, which by duality means ⊢LAN □S (φ1 ∧ · · · ∧ φn) → ¬ □S ¬vi.
Since □S (φ1 ∧ · · · ∧ φn) ∈ Σ by assumption, we have ¬ □S ¬vi ∈ Σ. Contradiction
with (†) and the fact that Σ is a LAN-MCS. Hence, Σ′ is LAN-consistent. Let Σ be
the LAN-MCS extending Σ′. By construction of Σ we know Σ ∈ Rc

□S (Σ) and since
¬vi ∈ Σ, we have Σ ̸∈ W c

vi
which implies Σ ∈ W c \W c

vi
. QED

Theorem 4.2 (Strong Completeness of LAN). For any formula φ ∈ LLAN, and any
Θ ⊆ LLAN: if Θ |=LAN φ, then Θ ⊢LAN φ.

Proof. The proof is similar to that of Theorem 2.2 on page 46 (Chapter 2). QED

Last, the satisfiability problem of LAN is decidable. This result was shown in (van Berkel
et al., 2020) via proving the finite model property. We refer to the above work for its full
proof.

Theorem 4.3 (Decidability of LAN). The satisfiability problem of LAN is decidable.

4.4 Norms to Be, Norms to Do, and Norms of
Instrumentality

The logic LAN allows us to reason about both actions and results. Accordingly, we
distinguish three different types of normative statements: normative statements about
(1) results, (2) actions, and (3) actions in relation to results. We refer to the first two
categories as norms to be and norms to do, respectively, and to the third category as
norms of instrumentality. The first two are generalizations of ‘ought to be’ and ‘ought
to do’, e.g., (Castañeda, 1972). The latter category articulates which actions must or
must not be employed when taken as instruments in relation to particular goals. In this
section, we address Objective 1 and Objective 2 by providing logical formalizations of
the three norm categories and determining their logical interdependencies.

Examples of the three categories are, respectively:

• “It ought to be (for agent i) that the registration for conference X is fulfilled”;

• “Agent i ought to register for conference X before noon”;

• “Agent i ought to register for conference X by means of filling out this form”.

In this section, we demonstrate the expressive power of LAN by formally defining the
abovementioned three categories. Subsequently, we use our formalization to investigate
the dependencies between the different norm types. With this, we take the first step
towards a formal analysis of norms of instrumentality. In the following section, we apply
the attained definitions to formally analyze the example protocol (Section 4.1).
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According to d’Altan et al. (1996), it is generally agreed upon that the categories of
ought to be and ought to do cannot be entirely reduced to one another, even though
they are related. In the introduction of this chapter, we discussed principle N1 of the
protocol (page 126). We argued there that although a surgeon might be obliged to
use a scalpel to ensure a required incision, it does not follow that she is obliged to
use a scalpel independently of its intended purpose (some outcomes obtained by using
scalpels could be prohibited), nor does it mean that she is obliged to make the incision
by any means necessary (some means could be prohibited). Consequently, in the case
of obligations norms of instrumentality are neither an instance of ought to be nor of
ought to do obligations. The ‘insider trading’ example from the introduction (page 123)
illustrates irreducibility for the case of prohibitions. Thus, all three norm categories must
be considered as categories proper.

The question that arises is how these categories are related to one another. We stipulate
three intuitive desiderata concerning the interdependencies between the three norm
categories:

D1 If a result φ is prohibited, then φ will be prohibited regardless of the action used
in obtaining it (i.e., prohibited given any action).

D2 If an action ∆ is prohibited, then ∆’s performance is prohibited irrespective of its
outcome (i.e., prohibited given any outcome).

D3 If it is obligatory to perform a certain action ∆ to obtain a particular result φ
(instrumentality), then it is prohibited not to perform ∆, and it is prohibited not
to bring about φ.

There are various ways to investigate the above desiderata. We distinguish between a
naive approach to the three norm categories and a deliberative approach. The former
deals with a simple formal representation of the three norm types. The latter concerns
formalizations that take into account certain metaethical principles from the field of
deontic logic. In what follows, we focus on the deliberative approach and point out along
the way how to obtain the naive approach from these more involved definitions. Towards
the end of this section, we discuss various other relations between the three categories.

We discuss two metaethical principles. The first is the principle of no vacuous commands
which stipulates that norms are violable (see M1 below). The second adopted principle
is that of ought implies can. We use the name norm implies can to refer to a generalized
version of the principle, including prohibitions. We consider two interpretations of the
term ‘can’. First, we take ‘can’ to denote ‘possible’ (M2 below). Second, we interpret
‘can’ as an agent-dependent notion, referring to the agent’s ability (M3 below). In what
follows, we take norm implies can to express the provision that the agent can comply
with the norm in question.8 Henceforth, an obligation (or prohibition) that satisfies both
M1 and M2 is called deliberative (cf. Chapter 3).

8We refer to (Governatori and Hashmi, 2015) for a discussion of compliance.
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M1 It is possible to violate a norm: if X is prohibited (obligatory), then (the negation
of) X is possible.

M2 It is possible to comply with a norm: if X is obligatory (prohibited), then (the
negation of) X is possible.

M3 An agent is able to comply with a norm: if X is obligatory (prohibited), then the
agent has the ability to guarantee (the negation of) X.

NB. Where X can be substituted for a result or an action.

At the end of this section, we argue that D1-D3 are not always M1-M3 compatible.

4.4.1 Norms to be

In what follows, we use the symbol F to refer to what is forbidden and use O to denote
what is obligatory. Furthermore, we assume that the set Agents of agents and the set Act
of action primitives are finite. Adapting Anderson’s (1958) reduction to our deliberative
approach, we formally define the first category of norms to be (i.e., forbidden to be and
ought to be, respectively) as follows:

F1. Fi(φ) := □S (φ → vi) ∧ □S φ

O1. Oi(φ) := □S (¬φ → vi) ∧ □S ¬φ

We interpret Fi(φ) as “φ is forbidden to be the case for agent i, iff (i) every possible
transition to φ would mean a norm violation for agent i and (ii) φ is possible”. We read
Oi(φ) as “φ ought to be the case for agent i, iff (i) every possible transition to ¬φ would
mean a norm violation for agent i and (ii) ¬φ is possible”. The first conjunct (i) of F1
and O1 corresponds to Anderson’s reduction.9 We refer to this clause as the reduction
clause. The second conjunct (ii) captures that the norm can be violated. We refer to it
as the violation clause.

Principle M1 is explicitly satisfied by definitions F1 and O1, cf. the violation clause. What
is more, in LAN, these two definitions additionally satisfy M2. To see this point, suppose
Fi(φ). By definition, □S φ holds. Through basic LAN reasoning with the reduction clause,
□S vi can be inferred. By applying axiom A6, we obtain □S ¬vi. Last, by basic LAN

reasoning with the reduction clause, we derive □S ¬φ. A similar argument can be given
for O1. Hence, the following formula is LAN valid:

(Fi(φ) ∨ Oi(φ)) → ( □S φ ∧ □S ¬φ)

In other words, definitions F1 and O1 express deliberative versions of norms to be: the
norm can be both violated and complied with.

9To preserve a strict distinction between norm to be and norm to do, one may additionally stipulate
that φ in F1 and O1 must be free of action constants from Wit.
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We can extend the above definitions to capture norms to be under principle M3. We
write F∗

i (·) and O∗
i (·) to denote this alternative formalization. Since we assumed that

LAct is constructed over a finite number of action primitives from Act, there are only
finitely many equivalence classes of action types [[∆i]] := {Γi | |=LAN t(Γi) ≡ t(∆i)} of
equivalent actions. Let [[LAct]] in F1∗ and O1∗ represent the set of all such equivalence
classes.

F1∗. F∗
i (φ) := □S (φ → vi) ∧ □S φ ∧

∨
[[∆i]]∈[[LAct]]

(□S (t(∆i) → ¬φ) ∧ □S t(∆i))

O1∗. O∗
i (φ) := □S (¬φ → vi) ∧ □S ¬φ ∧

∨
[[∆i]]∈[[LAct]]

(□S (t(∆i) → φ) ∧ □S t(∆i))

The deontic modalities F∗
i (φ) and O∗

i (φ) are similar to Fi(φ) and Oi(φ) in that they
contain a reduction clause and a violation clause. They additionally contain a norm
implies ability clause. This third clause expresses that (iii) “there exists an action available
to the agent that is an instrument for complying with the norm, and the agent is able to
perform that action” (cf. the ‘could’ operator in Section. 4.2). Observe that the third
clause requires the action in question to be possible, thus excluding impossible actions
such as δi&δi. Last, definitions F1∗ and O1∗ trivially satisfy principles M1 and M2 (by
extending F1, respectively O1). The third clause explicitly satisfies M3.

Remark 4.5 (The Naive Approach). The naive approach to F1 and O1 is obtained by
only considering the reduction clause (i). This holds true for all the formal definitions
presented in this section.

4.4.2 Norms to do

For the second category of norms to do, we adopt Meyer’s (1988) reduction to the context
of LAN. As for norms to be, we adopt a deliberative approach. Forbidden to do and
ought to do are defined as follows:

F2. Fi[∆] := □S (t(∆i) → vi) ∧ □S t(∆i)

O2. Oi[∆] := □S (¬t(∆i) → vi) ∧ □S ¬t(∆i)

We read Fi[∆] as “the performance of ∆ is forbidden for agent i, iff (i) every possible
performance of ∆ would mean a norm violation for agent i and (ii) ∆ can be performed
by i”. and we interpret Oi[∆] as “∆ ought to be performed by agent i, iff (i) every
possible performance of ∆ would mean a norm violation for agent i and (ii) ∆ can be
performed by i”. The reduction clause (i) of F2 and O2 corresponds to Meyer’s deontic
reduction. Clause (ii) represents the violation clause. In passing, we point out that the
reduction clause □S (t(∆i) → vi) is interpretable in terms of instrumentality, i.e., “∆ is a
vi-instruments for agent i”.
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The above definitions of norms to do are deliberative, i.e., the following formula is LAN
valid:

(Fi[∆] ∨ Oi[∆]) → ( □S t(∆i) ∧ □S ¬t(∆i))

The reasoning is similar to the case of norms to be. We point out that the distinction
between principles M2 and M3 breaks down for norms to do. Namely, in the case of
Oi[∆] we take □S t(∆i) to express the idea that agent i has the ability to perform ∆
because a successful performance of ∆ by agent i is possible. The same applies to Fi[∆].

4.4.3 Norms of instrumentality

So far, the first two categories were obtained by extending their converged interpretation
in the literature—see (d’Altan et al., 1996)—to a deliberative setting. How can we
formally capture the third, novel category of norms of instrumentality? The above
analysis suggests a definition containing at least a reduction clause and a violation clause.
However, for norms of instrumentality, this does not suffice.

We start with obligations belonging to norms of instrumentality. First, we identify what
it means for an agent to violate an obligation of the third category. If an agent i is
obliged to employ ∆ (as an instrument) to attaining φ, then i violates this obligation
whenever either i does not perform ∆ (independently of whether i produces φ) or i does
not bring about φ (independently of whether i performs ∆). Second, recall that we take
as instruments those actions suitable for serving a particular purpose. Hence, for an agent
to be bound by such an obligation, we require that the prescribed action is, in fact, an
instrument for bringing about the intended result. Based on the above two observations,
we thus say that “an agent i is obliged to employ ∆ as an instrument to obtaining φ iff (i)
performing ∆ or bringing about ¬φ would lead to a norm violation for agent i, (ii) such
a norm violation is possible through ¬φ or ∆, and (iii) the performance of ∆ by i would
ensure φ (i.e., ∆ is a φ-instrument for i)”. We formally define this obligation as follows:

O3. Oi[∆](φ) := □S (¬(t(∆i) ∧ φ) → vi) ∧ □S ¬(t(∆i) ∧ φ) ∧ □S (t(∆i) → φ)

Notice that in the three conjuncts of definition O3, we identify (i) a reduction clause, (ii)
a violation clause, and (iii) an instrumentality clause, respectively. O3 satisfies M1 by
virtue of the second conjunct. That M2 and M3 are also satisfied can be straightforwardly
shown: By applying basic LAN reasoning, the first and second conjunct imply □S vi.
Together with axiom A6, we obtain □S ¬vi which, by modus tollens on the first conjunct,
implies □S (t(∆i) ∧ φ). Consequently, the following formula is LAN valid:

Oi[∆](φ) → [∆i]couldφ

Can we similarly formalize prohibitions? Reconsider the ‘insider trading’ example from
the introduction of this chapter (page 123): “it is prohibited to use non-public information
as an instrument for attaining financial profit on the stock market”. We say that an
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agent i violates this prohibition whenever i uses non-public information and consequently
attains financial profit from it. Should we also say that i is only subject to this prohibition
whenever she can guarantee a financial profit by using non-public information (as in the
case of O3)? We believe that the answer is negative for prohibitions: we want to prohibit
cases where i accidentally obtains financial profit on the stock market through using
non-public information.10 The resulting definition is expressed by F3.

F3. Fi[∆](φ) := □S ((t(∆i) ∧ φ) → vi) ∧ □S (t(∆i) ∧ φ) ∧ ( □S ¬t(∆i) ∨ □S ¬φ)

In F3, the first clause contains the reduction, the second clause expresses violability, and
the third clause captures the possibility of complying with the prohibition, i.e., either
not performing the prohibited action is possible or the prohibited outcome is avoidable.
Consequently, F3 satisfies M1 and M2 by definition. That is, the following formula is
LAN valid:

(Oi[∆](φ) ∨ Fi[∆](φ)) →
(
□S (t(∆i) ∧ φ) ∧ □S ¬(t(∆i) ∧ φ)

)
To account for M3, we require that the agent has the ability to comply with the prohibition.
In that case, we say that “agent i is prohibited from obtaining φ by means of performing
action ∆, iff (i) in every case in which ∆ has been performed and φ has been successfully
acquired, a norm violation has occurred, (ii) the prohibition can be violated, and (iii)
either agent i has the ability to avoid performing ∆ or there is an action at i’s disposal
that is an instrument for avoiding φ”. Formally, this definition is expressed accordingly:

F3∗. F∗
i [∆](φ) := □S ((t(∆i) ∧ φ) → vi) ∧ □S (t(∆i) ∧ φ) ∧ θ

where θ := □S ¬t(∆i) ∨
∨

[[Γi]]∈[[LAct]]∗
(□S (t(Γi) → ¬φ) ∧ □S t(Γi))

The first two conjuncts of F3∗ correspond to the reduction and violation clause, respec-
tively. The third conjunct explicitly stipulates the agent’s ability to comply with the
command. It can be easily shown that F3∗ implies F3. That is, the formula

F∗
i [∆](φ) → Fi[∆](φ)

is LAN valid. Consequently, F∗
i [∆](φ) satisfies M1 and M2 too. Moreover, the following

formula is LAN valid:

F∗
i [∆](φ) → ([∆i]could⊤ ∨

∨
[[Γi]]∈[[LAct]]∗

[Γi]could¬φ)

10An alternative definition—akin to O3—in which the agent is only subject to the prohibition whenever
she can guarantee the result through performing the action in question is straightforwardly obtained.
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In other words, given F∗
i [∆](φ), the agent either has the ability not to perform ∆ or she

has the ability to ensure that φ does not hold. We believe that the third conjunct in O3
and F3∗ is pivotal for deliberative norms of instrumentality: it ensures that the outcome
of compliance is a proper consequence of the agent’s conduct. Again, the naive approach
to norms of instrumentality is obtained by merely adopting the first clause of definition
O3, F3, and F3∗, i.e., the reduction clause.

4.4.4 Relations Between the Three Norm Categories

We now discuss the interaction between the proposed formal definitions and the desiderata
presented at the beginning of this section. We do this both with respect to the naive and
the deliberative approach. Desiderata D1 and D2 are formalized as

F ′
i(φ) → F ′

i [∆](φ)

respectively,
Fi[∆] → F ′

i [∆](φ)

where F ′
i ∈ {Fi,F∗

i }. First, we observe that the above three formulae are LAN-valid for
the naive approach to the three deontic modalities (the distinction between Fi and F∗

i

disappears for the naive approach). To see this point, observe that if at every moment at
which φ holds, a violation vi ensues, then a fortiori at every moment at which φ and
t(∆i) hold, a violation vi ensues (the same reasoning applies for the second formula). In
contrast, a straightforward LAN-model can be constructed to show that these formulae are
not valid for the deliberative approach. The reason is the violation clause in the formula
F ′
i [∆](φ) which requires that ♢(t(∆i) ∧ φ). Roughly, a prohibition against bringing

about a result (action) does not imply that the result (action) must be avoided given any
action (result) but only given every action (result) compatible with the result (action).
Consequently, impossible combinations of actions and results cannot be forbidden because
they are inviolable (M1). The above results are represented in Table 4.1-V1.

As stated in D3, when an agent i is obliged to ensure φ by means of performing ∆,
we want to conclude that both the state of affairs ¬φ and the performance of ∆ are
prohibited for agent i. This desideratum is formally expressed by

Oi[∆](φ) → F ′
i(¬φ)

and
Oi[∆](φ) → Fi[∆]

where F ′
i ∈ {Fi,F∗

i }. Both formulae are LAN valid for the naive approach. Concerning
the deliberative approach, the first formula is not LAN valid. Here too, the main reason
lies in the violation clause. Namely, the definition of Oi[∆](φ) requires that the obligation
is violable. This is the case when ∆ can be performed or when ¬φ can be obtained.
The disjunction is insufficient for concluding that ¬φ is obtainable, which is required
by the violation clause of Fi(¬φ). In contrast, the second formula is LAN valid for the
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Naive Deliberative

V1. F ′
i(φ) → F ′

i [∆](φ) and Fi[∆] → F ′
i [∆](φ) yes no

V2. Oi[∆](φ) → F ′
i(¬φ) and Oi[∆](φ) → Fi[∆i] yes no, resp. yes

V3. O′
i(φ) → F ′

i [∆](¬φ) and Oi[∆] → F ′
i [∆](φ) yes no

V4. F ′
i(φ) → Oi[∆](¬φ) and Fi[∆] → Oi[∆](φ) no no

V5. F ′
i(φ) ≡ O′

i(¬φ) and Fi[∆] ≡ Oi[∆] yes yes

V6. Oi[∆](φ) → O′
i(φ) and Oi[∆](φ) → Oi[∆] yes no, resp. yes

V7. Oi[∆] ∧ O′
i(φ) → Oi[∆](φ) yes no

V8. F ′
i(φ) ∧ Fi[∆] → F ′

i [∆](φ) yes no

Table 4.1: The table contains implications between various deontic formulae. The deontic
formulae are based on definitions F1-F3, O1-O3, F1∗, and O1∗. Let F ′

i ∈ {Fi,F∗
i } and

O′
i ∈ {Oi,O∗

i }. The penultimate column represents the naive approach. The last column
represents the deliberative approach. We write ‘yes’ to indicate that the formula in
question is LAN valid and ‘no’ if otherwise.

deliberative approach. To see this point, we make two observations: First, we know
that if performing ∆ or attaining ¬φ leads to a violation, then ∆ yields a violation.
This yields the reduction clause of Fi[∆]. Second, Oi[∆](φ) requires that the obligation
is violable, i.e., ∆ is performable or ¬φ is attainable. In both cases, this implies the
violation clause of Fi[∆]. For the first disjunct, this is trivial. For the second disjunct, it
follows from the fact that ∆ is a φ-instrument, which means that if ¬φ attains, ∆ was
not performed. See Table 4.1-V2.

In Table 4.1, we present various implications between various deontic formulae that
bear significance to the present analysis. The deontic formulae are based on definitions
F1-F3, O1-O3, F1∗, and O1∗. The penultimate column represents the naive approach,
i.e., assuming that the deontic formulae in question contain only the reduction clause (i).
The last column represents the deliberative approach, where the deontic formulae are
considered with all the defined clauses. The dependencies described by V4 and V5 are
invariant to whether the naive or deliberative approach is adopted. In particular, V5
expresses that prohibition and obligation are interdefinable for norms to be and norms to
do; cf. (d’Altan et al., 1996). Last, V7 and V8 show that, for the deliberative approach,
even the combination of norms to be and norms to do is insufficient to yield a norm of
instrumentality. The present analysis is the first step toward a thorough investigation of
norms of instrumentality, and further analysis is left to future work.
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4.5 Formal Examples

In what follows, we apply our formal machinery to the example in the introduction of
this chapter (page 126). We formalize the protocol in LAN by using definitions F1-F3 and
O1-O3 and apply it to two concrete situations where an agent must invoke the protocol
to make a decision. Our formalization will demonstrate that the protocol is insufficient
relative to its assumed aims, i.e., T1 and T2.

In what follows, we use this font to denote states of affairs, e.g., the formula incis
denotes the proposition “the incision is made”, and we use this font to denote actions.
e.g., the action type scalp denotes the action “using a scalpel”. For the formalization of
the protocol, we take s and n to denote the agents ‘surgeon’ and ‘nurse’, respectively. The
action language LAct consists of the atoms scalp, leave, and call, respectively describing
“using a scalpel”, “leaving the operation room” and “calling the safety-emergency num-
ber”. Let incis, operation, dire, health, safety_nur, and safety_sur be
propositional atoms denoting “the incision is made”, “the situation is an operation”, “the
situation is dire”, “the patient’s health is promoted”, “hygiene safety is promoted from
the nurse’s perspective” and “hygiene safety is promoted from the surgeon’s perspective”,
respectively. Consider the following formalization of the protocol:

P1. (operation ∧ Os(incis)) → Os[scalp](incis);

P2. (operation ∧ ¬dire) → Fn[scalp];

P3. Os(health) ∧ Os(safety_nur) and On(health) ∧ On(safety_sur);

E1. ¬safety_nur → (Os[leave]∧Os[call]) and ¬safety_sur → (On[leave]∧On[call]).

As an example of how to read the formulae above, we interpret P2 as: “if there is an
operation and the situation is not dire, then the nurse is prohibited from using the scalpel
(irrespective of its outcome)”. We are currently interested in whether the protocol is
consistent and whether it can provide agents with sufficient tools to solve normative
issues (in situations relevant to our example).11 Concerning the former, the model in
Figure 4.4 demonstrates the consistency of the protocol by satisfying P1-P3 and E1.
Regarding the latter, let us consider some possible situations.

Situation 1. In the operation room, Anna the head surgeon, and a nurse named Bill,
are performing a tonsillectomy on a patient (i.e., the patient’s tonsils are to be removed).
Anna must make a final highly demanding dissection involving both hands when she

11The logic LAN adopts classical logic and satisfies the principle of explosion: “from a contradiction,
anything follows”. Hence, in the context of LAN, an inconsistent protocol is undesirable because we would
not be able to draw any meaningful conclusion from the protocol, namely, anything would follow. In
paraconsistent and non-monotonic logics that do not satisfy this principle (such as the logics considered in
Chapters 6 and 7), one can investigate which meaningful conclusions can be drawn from an inconsistent
protocol.
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realizes that another crucial incision has to be made using the harmonic scalpel (a scalpel
that simultaneously cauterizes tissue). Since Anna is preoccupied and unable to do it, she
appeals in this dire situation to Bill, asking whether he could make the other necessary
incision with the harmonic scalpel, thus ensuring the patient’s health. The situation is
formalized accordingly:

(i) operation ∧ dire ∧ [scalps]will⊤;

(ii) [scalpn]wouldincis;

(iii) [scalpn]would¬health;

(iv) □(incis → health).

Bill is aware of the new protocol: he knows he is not allowed to use scalpels in regular
situations but remembers his duty to the patient’s health. What should Bill do? The
protocol tells Bill that he is obliged to promote the patient’s health (i.e., On(health),
follows from P3). Since the surgical situation is dire (i), principle P2 does not apply.
Moreover, since using the scalpel to make the incision is Bill’s only way to promote the
patient’s health—by (ii)-(iv)—Bill is obliged to make the incision with the scalpel. That
is, the following is LAN valid:

(
(i) ∧ (ii) ∧ (iii) ∧ (iv) ∧ P1 ∧ P2 ∧ P3 ∧ E1

)
→ On[scalp](incis)

Consequently, Bill is not prohibited from using the scalpel (i.e., ¬Fn[scalp] follows from
definition O3, LAN reasoning and V5 of Table 4.1).

Furthermore, to see whether Bill complies with the protocol when he actually brings
about the incision with the scalpel, that is,

(v) [scalpn]willincis

Consider the LAN-model in Figure 4.4. The model shows that Bill’s behavior (v), together
with the formalized protocol P1-P3 and E1 and the present situation (i)-(iv), can be
consistently represented together with Bill’s actual norm compliance, that is,

(vi) □A ¬vn

In other words, (i)-(vi), P1-P3, and E1 are LAN-consistent, i.e., satisfiable on a LAN-
model. For that reason, Bill’s decision to make the incision using the scalpel preserves
the state of compliance. Nevertheless, as expected, it can still be the case that a violation
ensues due to some other action of Bill’s. For instance, if Bill actually decides to not use
the scalpel, a norm violation will be inevitable. That is, the following is valid:(

(i) ∧ (ii) ∧ (iii) ∧ (iv) ∧ P1 ∧ P2 ∧ P3 ∧ E1 ∧ [scalpn]will⊤
)

→ [scalpn]willvn
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w

operation, dire

u

health, incis

t(scalpn), t(scalps)

¬vn, ¬vs

v

¬health, ¬incis

¬t(scalpn), ¬t(scalps)

vn, vs

x

¬health, ¬incis

¬t(scalpn), t(scalps)

vn, vs

z

health, incis

t(scalpn), ¬t(scalps)

¬vn, vs
□S

□S □S

□S ,□A

Figure 4.4: A LAN-model satisfying P1-P3, E1 and (i)-(v). The model shows the
consistency of the protocol and represents Bill’s actual and compliant behavior in
situation 1.

Situation 2. Let us continue the above example. Right before Bill performs the
procedure involving the scalpel, Bill accidentally hits his own arm with the harmonic
scalpel and inflicts a painful wound. Since Bill has now violated his obligation (P3)
to preserve the required hygiene safety, Bill and Anna know that he is obliged (E1) to
immediately leave the operation room and call the safety-emergency number for assistance.
However, Anna observes that the necessary incision still has to be made to secure the
agent’s health. Hence, she concludes that Bill must stay and assist her immediately
without further ado. The situation is formalized accordingly:

(vii) ¬safety_nur

(viii) [leaven]would¬health

First, we observe that given E1 and (vii), Bill is obliged to leave (i.e., On[leave]). However,
through (viii), the act of leaving would imply that Bill violates his obligation to preserve
the patient’s health (i.e., On(health)). The current situation and the formalized protocol
are inconsistent. Namely, (vii)-(viii), together with P1-P3 and E1, imply that Bill is
obliged to leave and not to leave (i.e., On[leave&leave]). The inconsistency depends on
the assumption T1 (cf. A6 of Definition 4.6), which is the committee’s assumption that
there is a way out to every possible dilemma.

The primary purpose of this section was to illustrate the expressivity of LAN and the
logical behavior of the three norm categories interacting. As a final remark, we observe
that the source of the conflict in the second situation relates to contrary-to-duty (CTD)
reasoning. Principle E1 is a contrary-to-duty obligation, and the above formalization
suffers from a similar detachment problem as the formalization of Chisholm’s (1963) CTD
paradox in Standard Deontic Logic. We refer to Chapter 1 for an introduction. Like CTD
obligations, E1 comes into force whenever the initial obligation in P3 is violated. The
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purpose of such an obligation is, then, to (partially) restore compliance with the norm
system (e.g, Governatori and Rotolo, 2006; Governatori and Hashmi, 2015). Dynamic
deontic logics, such as the one introduced by Meyer (1988), deal with CTD reasoning by
giving such scenarios a temporal, action reading. Problems are then avoided since the
primary obligation (cf. P3), and secondary obligation (cf. E1) occur at different moments
in time. See (Prakken and Sergot, 1996) for challenges concerning temporal solutions to
CTD reasoning. In Chapter 5, we extensively discuss the reductionist approach (adopted
in this chapter) in relation to CTD reasoning.

4.6 Formal Notions of Instrumentality

So far, we have adopted a basic notion of moment-dependent instrumentality: [∆i]φ :=
□S (t(∆i) → φ). The definition sufficed for the analysis of norms of instrumentality. In
other settings, more involved notions may be required. For instance, instrumentality—or
means-end—statements play a central role in practical reasoning and planning: agents
use such statements to deliberate about which action to perform to achieve a particular
goal (Audi, 1989; Clarke, 1987).12 Consider the following practical inference:

P1 I want to be on time for the rehearsal;

P2 I can only be on time if I take the A-train;

C1 Therefore, I must take the A-train.

Premise P2 expresses the means that enables the agent to reach the goal of “being on
time at the rehearsal” (P1). That “taking the A-train” is the only means for achieving
this goal necessitates the agent to perform the action of “taking the A-train” (C1).13 For
practical reasoning, it becomes important to assess statements such as P2. This means
answering questions such as:

How are instrumentality judgments acquired by an agent?

How can we determine whether an instrument serves a purpose well?

In (van Berkel et al., 2022b), we discuss different ways in which such relations can be
obtained, compared, and assessed. For the sake of completion, we informally discuss
some observations made there and provide formal definitions of some more involved
instrumentality statements. The account provided in (van Berkel et al., 2022b) is inspired
by observations made by von Wright (1963a,1972b).

12In Section 4.7 we discuss the related Belief-Desire-Intention systems (Rao and Georgeff, 1995).
13See (Hare, 1971; Clarke, 1987; Walton, 2007) for practical reasoning with sufficient means. For von

Wright’s account of practical inference, see (1963a,1972b).
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4.6.1 Assessing instrumentality through past experience

A central component for assessing instrumentality statements is an agent’s past experience
with performing the action in question. It suffices for an agent to consult her past
experience without any additional knowledge of natural causality. This makes past
experience particularly suitable as a guide in deliberation. We refer to this temporal
component as the historical witness of an instrument’s suitability.14

Everyday life deliberations—e.g., concerning a plan of action—are often based on state-
ments such as:

(i) “it has worked before”;

(ii) “so far, it has not disappointed me”;

(iii) “well, thus far, it worked better than any of the alternatives”.

The first remark exemplifies a minimum criterion for instrumentality: (i) the action has
served the purpose at least once, and, for that reason, it can serve the purpose as an
instrument. Criterion (i) functions as a lower bound on the instrument’s suitability,
thus identifying potential instruments. In the second remark, we recognize an upper
bound, that is, a maximum criterion: (ii) there have been applications of the instrument,
and these applications have always served the purpose. Criterion (ii) is referred to
as instrumental excellence. In the last remark, we identify a comparative approach to
instrumental goodness: (iii) the action is suitable in comparison to alternative actions.
In what follows, we discuss (i) and (ii) and refer to (van Berkel et al., 2022b) for a formal
analysis of definitions of comparative instrumentality. 15

We obtain the following two definitions of instruments:

Definition 4.10. instruments (with respect to past experience)

(1) potential φ-instrument: An action-type ∆ is a φ-instrument for agent i at
moment w if and only if (i) ∆ has led to φ at least once in the past.

(2) excellent φ-instruments: An action-type ∆ is an excellent φ-instrument for
agent i at moment w if and only if (i) ∆ is a φ-instrument and (ii) ∆ has always
led to φ in the past.

14Von Wright (1972b, Ch.2) also discusses the assessment of instruments by investigating, what he
calls, their “good-making properties”. For instance, the sharpness of a knife enables us to objectively
determine whether a knife serves the purpose of, say, cutting vegetables well. Sharpness is, in this respect,
a good-making property. Von Wright emphasizes that although properties, such as ’sharp’, may have
vague meanings, the comparative ’sharper’ has an objective empirical ordering. The ordering provides a
logical and empirical method for determining which knives serve the purpose best (1972, p. 25). We refer
to (van Berkel et al., 2022b) for an extensive discussion.

15For instance, ∆ is a better φ-instrument for agent i at moment w than actions Γ1, . . . ,Γn iff (i) ∆ is
a φ-instrument and (ii) in the past ∆ led to φ more frequently than the other φ-instruments Γ1, . . . ,Γn.
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Since we define instruments in relation to past performance—where experience functions
as a historical witness—such a qualification is strictly context- and agent-dependent.

When we say that an action is a suitable instrument for a particular purpose, we do not
refer to its causal physical qualities per se. We take the notion of an instrument as a
practical one and keep it distinct from the idea of a cause, as employed in analyzing
physical connections between things or events. In particular, we see past experience as a
fruitful approach to agentive reasoning since it is a source of knowledge accessible to the
agent at any given time (independent of the underlying causal connections). We note
here that von Wright (1972b) does provide an analysis of causal connections concerning
instrumentality. We briefly discuss the main idea. Consider a situation where an agent
intends to open a parcel with a knife. The sharpness of each available knife determines
which knife is the most suitable instrument. In this scenario, ‘sharpness’ determines the
causal link between using a knife and cutting. The agent can, subsequently, order all
available knives according to their sharpness to determine which are sharper and, thus,
better instruments (cf. footnote 14 on page 156). We leave the analysis of instrumentality
in the context of causal processes for future work.

4.6.2 Expectations: The Other Temporal Component

The past serves as a fruitful source for identifying instrumentality relations. Often
such judgments are established via inductive arguments. The resulting generalizations
are inherently defeasible because future information may falsify earlier judgments. For
instance, “before cars, horses may have been the best means of private transport”.
Furthermore, In forming instrumentality judgments, an individual agent can often
not collect all relevant past cases that would settle the issue. Nevertheless, using
instrumentality statements, an agent can generalize past experience and project it onto
the future in the form expectations. Expectations capture what von Wright calls the
conjectural element in instrumentality judgments (1972b). An expectation concerning
instruments is a projection of the past onto the nearby future by an explicitly expected
continuation of the action serving the intended purpose. Furthermore, expectations
explain how an agent’s deliberation may be mistaken: she may have expected some other
future moments to be possible.16

Definition 4.11. instruments (with respect to past and future)

(1) potential φ-instruments: An action-type ∆ is a φ-instrument for agent i at
moment w if and only if (i) ∆ has led to φ at least once in the past and (ii) i
expects that ∆ will lead to φ in the immediate future of w.

(2) excellent φ instruments: An action-type ∆ is an excellent φ-instrument for
agent i at moment w if and only if (i) ∆ is a φ-instrument, (ii) ∆ has always led to
φ in the past and (iii) i expects that ∆ will lead to φ in the immediate future of w.

16Expectations must not be confused with notions of (incomplete) knowledge. An agent can have
expectations about the future independently of the her knowledge of these expected future moments.
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Instrumentality judgments are often established by inductive arguments. As famously
noted by David Hume, inductive arguments are affected by a fundamental problem:
how are we justified in making inferences from an observed connection in the past
to instances of that connection of which we have no experience? Von Wright (1957)
investigates the problem of induction by dividing it into two sub-questions: (a) How can
we demonstrate that the generalizations we make about experienced cases are correct,
and (b) how can we demonstrate that such generalizations are reliable for making
predictions? Von Wright’s division is temporal: the first question deals with the past,
and the second with the future. Regarding generalizations extending to the past, one
can theoretically acquire universally objective judgments by collecting all past instances
of the object under generalization. However, when it comes to predictions, the problem
of induction truly shows itself: “Scarcely anybody would pretend that predictions, even
when based upon the safest inductions, might not fail sometimes” (von Wright, 1957,
p. 51). Consequently, generalizations are inherently defeasible. Von Wright’s account of
instrumentality judgments (implicitly) incorporates the same temporal distinction between
collecting past cases and extending past generalizations to the future through predictions.
By restricting instrumentality judgments to (defeasible) expectations, the problem of
induction does not prevent the agent from formulating instrumentality judgments that
guide action in the immediate future.17

4.6.3 Some Formal Definitions

In order to formally illustrate the above analysis, we consider an extension of the
language LLAN. In (van Berkel et al., 2022b), we introduce a Temporal Logic of Actions
and Expectations, which is a modification of LAN. The formalism adopts an explicitly
temporal language in an indeterministic branching time setting. It consists of a back-ward
looking modality ■ that enables reference to an agent’s past experience and expectation
constants ei that model how an agent’s past experience is projected onto the nearby
future. In what follows, we consider this extension of LLAN. We take ■ as the inverse of
□S and read ■φ as “everywhere in the immediate past of the present moment φ holds”.
We read ei as “the most recent expectations of an agent i are fulfilled” (referring to the
immediate predecessor).

Remark 4.6. In (van Berkel et al., 2022b), we provide a sound and complete axiom-
atization of this modification of LAN. In particular, we axiomatize irreflexive treelike
structures which branch towards the future and are linear with respect to the past. This
means that ■ and □S are irreflexive modalities. Consequently, the formulae ♦φ and ♦♦φ
refer to two distinct moments in the past, namely, the immediate predecessor and the
immediate predecessor after that. We use ♦i to refer to a concatenation of i-many ♦.
Furthermore, since the past is linear, ♦φ → ■φ is an axiom of the logic. We adopt the

17We point out that generalized statements establish norms in their own right. For instance, horses
used to be the norm for fast personal transportation before the rise of the car. Such norms express
which means are considered most appropriate for attaining certain ends. Since such norms are based on
generalization, they are likewise defeasible.
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axiom □S ei → □S ¬ei to characterize the idea that if an agent expects a particular next
moment to arise, there will be another next moment that the agent does not expect to
arise, i.e., there is a limit to the agent’s expectations. The axiom allows for situations in
which the agent did not expect anything to happen. In the sequel, we omit formal details.

We start with formalizing potential and excellent φ-instruments, which only consider the
agent’s past experience, i.e., (1) and (2) of Definition 4.10. Past experience is defined up
to an interval of length n.

Potential φ-instrument for agent i (past)
[∆i]p−instr

n φ := ∨
0≤j<n

♦j(t(∆i) ∧ ♦[∆i]wouldφ) (d10)

The definition in (d10) is interpreted as “somewhere within the past interval of length n
there is a moment at a distance of j units of time (at most n − 1) that witnessed the
successful performance of ∆ by agent i and such that at the immediate predecessor at a
distance of j+ i units in time (at most n) the performance of ∆ by that agent would have
guaranteed φ”. Observe that as an immediate consequence, at the distance of j units of
time, it is the case that φ holds. Furthermore, observe that for ♦j , the value of j can be
equal to 0. This means that the moment of evaluation is also included as a witness.

Excellent candidate instruments combine the above definition with the idea that every
past performance of the relevant action type has led to the intended outcome.

Excellent φ-instrument for i (past)
[∆i]exc−instrn φ := [∆i]p−instr

n φ ∧
∧

1≤j≤n
■j [∆i]wouldφ (d11)

That is, (d11) expresses that “the action-type ∆ has proved to be a candidate instrument
for φ for i at least once in the interval, and every other performance of ∆ by i within the
interval would have also guaranteed φ”.

In order to incorporate expectations, we introduce two refined notions of the agentive
operators would (d1) and could (d2):

Expected Would
[∆i]wouldex φ := □S ((t(∆i) ∧ ei) → φ) (d12)

Expected Could
[∆i]couldex φ := [∆i]wouldex φ ∧ □S (t(∆i) ∧ ei) (d13)
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Definitions (d12) and (d13) restrict the evaluation of ‘would’ and ‘could’ to those imme-
diate future moments that the agent expects as continuations of the present. Adopting
these modalities, we obtain two formal definitions of instrumentality corresponding to
items (1) and (2) in Definition 4.11.

Potential φ-instrument for i (past and future)
[∆i]p−instr∗

n φ := ∨
0≤j<n

♦j(t(∆i) ∧ ♦[∆i]wouldφ) ∧ [∆i]couldex φ (d14)

Excellent φ-instrument for i (past and future)
[∆i]exc−instr

∗
n φ := [∆i]p−instr∗

n φ ∧
∧

1≤j≤n
■j [∆i]wouldφ (d15)

The conjectural element in (d14) and (d15) refers to the agent’s expectations at the
moment of evaluation. By contrast, in evaluating the past, we must ignore the agent’s past
expectations in selecting the agent’s relevant experience. In fact, a series of unexpected
events in the past may have led the agent to the conviction that a particular action is a
suitable instrument. Furthermore, the formalizations (d14) and (d15) differ from (d10)
and (d11) via an additional conjunct expressing that the agent expects that she could
guarantee φ by performing ∆ (at the moment of evaluation). It can be straightforwardly
observed that each excellent φ-instrument is also a potential φ-instruments and that
(d11) and (d15) incorporate, respectively, (d10) and (d14) as their first conjunct.

Instrumentality—as discussed in this section—is a defeasible notion in three ways: first,
depending on the length of the interval considered for evaluating the past, an instrument
∆ may fail to qualify as a potential or an excellent φ-instrument once the interval is
shortened and may fail to qualify as an excellent φ-instrument when the interval is
extended. Second, with respect to the future, a φ-instrument may fail to remain a
potential φ-instrument, either because an agent changes her expectations or, in the case
of excellent instruments, because the instrument has failed to produce the desired end
in the meantime. The third and foremost defeasible property of instrumentality arises
through expectations: although an agent i expects that the (excellent) instrument will
serve its intended end once again at the moment of evaluation, the actual successor is
such that the instrument fails to deliver the purpose. Such cases reveal a discrepancy
between i’s expectations and the actual future.

Figure 4.5 represents a model illustrating the three defeasibility aspects of instrumentality:

i) w3 ̸|= [δi]exc−instr2 p → [δi]exc−instr3 p

ii) w4 ̸|= [δi]exc−instr2 p → □S [δi]exc−instr3 p

iii) w3 ̸|= [δi]ex−instr∗

2 p → □A (t(δi) → p)
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Figure 4.5: Three types of defeasibility concerning instrumentality relations.

Intuitively, (i) expresses that excellent instrumentality is not necessarily preserved when
the past interval is extended; (ii) captures that excellent instrumentality is not necessarily
preserved when time continues; and (iii) shows that an agent can be wrong about
instrumentality due to actual future being unexpected.

4.7 Related Work and Future Research
Negation, PDL, and LAN. The logical behavior of action negation in complex
actions has proven to be challenging. In this section, we briefly discuss some of these
challenges in relation to LAN. Following the work by Broersen (2004), there are roughly
two approaches to defining the complement ‘−’ for action negation. These are referred
to as the universal and the relativized approach.18

The universal approach defines action negation through a standard relational complement
relative to the universal relation W ×W . In this approach, the complement of an action
∆ is any potential transition between two moments except for those characterized by
a performance of ∆, i.e., R∆ := (W × W ) \ R∆. Under this reading, the semantic
interpretation of a formulae [δ]φ is defined as:

M, w |= [δ]φ iff for all v ∈ W, (w, v) ∈ (W ×W ) \ R∆, M, v |= φ

There is a problem with this approach. Under the universal approach, not performing
a particular action at a particular moment may entail transitions between moments
that are not reachable from the present moment (for instance, moments in the past).
Figure 4.6 represents such a scenario: At moment w0, the formula [δ]¬p is true even
though i) it is impossible at w0 to refrain from performing δ and ii) moment w2 (for
which (w0, w2) ∈ Rδ) is unrelated and inaccessible from w0.

Broersen (2004) adopts the relativized approach where negation is defined relative to
those future moments reachable from the present moment of evaluation. One of the
main features of action negation in the relativized approach is that actions such as

18We refer to the discussion by Bach (2010) for a critical assessment of negative action.
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w0 ¬p

w1 p w2 ¬p

δ

δ

Figure 4.6: A PDL-like model M illustrating the universal approach to action negation,
where Rδ(w0) = (W ×W ) \ Rδ = {(w0, w0), (w0, w2), (w2, w2)} and M, w0 |= [δ]¬p.

“not opening the window” are taken as a “refraining from opening the window” which
means that the agent in question is “actively ensuring that [the action] is not done”
(2004, p.158). In other words, ‘not opening the window’ means that the agent does
anything but opening the window at the given moment (cf. ‘refraining’ in STIT logics,
Chapter 2.) Formally, relativized action negation takes the relational complement of all
future moments that are reachable from the present moment through actions available
to the agent at that moment. It is called “the reachable state-space” (Broersen, 2004).
Since what is reachable from a given moment depends on the types of complex actions
available in the language, relativized action negation receives different interpretations in
different action languages. Actions of the language LAct contain only ∪ and −; thus, the
reachable state-space consists of single transitions only. We adopt the PDL-like relational
characterization of actions to the language LAct.

Definition 4.12. For each ∆ ∈ LAct, the relation Rpdl
∆ is recursively defined by S1-S3:

S1 For each δi ∈ Act, Rpdl
δi

⊆ W ×W ;

S2 For each ∆ ∈ LAct, Rpdl

∆
= ⋃

Γ∈LAct Rpdl
Γ \ Rpdl

∆ ;

S3 For each ∆,Γ ∈ LAct, Rpdl
∆∪Γ = Rpdl

∆ ∪ Rpdl
Γ .

The semantic evaluation of the action modality [∆] is defined accordingly:

• M, w |= [∆]φ iff for each v ∈ Rpdl
∆ (w), M, v |= φ.

As expressed by S2, the relativized action negation of ∆ consists of all action transitions
at w minus those transitions that correspond to a performance of action ∆ at w.19 We
stress that the above definition expresses that the complement of an action ∆ always

19Observe that there might be actions Γ that are identical to ∆ at w, i.e., Rpdl
Γ (w) = Rpdl

∆ (w).
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corresponds to some combination of action primitives. Namely, the reachable state-
space is defined by transitions resulting from concrete primitive actions from which
complex actions are built. Consequently, an agent’s refraining from doing something
must correspond to the agent doing some other concrete primitive action(s).

The semantic characterization given in Definition 4.12 is implied by our semantics.
Theorem 4.4 demonstrates this. The following lemma shows that the relation R∆ :=
R□S ∩ (W ×Wt(∆i)) characterizes the PDL-like defined modal formula [∆]φ ∈ LLAN.

Lemma 4.8. Let M be an arbitrary LAN-model and let for each ∆ ∈ LAct, R∆ :=
R□S ∩ (W ×Wt(∆)). Then, M, w |= [∆]φ iff for each v ∈ R∆(w), M, v |= φ.

Proof. We recall that R∆(w) = {v ∈ W | (w, v) ∈ R∆}. It suffices to observe the
following equivalences: for each v ∈ R∆(w), M, v |= φ iff for each v ∈ R□S (w) ∩Wt(∆),
M, v |= φ iff for each v ∈ R□S (w), if v ∈ Wt(∆), then M, v |= φ iff for each v ∈ R□S (w), if
M, v |= t(∆) , then M, v |= φ (Lemma 4.1) iff for each v ∈ R□S (w), if M, v |= t(∆) → φ
iff M, w |= □S (t(∆) → φ) iff M, w |= [∆]φ. QED

Theorem 4.4. Let F = ⟨W,R□S ,R□A , {Wdδ
i

| dδi ∈ LLAN}, {Wvi | i ∈ Agents}⟩ be a
LAN-frame and let Wt(∆) be as in Definition 4.5. For each ∆ ∈ LAct, let R∆ = R□S ∩
(W ×Wt(∆)). Then, R∆ satisfies properties S1-S3.

Proof. First, we observe that for each w ∈ W :

(†)
⋃

∆∈LAct

R∆(w) = R□S (w)

Left-to-right. Trivial by definition of R∆. Right-to-left. Assume v ∈ R□S (w) for some
v ∈ W and suppose towards a contradiction that v ̸∈

⋃
∆∈LAct R∆(w). Hence, there is

no ∆ ∈ LAct such that v ∈ R∆(w). We know v ∈ W by assumption. Furthermore, we
know that for each atomic δ ∈ Act, W = Wt(δi) ∪ Wt(δi). Take an arbitrary δi ∈ Act.
Assume v ∈ Wt(δi). Then, since (w, v) ∈ R□S we know v ∈ Rδi

(w) = R□S (w) ∩ Wt(δi).
Contradiction. Assume v ∈ Wt(δi). Then, by the same reasoning we know v ∈ Rδi

(w) =
R□S (w) ∩Wt(δi). Contradiction.

We use the fact (†) in proving that F satisfies S3.

S1 Since Wt(δi) ⊆ W and R□S ⊆ W ×W we have Rδi
= R□S ∩ (W ×Wt(δi)) ⊆ W ×W .

S2 R∆∪Γ = R□S ∩ (W ×Wt(∆∪Γ)) = R□S ∩ (W × (Wt(∆) ∪Wt(Γ))) = R□S ∩ (W ×Wt(∆)) ∪
R□S ∩ (W ×Wt(Γ)) = R∆ ∪ RΓ.

S3 R∆ = R□S ∩ (W ×Wt(∆)) = R□S ∩ (W ×W \Wt(∆)) = R□S \ (R□S ∩ (W ×Wt(∆))) =
R□S \ Rt(∆) = ⋃

Γ∈LAct RΓ \ Rt(∆), by (†). QED
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Last, there is a set of formulae that is satisfiable on a LAN frame, which is not satisfiable
on any model of relativized action negation Mpdl (where the modal action formulae are
semantically characterized by S1-S3). Consider the following set of formulae provided
by Broersen (2003, p.82):

Σ = {⟨δ1⟩¬p} ∪ {[δi]p | δi ∈ Act}

where {δ1, δ2, δ3, . . . } = Act. The set Σ is not satisfiable on any Mpdl although each finite
subset Σ′ ⊆ Σ is. In other words, the corresponding PDL logic is not compact and a
fortiori, not strongly complete. The reason is that the complement of δ1 must correspond
to some positive atomic actions δi, . . . , δj ∈ Act but the whole set Σ expresses that all
primitive actions δi ∈ Act lead to p. Any finite subset Σ′ is satisfiable since either ⟨δ1⟩¬p
is left out in Σ′ ⊆ Σ and thus all primitive actions lead to p, or [δi]p ∈ Σ is left out in Σ′

such that we may provide a model such that δi = δ1 leads to ¬p.

The logic LAN does satisfy the set Σ. As proven in Section 3.3, LAN is strongly complete
(and thus compact). The reason is simple: our logical framework allows for transitions
(i.e., reachable moments) that do not correspond to any atomic action. By definition, such
a moment corresponds to negated actions. Thus, we allow for transitions to moments
where no atomic action witnesses are satisfied. In satisfying Σ, we can define such a
moment accessible from the moment of evaluation to satisfy ⟨δ1⟩¬p. One can think of
this non-action transition as the transition in which the agent completely refrains from
acting, e.g., where nature causes the transition. In fact, this is where our approach differs
from dynamic action logics adopting a relativized action negation and STIT logics. There,
every change corresponds to an agentive change: when an agent remains passive, being
passive corresponds to an action, respectively, choice. Consequently, in those approaches,
change is agentively exhaustive. This differs from the approach by von Wright (1963a)
and the logic introduced in this chapter. In LAN, ‘being passive’ means that the agent
does not actively interfere with the course of nature. As Hilpinen (1997) puts it: “If an
action is regarded as an interference with a natural course of events (a course of events
unaffected by agents) in the way proposed by von Wright, then the concept of passivity
or ‘zero action’ is meaningful. [. . . ] Actions are regarded here as analogous to tools which
the agent can use to work on a situation” (p.20). As shown in this section, our approach
has some interesting technical consequences: LAN is a variant of dynamic deontic logic
that includes ‘passivity’, consequently rendering the logic strongly complete.

Other Action Logics. Belief-Desire-Intention (BDI) systems are rooted in the philos-
ophy of practical reasoning (Bratman, 1981) and deal with deliberation and planning
(Rao and Georgeff, 1995). BDI logics are multi-modal multi-agent logics whose language
contains modalities for beliefs, desires, and intentions, as well as temporal modalities
(Meyer et al., 2015; Rao and Georgeff, 1998). In order to capture different types of agents,
the logics can be extended with properties expressing various logical relations between
belief, desire, and intention. For instance, the property ‘realism’ signifies that if an agent
believes φ, she also has an intention towards φ. We refer to the work of Meyer et al.
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(2015) for a discussion of BDI logic in relation to STIT logic. As indicated in Chapter 1,
this thesis does not deal with instrumentality in the context of planning and BDI logics.
Instead, we investigated instrumentality relations as subject to norms in this chapter.
The study of BDI logics and norms of instrumentality is a promising future research
direction.

Hughes et al. (2007) formally investigate means-end statements in the context of practical
reasoning. They provide a formal semantics of such statements using Propositional
Dynamic Logic (without a sound and complete proof system). Their action language
consists of disjunctive and sequential action, extended with the test operator. They
formalize sufficient and necessary means. The main difference with our approach is the
involvement of action-negation in LAN, which allows us to express deontic modalities in
terms of violations.

The formalism developed by Åqvist (2002) employs a rich formal language containing
seven modal operators. Åqvist shows how to approximate other formal accounts of action,
e.g., accounts by Belnap, Von Kutschera, von Wright, and Segerberg. The main difference
with our approach is that we employ a minimal modal language containing action and
violation constants, which suffices for defining agency modalities and deontic modalities.
An analysis of whether our work embeds or can be embedded in the formalism of Åqvist
(2002) remains to be determined.

Segerberg (2002) also provides a (non-deontic) action logic in the tradition of von
Wright’s theory of action, time, and change. The language contains temporal operators
and only one action operation: sequential action. Furthermore, Segerberg differentiates
between the agentive “bringing it about that” and the non-agentive “coming about that”.
Conceptually, the distinction between agentive and non-agentive change is promising for
investigating responsibility and moral culpability. This line of research is not further
pursued in this thesis.

Åqvist (2002) proposes a list of criteria that any action logic should address. We briefly
recall each and discuss whether LAN satisfies these criteria; cf. (Åqvist, 1974). First, the
logic must adopt von Wright’s ideas that action involves change, transformations of states,
or transitions. This theory lies at the heart of LAN (Section 4.1). Second, the language
must be able to differentiate between individual acts and generic acts. The language
of LAN provides this distinction by having a general algebra of actions LAct, which is
mapped to action-tokens in LLAN witnessing the performance of concrete actions by
agents. Third, the philosophy of action maintains a strict distinction between performing
and omitting, and action logic must be able to differentiate the two. In Section 4.2,
we showed how von Wright’s four elementary action types (as well as forbearance) can
be modeled in LAN. The logic must capture the notion of “bringing about something”.
This topic was not addressed in this chapter. However, we point out that the notions of
‘would’, ‘could’, and ‘will’ capture forms of agency that relate to the concept of “bringing
about that”. Last, the logic must be empirically testable, i.e., it must have an application.
We did not address this last criterion. In the next chapter, we develop a logic (based on
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LAN) and apply it to an analysis of a deontic theory developed by a prominent South
Asian Sanskrit philosopher.

Combining STIT and PDL-like Logics. Various authors have proposed systems
that combine the STIT formalism with PDL-like approaches to action logic. Most notably,
Segerberg (2002) proposes a dynamic action logic that captures both von Wright’s
conception of elementary action (cf. Section 4.1) and various agentive notions related to
STIT. Others, such as Broersen (2014) and Xu (2010), adopt STIT as the basic formalism,
extending it with explicit actions or event types. It goes beyond the objectives of Part I
and II to investigate whether LAN can be integrated with the STIT formalism.

Deontic Action Logics and Green States Giordani and Canavotto (2016) introduce
the logic ADL, which contains more syntactic diversity than most standard dynamic
deontic logics. For instance, they distinguish what is ideal in general from what is ideal
in a specific situation. Furthermore, they distinguish between an action (“opening the
door”) and the result of an action (“the door is open”). The latter does not necessarily
presuppose the former: that the door is open may or may not be the result of opening the
door. In contrast, LAN adopts a relatively simple language in which actions are reduced
to constants that witnesses a successful performance of that action. The logic ADL
belongs to the relativized action negation tradition (see page 161). Giordani and Pascucci
(2022) propose a deontic action logic similar to LAN and the approach by (Giordani and
Canavotto, 2016). They adopt the idea of an action-witness by letting ‘done(δ)’ be a
state of affairs, denoting that the performance of action δ is done.

The deontic action logic DAL, developed by Trypuz and Kulicki (2015), likewise adopts an
algebra of actions. In contrast to PDL-like logics such as the one by Meyer (1988), it does
not employ action modalities. However, it incorporates complex actions directly into the
deontic operators for forbidden and permitted actions. For instance, the formula P(δ&γ)
expresses that “performance of the complex action δ&γ is permitted”. Furthermore,
Trypuz and Kulicki (2015) also investigate the concept of performing no action at all, i.e.,
the zero action (see our discussion on page 164). In DAL, they impose the constraint that
not acting at all cannot be void of deontic value. That is, it is always either permitted or
forbidden to not act at all.

Craven and Sergot (2008) propose a deontic extension of the action description language
C+ for defining labeled transition systems where transitions and states can be labeled
‘permitted’. In the deontic extension of C+, sets of permitted states are defined separately
from the sets of permitted transitions. These permitted states, respectively, transitions
are then called “green” (in contrast to the non-compliant “red” states and transitions).
The additional expressivity of coloring states and transitions separately allows Craven
and Sergot (2008) to formulate deontic constraints such as the “green-green-green con-
straint,” which expresses that “a green (permitted, acceptable, legal) transition in a green
(permitted, acceptable, legal) state always leads to a green (acceptable, legal, permitted)
state” (p.228). Furthermore, coloring states and transitions enables the representation
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of system norms and agent-specific norms. The former “regulate the interactions of
multiple, independently acting agents in a multi-agent computer system” whereas the
latter takes into account “what an agent can actually sense or perceive and the actions
that it can actually perform” (Sergot, 2008, p.16). We refer to Craven and Sergot (2008)
for a discussion of the essential differences between the deontic extension of C+ and
Deontic Dynamic Logics, such as the one developed by Meyer (1988). Here, we point out
that LAN only allows for identifying permitted states of affairs and actions by reference
to states witnessing violation constants. It is left to future work to investigate whether
labeling states (outcomes) and transitions (actions) separately would lead to a more
refined analysis of norms instrumentality in the context of LAN. To the best of our
knowledge, an investigation of norms of instrumentality has yet to be conducted in the
deontic extension of C+.

Lomuscio and Sergot (2003) adopt a modal logic approach to model correct and compliant
behavior of agents with reference to “green states”. An essential difference between the
work by Lomuscio and Sergot (2003) and LAN (and the deontic extension of C+ discussed
above) is that no explicit action language is involved in the former. Like LAN, the logic
developed by Lomuscio and Sergot (2003) allows for an Andersonian reduction in which
obligations are defined in terms of a “green” constant together with a □ modality.

The logic LAN belongs to the Deontic Dynamic Logic tradition. The main difference
between our approach and existing approaches to dynamic logics is that we use action
constants to define an “Andersonian” reduction of action modalities. The upshot of
our approach is that we only need one modality □S together with action and violation
constants to define a large class of agentive and deontic concepts (recall that the actual
successor modality □A is primarily needed for defining the agentive concept of “will”). It
is left to future work to determine to what extent other agentive concepts, such as those
proposed by Åqvist (2002) and Segerberg (2002), can be expressed in LAN.

Sequential action in a deontic context. In the language of LAN, we can define
sequences of actions, denoted by the operation ‘;’, as

[∆i; Γi]φ := □(t(∆i) → [Γi]φ)

provided ∆i does not contain any sequential action. The reason for this side condition
is that the translation function t(·) is presently only defined for actions composed
of primitive actions and the operations ∪ and −. Extending the language LAct and
translation function t(·) to include the sequence operator ; is not trivial. The reason is
that we need to define the interaction between action negation and action sequence. This
becomes clearer in a deontic setting where commands are defined in terms of actions and
violations. An obligation to perform the sequence ∆i; Γi means that ∆i; Γi leads to a
violation, i.e., [∆i; Γi]vi. There are several ways to define this complement. For instance,
we may interpret [∆i; Γi]vi as “any reachable moment which is not a moment reached
by agent i first performing ∆ and subsequently performing Γ is a state of violation”.
This interpretation is arguably too strong since it resists CTD reasoning, i.e., after an

167



4. Norms and Instruments

obligation is violated, every future state is a violation state, and no (CTD) obligations
are possible. Alternatively, we may interpret Oi[∆; Γ] as “a violation occurs when agent
i performs ∆ (making it impossible to finish the sequence correctly) and when i started
with ∆ but subsequently performs Γ”. In other words, a violation occurs at the first
moment when the obligation cannot be fulfilled anymore. This is the approach proposed
by Meyer (1988). Given this reading, the agent may find herself in a violation state and
still have a CTD obligation. We refer to the work of Anglberger (2008) for a critical
assessment of the dynamic deontic logic developed by Meyer (1988). A thorough analysis
of sequential action in the context of deontic modalities is not pursued in this thesis.

Open question 4.1. Investigate the notion of sequential action in deontic contexts using
the action-reductionist approach of LAN.

* * *

In this chapter, we addressed the question of instrumentality, or means-end, statements
in the context of normative reasoning. We provided a Logic of Action and Norms called
LAN to reason about such statements. We identified a norm category called norms of
instrumentality, formalized it in the language of LAN (Objective 1), and investigated the
logical relations between this norm category and the well-known categories of norms to
be and norms to do (Objective 2). Furthermore, based on the work of von Wright, we
discussed possible extensions of LAN in which various kinds of more refined instrumentality
statements can be formalized. Last, we argued that LAN subsumes the action relativized
action negation approach from PDL.
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CHAPTER 5
An Application to Sanskrit

Philosophy

The logical analysis of normative reasoning is a relatively young field of research (Hilpinen
and McNamara, 2013). By contrast, the school of Mı̄mām. sā—one of the most important
schools of Indian philosophy—has a long and rich history of investigating normative
reasoning. The school was active and influential for over two millennia, shaping many
related areas in the Sanskrit cosmopolis.1 It focuses on the exegesis and systematization
of the prescriptive parts of the Vedas, the sacred texts of what is now called Hinduism.
The Mı̄mām. sā consider the Vedas to be without any human or divine author, and, what is
more, they assume all Vedic commands to be jointly consistent. Consequently, Mı̄mām. sā
authors invested much intellectual effort in rationally interpreting Vedic commands,
explaining what must be done in the presence of seeming conflicts. The result is a vast
body of rigorously structured theories of normative reasoning based on general principles
of inference. Due to their highly systematic nature, these principles have been applied
in many other fields and are still used in Indian jurisprudence (McCrea, 2010). Thus,
Mı̄mām. sā reasoning lends itself naturally to logical analysis.

Despite their undeniable importance, most Mı̄mām. sā doctrines are still unexplored or
misunderstood. In this chapter, we use symbolic logic to formalize and obtain a deeper
understanding of the deontic theory developed by one of the Mı̄mām. sā’s most central
authors: Man. d. ana miśra(ca. 8th c. CE, henceforth, Man.d. ana). Our first objective is
formulated accordingly:

Objective 1. Provide an adequate formal logic modeling Man. d. ana’s deontic theory.

1Mı̄mām. sā doctrines have influenced Sanskrit philosophy, theology, and law more than any other
system of thought. See the work by McCrea (2010) and McCrea (2008) on Mı̄mām. sā influence on law,
aesthetics, respectively theology.
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In answer to this objective, we develop the Logic of Man.d. ana, LM for short.

Man.d. ana’s deontic theory is unique in the Mı̄mām. sā tradition because it contains a
deontic reduction: i.e., a uniform reduction of all Vedic commands to purely descriptive
statements about desires, outcomes, and instruments. For instance, the Vedic command
“If one desires rain, one should perform the Kār̄ıri ritual” is reduced to the descriptive
statement “the Kār̄ıri is an instrument for attaining rain”. A central feature of this
reduction is that different commands are reduced to the singular notion of instrument.
An immediate question is whether the validity of relevant normative reasoning principles
developed by the Mı̄mām. sā—called nyāyas—is preserved through Man.d. ana’s reduction.

Objective 2. Employ the logic LM to enhance our understanding of Man. d. ana’s deontic
reduction and its relation to general Mı̄mām. sā principles.

In line with the above objective, we apply LM to model Man.d. ana’s solution to the Śyena
controversy. The Śyena is a ritual in which the so-called Soma beverage is offered. Its
putative result is the death of the sacrificer’s enemy. The controversy is due to the fact
that the Vedas appear to both prescribe the Śyena and prohibit the infliction of harm on
any living being, thus yielding a conflict. Finding a solution to the controversy proved
challenging for many Mı̄mām. sā scholars. Furthermore, the Śyena controversy can be
seen as a millennia-old counterpart to the deontic paradoxes that drive developments in
modern deontic logic (Hilpinen and McNamara, 2013) (see Chapter 1).

Objective 3. Employ LM to model Man. d. ana’s solution to the Śyena controversy.

This chapter is part of a series of logics developed for various Mı̄mām. sā authors (Ciabattoni
et al., 2015; Freschi et al., 2017; van Berkel et al., 2019; Freschi et al., 2019; Lellmann
et al., 2021; van Berkel et al., 2021a; Freschi and Pascucci, 2021; van Berkel et al.,
2022a). We believe that the Mı̄mām. sā school can offer new stimuli for the deontic logic
community, challenging commonly accepted design choices, such as the interdefinability
of obligations and prohibitions and the presence and absence of certain deontic principles.
To determine its legitimacy in the contemporary field of deontic logic, we must determine
whether the logic LM can deal with the benchmark challenges posted by the community
(Hilpinen and McNamara, 2013).

Objective 4. Evaluate LM on a set of deontic paradoxes from the deontic logic community.

We will see that the logic LM consistently addresses these deontic paradoxes when
reformulated in terms of Man.d. ana’s reduction. The solution strategy of Man.d. ana’s
theory resembles a well-known strategy in modern deontic logic, i.e., adopting a logic of
actions (Meyer, 1988) and reducing commands to statements concerning rewards and
sanctions (Anderson and Moore, 1957). These encouraging results may be due to the
depth of the deontic theory that underlies the formalized logic. Namely, LM is grounded
in a fully developed philosophical and juridical system of thought.
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Contributions. In this chapter, we address the above four objectives. The majority of
the present chapter consists of results first published in (van Berkel et al., 2021a; van
Berkel et al., 2022a). The former work introduces the initial logic modeling Man.d. ana’s
deontic theory. In (van Berkel et al., 2022a), the logic was modified due to the discovery of
an additional Mı̄mām. sā principle (cf. P4 on page 190). The resulting logic LM was shown
sound and strongly complete (Objective 1). It was shown that Man.d. ana’s deontic theory
can be accurately formalized in LM, and a formal investigation of Man.d. ana’s theory
in relation to a class of Mı̄mām. sā principles was provided (Objective 2). Furthermore,
Man.d. ana’s solution to the Śyena controversy was consistently formalized and discussed
(Objective 3). Last, in (van Berkel et al., 2022a) LM was employed to formally analyze
several deontic paradoxes from the deontic logic literature (Objective 4).

Differences. The following parts of the chapter are novel: Section 5.1 contains a
discussion of action and agency in Mı̄mām. sā. In Section 5.3, the full proofs of soundness
and completeness of the logic LM are presented. These proofs were only sketched in
the previous works. In Section 5.4, the formalization of Mı̄mām. sā principle P2 in LM
has been changed to range over actions instead of results, thus changing the formal
analysis accordingly. Furthermore, an analysis of Jørgensen’s dilemma in the context
of Man.d. ana’s deontic theory has been provided in Section 5.6. Last, a more extensive
discussion of related work is provided in Section 5.7.

Outline. The chapter is organized as follows: Section 5.1 contains an introduction
to Mı̄mām. sā in general and to Man.d. ana’s deontic theory in particular. In Section 5.2,
we provide the modal logic LM tailored to Man.d. ana’s doctrine. The logic LM is shown
sound and complete in Section 5.3. After that, in Section 5.4, we discuss which Mı̄mām. sā
properties are valid in the context of LM. In Section 5.5, we put the logic to work and
formalize Man.d. ana’s solution to the Śyena controversy. In Section 5.6, we evaluate LM
on a set of deontic paradoxes. Last, we discuss related work Section 5.7.

5.1 An Introduction to Mı̄mām. sā and Man. d. ana

This section serves as the theoretical foundation of our formal analysis of Man.d. ana’s
reduction of normative reasoning to instrumentality statements. We first provide a brief
introduction to Mı̄mām. sā and situate Man.d. ana in this historical context. We then
provide an account of Man.d. ana’s deontic theory.

5.1.1 Mı̄mām. sā

Mı̄mām. sā is one of the main schools of Sanskrit philosophy. It is the only one focusing
on the analysis of norms. Thriving for over two millennia—from the last centuries BCE
to the 20th century—Mı̄mām. sā focuses on the exegesis of the prescriptive portions of the
Vedic sacred texts. A commonly used example of a Vedic prescription is “the one who is
desirous of heaven should sacrifice with the New and Full Moon sacrifices” (Freschi, 2010,
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p.421). Mı̄mām. sā authors devised a system of rules called nyāyas, which are meant to
apply to any normative text. The nyāyas are used to understand the Vedas independently
of any (super)human authority or mediation.2 Mı̄mām. sā authors agree that the Vedas
are a consistent corpus of rules, which means that what might look like a conflict can be
consistently resolved by applying the correct nyāyas.

Different Mı̄mām. sā authors adopt different views, interpreting Vedic commands in
different ways. Still, they all recognize the authority of the following two works: Jaimini’s
Mı̄mām. sā Sūtra (or Pūrva Mı̄mām. sā Sūtra, henceforth PMS, approximately 250 BCE)
and Śabara’s Bhās.ya commentary thereon (henceforth ŚBh, approximately 5th c. CE).
We refer to this shared foundation as “common Mı̄mām. sā”.3 Of particular importance
are the following three authors, who originated different subschools in Mı̄mām. sā:

• Kumārila (ca. 7 CE): considered to be the founder of the Bhāt.t.a subschool;

• Prabhākara (ca. 7 CE): a younger contemporary of Kumārila, considered to be the
founder of the Prābhākara subschool;

• Man.d. ana (8 CE): authored independent treatises on various issues (especially on
the nature of prescriptions) and innovated the Bhāt.t.a school.

Common Mı̄mām. sā classifies the commands encountered in the Vedas into prescriptions
and prohibitions. In general, such commands are directed at human beings. In what
follows, we adopt the more general term agents. A command always contains an action.
Prescriptions are often about sacrifices and are further differentiated based on the type
of duty enjoined: nitya-karman ‘fixed sacrifices’ are to be performed every single day;
naimittika-karman ‘occasional sacrifices’ are to be performed only on given occasions
(e.g., a sacrifice to be performed on the birth of a child); kāmya-karman ‘elective sacrifices’
are to be performed solely if one wishes to obtain their result. These prescriptions have
varying deontic strength: an agent may not omit the performance of fixed and occasional
sacrifices (various authors provide different reasons for this), whereas the performance
of elective sacrifices can be omitted without any adverse consequence (apart from not
getting the intended result). For some authors, such as Prabhākara, all prescriptions
are obligations, whereas others, such as Kumārila, further divide prescriptions into
obligations and elective duties. We come back to this in Section 5.4. Furthermore,
prescriptions are understood in relation to eligibility conditions (adhikāra). These include
the agent’s belonging to a particular class of living beings, the agent’s ability to perform
the prescribed action, and the agent’s desire for the action’s intended result.

2In this sense, Mı̄mām. sā authors differ from other thinkers offering systematic interpretations of
sacred texts. For instance, Talmudic normative reasoning depends on the mediation of a rabbi who
applies the Talmud (Abraham et al., 2011), whereas Mı̄mām. sā reasoning depends on abstract principles.

3The PMS is divided into books, chapters and aphorisms. We adopt the referencing style common in
Sanskrit philosophy scholarship by indicating the number of the book, chapter, and section, respectively.
For example, PMS 1.1.1 indicates the first aphorism of the first chapter of the first book.

172



5.1. An Introduction to Mı̄mām. sā and Man.d. ana

Prohibitions form a separate category of commands, and Mı̄mām. sā authors distinguish
between prohibitions ‘regarding the person’ (purus. ārtha), i.e., applying to the agent
throughout the agent’s life, and those ‘regarding the sacrifice’ (kratvartha), i.e., applying
only to the specific situation of the sacrifice. An analogy would be the command “do not
kill”, which applies to an agent’s entire life, and the command “do not dress informally”,
which applies only in specific settings.

Obeying a prescription generates a positive result, namely, the result of the prescribed
action. Prescriptions presuppose one’s desire for this result. When an explicit desire or
result is absent, a standard desire for happiness is postulated. Violating a prescription
implies the absence of these results. Conversely, the observance of a prohibition generates
no result, whereas a violation leads to a sanction, typically the accumulation of bad
karma. Thus, prohibitions cannot be defined in terms of prescriptions or obligations—i.e.,
as a negative obligation—because the observance and transgression of these two types
of commands have different consequences.4 For instance, suppose that there are two
simultaneous commands: a prohibition to lie and a negative obligation not to tell lies.
Although the effect of compliance may seem the same for these commands, in the case of
the negative obligation an additional mental act (mānasakarman) is involved: the resolve
to not lie. It is this mental act that leads to a result, e.g., the accumulation of happiness.
The difference between negative obligations and prohibitions is extensively discussed by
Mı̄mām. sā authors.

Prabhākara and Kumārila. Man.d. ana’s deontic theory is strikingly different from
those Mı̄mām. sā authors that come before him. In order to make this clear, we briefly
discuss the systems of Prabhākara and Kumārila.

Prabhākara’s system is eminently deontic: agents follow commands because they are
enjoined. Such agents recognize that they are enjoined because of the eligibility conditions
in Vedic commands. For instance, the command “one who desires cattle should sacrifice
with the Citrā” identifies the one who desires cattle as the enjoined agent to which the
duty to sacrifice with the Citrā applies. In Prabhākara’s system, once the eligibility
conditions are met, the sacrifice must be performed. This means that, unlike in common
Mı̄mām. sā, for Prabhākara there is no normative distinction between fixed/occasional
and elective sacrifices: they are all obligations.

Kumārila’s deontic theory differs from Prabhākara’s on the interpretation of elective
sacrifices (kāmya-karman). Kumārila interprets these prescriptions as not properly
binding as the agent in question can refrain from performing the enjoined action without
any normative consequences. For Kumārila, elective duties only give a guaranteed way to
bring about the desired result. They are, so to say, Vedic means-end recipes for obtaining
certain desired results. Thus, an agent can ignore the desire for a specific result of an
elective ritual but not those of fixed and occasional rituals. This is because the latter
lead to happiness, which is, according to Kumārila an aspiration characterizing every
human being.

4This is contrary to common deontic logic practice (Hilpinen and McNamara, 2013).
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Actions and Mı̄mām. sā. Following Freschi (2010), the Mı̄mām. sā take action foremost
as effort, i.e., the initiation of activity. Śabara (cf. common Mı̄mām. sā) uses the noun
bhāvanā to denote ‘undertaking an activity in general’. For him, bhāvanā is the general
activity of bringing about a certain aim. In fact, every action has an aim for the Mı̄mām. sā.
In the cases of Vedic prescriptions, this “bringing about” takes place through performing
the prescribed sacrifice. Man.d. ana also adopts the view that all action is accompanied by
an active “bringing about that” (bhāvanā) together with effort. The latter consists of a
volitional act that initiates an act (e.g., a will determination). Furthermore, effort itself
is influenced by desire and aversion. In fact, for Man.d. ana, any action serves the purpose
(aim) of achieving pleasure or avoiding pain. Thus, the three main components are desire,
purpose, and action. We may take the purpose that the action serves as that which is
desired. To illustrate, reconsider the prescription “the one who desires cattle should
sacrifice with the Citrā”. Roughly, the object of desire is cattle, and the action is the
Citrā ritual, which serves the purpose of bringing about the attainment of cattle. Some
aims, such as heaven, are not directly obtained after the action concludes. Heaven is only
acquired after one’s death. In order to account for actions that bring about results in a
distant future, the Mı̄mām. sā postulated apūrva which is the immediate outcome of the
performed action eventually leading to the action’s aim (such as heaven). See (Freschi,
2010) for a more detailed introduction to the analysis of agency in the Mı̄mām. sā school.

5.1.2 Man. d. ana

Man.d. ana’s account of normative reasoning breaks with the Mı̄mām. sā tradition. According
to Man.d. ana, fixed and occasional duties, elective duties, and prohibitions can be expressed
solely in terms of desires, outcomes, and instruments. Man.d. ana’s approach is, thus, a
deontic reduction: a reduction of all Vedic commands to purely descriptive statements of
instrumentality. To illustrate this, consider the prescriptive statement “one who desires
to kill their enemy should perform the Śyena sacrifice”. On Man.d. ana’s account, this
command is reduced to the descriptive statement “the Śyena is an instrument for killing
one’s enemy”. One of the central features of the reduction is that different commands are
reduced to the singular notion of instrument.5 An instrumentality relation signifies a
relation between an action and a result: the action is regarded as the instrument leading
to the intended result (see Chapter 4 for an analysis of instrumentality). The result is a
state of affairs. Hence, in contrast to Prabhākara and Kumārila, for Man.d. ana, deontic
concepts such as obligations and prohibitions arise from differences in instrumentality
relations.

The uniform language employed in the reduction may suggest that different commands
are reduced to instrumentality statements with the same normative status. However,
to maintain the desired distinction between fixed/occasional duties, elective duties,
and prohibitions, Man.d. ana adopts two constraints involving the accumulation and the
reduction of bad karma (pāpa in Sanskrit). First, fixed and occasional duties describe

5In Section 5.5, we discuss how Man. d. ana deals with controversial commands like the one about
Śyena.
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actions instrumental to the reduction of bad karma. To distinguish those duties from
other types of instruments that fulfill desires, Man.d. ana argues at length that the desire
for the reduction of bad karma is a unique desire shared by every rational being (cf.
Kumārila’s postulate that happiness is universally desired). Second, to ensure that
prohibitions retain their prohibitive strength, Man.d. ana argues that prohibited actions
lead to strongly undesirable outcomes whose undesirability is incommensurably greater
than any desirable result, including the desire to reduce bad karma. For Man.d. ana, this
universally undesirable result is the accumulation of bad karma. Elective duties are, then,
taken to describe instrumentality relations between actions and results for those actions
that neither lead to the reduction nor to the accumulation of bad karma directly. These
desires are called worldly desires, such as the desire for more cattle.

Since obligations and elective duties lead to something desirable, they are grouped under
the term is. t.asādhana, i.e., “instrument to something desirable” (with the reduction of
bad karma being universally desirable). Prohibitions are actions instrumental to some-
thing strictly undesirable and are called anis. t.asādhana, i.e., “instruments to something
undesirable” (with ‘an-’ being the Sanskrit equivalent to the English prefix ‘un-’).

Man.d. ana does not claim that bad karma is something that ought to be reduced or avoided.
Instead, he argues that, in a conflict between worldly and karma desires, no rational
being would prefer the former over the latter (we come back to this when discussing
the Śyena controversy in Section 5.5). Thus, Man.d. ana proposes a unifying theory for
normative reasoning that reduces all command types to instrumentality statements about
actions leading to results. We call it Man.d. ana’s deontic reduction.

5.1.3 Our Methodology

The logic LM results from an interdisciplinary collaboration between scholars of logic,
computer science, and Sanskrit philosophy. It is worth taking a closer look at the
methodology employed.

The aim is to represent the reasoning of Man.d. ana faithfully. This means we want
to impose as few general reasoning principles as possible that cannot be traced back
to Mı̄mām. sā sources. We extract the principles for constructing the envisioned logic
directly from Mı̄mām. sā texts. Since no Sanskrit philosophical school used mathematical
formalization, a certain degree of abstraction is needed. The Mı̄mām. sā school makes this
task easier because of its insistence on using general principles of reasoning. Consequently,
we can construct a logic for Man.d. ana’s deontic theory solely from principles explicitly
discussed or applied in relevant Mı̄mām. sā texts.

The construction of such a logic requires patient, interdisciplinary teamwork. First, the
rules and principles must be identified in source texts. Most of the Mı̄mām. sā texts are
still in Sanskrit. The source texts were translated from Sanskrit to English by our project
member Elisa Freschi, a scholar of Sanskrit philosophy. After translation, these rules
have to be interpreted, analyzed, and formalized. However, Mı̄mām. sā authors do not
always discuss reasoning principles explicitly (e.g., nyāyas, page 171), which means that
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they have to be carefully extracted from their concrete applications within Mı̄mām. sā
texts. Sanskrit philosophical texts usually take the form of a staged discussion among the
upholders of different points of view (this approach vaguely resembles a Platonic dialogue).
Consequently, inference rules are typically found within written-down discussions among
several authors who invoke different rules to solve a given problem. Once identified and
translated, the abstract reasoning structure underlying its concrete application must be
distilled. To illustrate, from the literal translation of the nyāya6 “Alternatively, [the new
cloth to be used in the mahāvrata ritual] is additional, because it has a different purpose”
together with its embedded context, we extracted a restricted version of aggregation
stating that aggregation of two commands is only possible when they serve different
purposes (cf. principle P4 in Section 5.4).

Once such isolated reasoning principles are obtained, a first formalization can be provided.
The resulting tentative logic enables us to derive logical consequences from these formalized
principles. These logical consequences are, subsequently, compared with the use of such
principles in Mı̄mām. sā texts. In case of discrepancies, this often leads to a reassessment of
those initial passages and the formalized logic. Furthermore, new findings in untranslated
source texts may lead to modification of an earlier logical formalization. For instance,
after the initial presentation of our logic for Man.d. ana’s deontic theory in (van Berkel
et al., 2021a), the aforementioned nyāya was discovered (P4), which led to a formal
discussion of restricted aggregation in (van Berkel et al., 2022a). The logic LM is the
outcome of the above interdisciplinary collaboration.

5.2 Man. d. ana’s Deontic Logic of Instruments

The discussion in Section 5.1 provides the conceptual foundation of the multi-modal
action logic formalizing Man.d. ana’s deontic theory. We refer to this logic as the Logic of
Man. d. ana, for short LM (Objective 1). We start by listing the central concepts we aim to
capture with the formal language of LM.

Results. These are the outcomes of actions. We express results through descriptions of
states of affairs, denoted by lowercase Greek letters φ,ψ, χ, . . . . Moreover, descriptions of
states of affairs may refer to actions. In those cases, the description functions as a witness
to the completed performance of an action, e.g., “the Kār̄ıri ritual has been performed”.

Actions. Actions are potential instruments for obtaining results. We use δ, γ, . . . to
represent atomic action-types, and inductively build complex action-types ∆,Γ, . . .
(possibly indexed) using the action operators action negation ‘−’, disjunctive action ‘∪’,
and joint action ‘&’. (See Chapter 4 for a discussion). The performance of an atomic
action type δ by an agent has a corresponding action token dδ, which is a propositional
constant witnessing the performance of the action by that agent. Since Man.d. ana does
not deal with multi-agent interaction, the language of LM will be a single-agent language
in which the agent is left implicit.

6adhikam. vānyārthatvāt (PMS 10.4.14).
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Moments in time and the immediate future. Choice is a central property of Man.d. ana’s
deontic theory (cf. Section 5.4), which justifies the adaptation of an indeterministic view
of time. For Man.d. ana, instrumentality statements refer to how a certain action, as an
instrument, may lead to a certain state of affairs as its outcome. This ‘leading to’ is a
temporal component referring to possible future moments. We adopt the modal operator
□S expressing “in all possible immediate successor moments” (some proposition holds).
For example, let dδ stand for “the agent has thrashed the rice”, then the formulae □S dδ

is interpreted as “in all possible immediate successor moments the agent has thrashed
the rice”. We adopt a dual operator □S to denote “in some immediate successor moment”
(some proposition holds).7

Universal Necessity and Facts. Although Mı̄mām. sā authors (and Sanskrit philosophers in
general) appeal to notions of possibility and necessity, they do not explicitly define them.
We adopt a necessity modality □U expressing “it is universally necessary that” (some
proposition holds). We do this in order to characterize the different deontic operators
better. We use statements of necessity as global assumptions, which are assertions
commonly recognized as describing facts that hold in all possible situations. We refer to
Blackburn et al. (2004, p.478) for a brief history of the global modality in logic.

Karma. In his deontic reduction, Man.d. ana preserves the distinction between obligatory
and prohibited actions through reference to the results of these actions. In particular,
fulfilling an obligation results in a reduction of bad karma (pāpa), whereas the result of
violating a prohibition is the accumulation of bad karma. For that reason, we adopt the
propositional constants R and P referring to the reduction, respectively, accumulation of
bad karma. Man.d. ana’s reduction is similar to the Andersonian reduction of deontic logic
(1957). We discuss this in detail in Section 5.7.

Following Man.d. ana’s deontic reduction, we take actions and results as the basic concepts
of our language and define deontic modalities in terms of it. Our approach is similar to
the one adopted in Chapter 4 and initially proposed in (van Berkel and Pascucci, 2018).
First, we define two languages: an action language LAct, which is an algebra of actions
for agent-independent action types, and a logical language LLM into which these actions
are translated. The approach allows for reasoning about complex actions from LAct as
Boolean formulae in the logical language LLM.

Definition 5.1 (Algebra of Actions LAct). Let Act = {δ, γ, . . . } be a non-empty countable
set of atomic action types. The language LAct of complex action-types ∆ is given via the
following BNF grammar:

∆ ::= δ | ∆ ∪ ∆ | ∆
with δ ∈ Act.

One can see the action language LAct as a single-agent action language. We define joint
action & in terms of action negation and disjunctive action, i.e., ∆&Γ := ∆ ∪ Γ.

7In contrast to the Logic of Action and Norms in Chapter 4, we do not require explicit reference to
the actual future in defining Man. d. ana’s reduction.

177



5. An Application to Sanskrit Philosophy

In what follows, we employ a reductionist approach to deontic concepts via “karma
constants” and a reduction of actions via action constants (cf. Chapter 4). Let Wit =
{dδ, dγ , . . . } be the set of propositional constants that witness the performance of atomic
action-types δ, γ, · · · ∈ Act by the agent in question. We take dδ to read “the agent has
performed action δ”. The formal correspondence between agent-dependent action types
and propositional constants is given in Definition 5.3 below. Furthermore, let P and R
be propositional constants witnessing “bad karma is accumulated” and “bad karma is
reduced”, respectively.

Definition 5.2 (The Language LLM). Let Atoms = {p, q, r, . . . } be a countable set of
atomic propositions. The language LLM is given by the following BNF:

φ ::= p | dδ | P | R | ¬φ | φ ∨ φ | □S φ | □U φ

where p ∈ Atoms and dδ ∈ Wit.

The other connectives ∧ and →, as well as ⊤ and ⊥, are defined as usual. Formulae of
the form □S φ and □U φ express, respectively, “in all possible immediate successor moments
φ holds” and “it is universally necessary that φ holds”. We sometimes omit reference to
‘immediate’ in referring to □S . We take □S and □U as the duals of □S and □U , respectively.

Definition 5.3 (Translation between LAct and LLM). The translation t encoding action-
types from LAct into formulae of LLM is established recursively:

• For any δ ∈ Act, t(δ) = dδ, with dδ ∈ LLM;

• For any ∆ ∈ LAct, t(∆) = ¬t(∆);

• For any ∆,Γ ∈ LAct, t(∆ ∪ Γ) = t(∆) ∨ t(Γ).

As an example of a formula from the language LLM, consider

[∆]φ := □S (t(∆) → φ)

which reads “at every successor world witnessing the performance of action ∆, the state
of affairs φ holds”. The language LLM is similar to the one employed in Chapter 4, and
we refer to that chapter for an extensive discussion of its expressivity (e.g., in relation to
PDL).

5.2.1 Axiomatization of LM

We use classical propositional logic as our base logic. The use of classical logic instead
of, for instance, intuitionistic logic as adopted in (Abraham et al., 2011), is motivated
by various examples found in Mı̄mām. sā texts which implicitly assume the legitimacy
of excluded middle and reductio ad absurdum (Ciabattoni et al., 2015). To illustrate,
consider the following Mı̄mām. sā principle from Jayanta’s book Nyāyamañjar̄ı: “When
there is a contradiction, at the denial of one [alternative], the other is known [to be true]”.
The Hilbert-style axiomatization of the logic LM is given below.
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Definition 5.4 (The Axiomatization of LM). The logic LM is axiomatized by the following
collection of axiom schemes and rules:

A0. All classical propositional tautologies;

R0. From φ and φ → ψ, infer ψ;

A1. □U (φ → ψ) → (□U φ → □U ψ);

A2. □U φ → φ;

A3. □U φ → □U □U φ;

A4. □S (φ → ψ) → (□S φ → □S ψ);

A5. □U φ → □S φ;

A6. □S P → □S ¬P;

A7. □S R → □S ¬R;

R1. From φ, infer □U φ;

The logic LM is the smallest set of formulae from LLM closed under all instances of the
axiom schemes, and applications of the inference rules R0 – R1. Whenever φ ∈ LM we
say that φ ∈ LLM is a LM-theorem and write ⊢LM φ. Last, LM-derivability is defined as
usual (Definition 2.3).

The axiomatization of LM is deliberately minimal, i.e., all properties except for those
related to the universal necessity modality □U can be traced back to Man.d. ana (see page 175
for the motivation). Furthermore, we emphasize that it suffices to adopt a general notion
of the immediate successor modality □S since Man.d. ana’s analysis does not depend on
inherent properties of time.8 Both □U and □S are normal modal operators by virtue of A1,
A4, A5, and R1. Axioms A2 and A3 characterize □U as an S5 modality. Furthermore, A5
is a bridge axiom, expressing that what holds universally must also hold at any successor
moment.

The two Man.d. ana inspired axioms are A6 and A7. The former expresses that if there
is an immediate successor in which bad karma is accumulated, there is also a successor
moment in which it can be avoided. The latter expresses similar reasoning but then
concerns the reduction of bad karma. Both axioms are based on a Mı̄mām. sā principle,
endorsed by Man.d. ana, which states that all commands must be non-trivial (Freschi,
2018). To see this point, suppose towards a contradiction that at all successor moments
bad karma is accumulated, then whatever the agent does, bad karma will be obtained.

8One may refine the immediate successor modality by additionally imposing, e.g., intransitivity and
asymmetry (cf. Chapter 2 on temporal STIT logic). This goes beyond our objective in this chapter.

179



5. An Application to Sanskrit Philosophy

Consequently, each corresponding command at the moment will be trivially violated.
This conflicts with the above Mı̄mām. sā principle. The same reasoning applies to the
reduction of bad karma.

We point out that, from the perspective of the axiomatization, the constants P and R
show the same logical behavior. Only in defining obligations and prohibitions do these
constants receive a different meaning, with prohibited actions leading to an accumulation
and obligatory actions to a reduction of bad karma. We come back to this in Section 5.4.
The use of constants in characterizing certain properties of the logic of Man.d. ana is
similar to the approach by Anderson and Moore (1957). We compare these approaches
in Section 5.7.

Remark 5.1. The logic LM was first presented in (van Berkel et al., 2022a) and differs
from the Man. d. ana logic LMa in (van Berkel et al., 2021a). The latter includes the
additional axiom □S t(∆) → □S (t(∆) ∧ (¬R ∨ ¬P)). The modification was motivated by the
formalization of a Mı̄mām. sā principle discovered after the publication of the latter (cf.
P4 on page 190). We refer to (van Berkel et al., 2022a) for a comparison of LM and
LMa.

The logic LM does not fully represent Man.d. ana’s deontic theory but contains its essential
building blocks.9 That is, we will formally define the central concepts of Man.d. ana’s theory,
using the immediate successor modality, complex action types, and karma constants. We
do this in Section 5.4.

5.2.2 Semantics for LM

We use relational semantics to characterize LM (Blackburn et al., 2004).

Definition 5.5 (Frames and Models for LM). An LM-frame is defined as a tuple F =
⟨W, {Wdδ | dδ ∈ LLM},WP,WR,R□U ,R□S ⟩. Let W be a non-empty set of worlds w, v, u, . . . ,
let R□U = W × W , R□S ⊆ W × W , and R[α](w) := {v ∈ W | (w, v) ∈ R[α]} for
[α] ∈ {□U ,□S }. The following hold:

R1 For each dδ ∈ Wit, Wdδ ⊆ W ;

R2 WP ⊆ W ;

R3 WR ⊆ W ;

R4 For all w, v ∈ W, if v ∈ R□S (w) and v ∈ WP, then there is a u ∈ W such that
u ∈ R□S (w) and u ̸∈ WP;

9We stress that the logic LM is developed for reasoning about Vedic commands as interpreted by
Man. d. ana. All Mı̄mām. sā authors consider Vedic commands to be self-contained and immutable. This
means that no new Vedic command can be derived through logic. Thus, the logic LM is used to derive
deontic consequences from Vedic commands and deals with commands on the derived level instead of the
Vedic level.
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R5 For all w, v ∈ W, if v ∈ R□S (w) and v ∈ WR, then there is a u ∈ W such that
u ∈ R□S (w) and u ̸∈ WR.

An LM-model is a tuple M = ⟨F, V ⟩ where F is an LM-frame and V is a valuation
function mapping propositional atoms and constants to subsets of W , i.e., V : Atoms ∪
Wit ∪ {P, R} 7→ P(W ), for which the following three restrictions hold:

• V (dδ) = Wdδ for any dδ ∈ Wit;

• V (P) = WP;

• V (R) = WR.

In Definition 5.5, condition R1 stipulates that the set Wdδ (for each dδ ∈ Wit) contains
those moments from W witnessing the successful performance of δ. The first restriction on
the valuation function V ensures that those moments witnessing dδ satisfy those constants.
That this is also the case for arbitrary actions is shown in Lemma 5.1. Conditions R2
and R3 ensure that the sets WP ⊆ W and WR ⊆ W contain those moments from W
witnessing the accumulation, respectively reduction of bad karma. Hence, in LM-models,
the valuation of constants is fixed on the level of LM-frames. This means that the semantic
interpretation of such constants is fixed for every model defined over that frame. The
frame properties R4 and R5 make use of this fact. R4 conveys that whenever bad karma
is attainable, it is also avoidable (cf. A6), whereas R5 captures the same property for
the reduction of bad karma (cf. A7). Last, we point out that the □U -modality represents
the global modality and is therefore characterized through an equivalence relation whose
equivalence class is the set of all worlds W , i.e., R□U = W × W . Consequently, since
R□S ⊆ W ×W , any □S transition is also a □U transition (cf. A5).

The semantic interpretation of LLM is defined below.

Definition 5.6 (Semantics of LM-models). Let M be an LM-model and let w ∈ W of M.
The satisfaction of a formula φ ∈ LLM in M at w is defined accordingly:

1. M, w |= p iff w ∈ V (p);

2. M, w |= χ iff w ∈ V (χ) = Wχ for any χ ∈ Wit ∪ {P, R};

3. M, w |= ¬φ iff not M, w |= φ;

4. M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ;

5. M, w |= □U φ iff for all v ∈ R□U (w), M, v |= φ;

6. M, w |= □S φ iff for all v ∈ R□S (w), M, v |= φ.

Global truth, validity, and semantic entailment are defined as usual (Definition 2.5).
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In Definition 5.5, we restricted the valuation of action constants to sets of worlds. The
lemma below shows that this observation can be generalized to arbitrary action types.

Lemma 5.1. For an arbitrary ∆ ∈ LAct, we define Wt(∆) using the following recursive
clauses: Wt(δ) := Wdδ ; Wt(∆) := W \ Wt(∆); Wt(∆∪Γ) := Wt(∆) ∪ Wt(Γ). For each
LM-model M and each moment w ∈ W of M, we have: M, w |= t(∆) iff w ∈ Wt(∆).

Proof. The proof is the same as for Lemma 4.1 in Chapter 4. QED

5.3 Soundness and Completeness

Soundness is demonstrated as usual, and completeness is shown through a modification of
the canonical model approach. The modification is required due to the universal necessity
modality in LM.

Theorem 5.1 (Soundness of LM). For any formula φ ∈ LLM, and any Γ ⊆ LLM: if
Γ ⊢LM φ, then Γ |=LM φ.

Proof. It suffices to show that all axioms are LM-valid. Take an arbitrary LM-model M
and an arbitrary w ∈ W of M. The axiom schemes A0, A1, and A4, and rules R0 and R1
are valid, respectively preserve validity on all relational frames (Blackburn et al., 2004).
We omit their proofs.

A2 □U φ → φ. Assume M, w |= □U φ. By the semantic definition of □U , for all v ∈ W ,
M, v |= φ and since w ∈ W we have M, w |= φ.

A3 □U φ → □U □U φ. Assume M, w |= □U φ. By semantic definition of □U , there is a v ∈ W
such that M, v |= φ. Now, take an arbitrary u ∈ W . Since both u, v ∈ W we have
that M, u |= □U φ and since u is arbitrary we have M, w |= □U □U φ.

A5 □U φ → □S φ. Assume M, w |= □U φ. By semantic definition of □U we know that for all
v ∈ W , M, v |= φ. By the fact that R□S (w) ⊆ W we know that for all v ∈ R□S (w),
M, v |= φ too. Hence, M, w |= □S φ.

A6 □S P → □S ¬P. Assume M, w |= □S P. By semantic definition of □S there is a v ∈ W
such that v ∈ R□S (w) with M, v |= P. Hence, v ∈ WP. By R4 Definition 5.5,
we know that there is a u ∈ W such that u ∈ R□S (w) and u ̸∈ WP. Therefore,
M, u |= ¬P and so M, w |= □S ¬P.

A7 Similar to A6.

The main claim follows through reasoning similar to Theorem 4.1 of Section 4.3. QED
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Completeness is proven via a canonical model construction. Due to the universal necessity
modality □U we must modify the standard completeness by canonicity strategy (Blackburn
et al., 2004). Recall that □U is axiomatized as an S5 modality, which is canonical for the
equivalence relation Rc

□U (Blackburn et al., 2004, Ch.4). Using the standard canonical
model construction (as in Chapter 4) only guarantees that Rc

□U ⊆ W ×W but not that
Rc
□U = W ×W , as desired. Namely, the S5 characterization of □U may generate several

Rc
□U -equivalences classes in the canonical model. The solution is as follows (Blackburn

et al., 2004, Ch.7): we use generated submodels of the canonical model and prove that
these are LM-models. The submodels are defined relative to a given LM-maximally
consistent set Σ and denoted by MΣ.

We first provide the usual preliminaries. The proofs are omitted (e.g., see Section 4.3).
Notice that we reserved ∆,Γ, . . . for arbitrary action types of LAct. In order to enhance
clarity in the completeness proof, we use Σ,Θ,Π, . . . to refer to LM-MCSs.

Definition 5.7 (LM-CS and LM-MCS). A set Σ ⊂ LLM is a LM-consistent (LM-CS) iff
Σ ̸⊢LM ⊥. A set Σ ⊂ LLM is an LM-maximally consistent (LM-MCS) iff Σ is an LM-CS
and for any set Σ′ ⊆ LLM such that Σ ⊂ Σ′ it is the case that Σ′ ⊢LM ⊥.

In what follows, we make use of the standard properties of MCSs. See Section 2.2 for
proofs. We use these properties implicitly throughout the section.

Lemma 5.2 (Properties of MCSs). Let Σ ⊆ LLM be an LM-MCS and φ ∈ LLM. The
following holds:

• Σ ⊢LM φ iff φ ∈ Σ;

• φ ∈ Σ iff ¬φ ̸∈ Σ;

• φ ∧ ψ ∈ Σ iff φ ∈ Σ and ψ ∈ Σ.

Adapting Lindenbaum’s Lemma to the context of LM, we know that every LM-CS can
be extended to an LM-MCS.

Lemma 5.3 (Lindenbaum’s Lemma). Let Σ ⊆ LLM be an LM-CS: there is an LM-MCS
Σ′ ⊆ LLM such that Σ ⊆ Σ′.

Definition 5.8 (Canonical model for LM). We define the canonical model Mc to be the
tuple Mc = ⟨W c, {W c

dδ | dδ ∈ Wit},W c
P ,W

c
R ,Rc

□U ,R
c
□S , V

c⟩ such that:

• W c := {Σ ⊂ LLM | Σ is a LM-MCS};

• For all dδ ∈ Wit, W c
dδ := {Σ ∈ W c | dδ ∈ Σ};

• For each α ∈ {P, R}, W c
α := {Σ ∈ W c | α ∈ Σ};

• For each Σ ∈ W c, Rc
□U (Σ) := {Θ ∈ W c | for all □U φ ∈ Σ, φ ∈ Θ};
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• For each Σ ∈ W c, Rc
□S (Σ) := {Θ ∈ W c | for all □S φ ∈ Σ, φ ∈ Θ};

• V c is a valuation function such that for all χ ∈ Atoms ∪ Wit ∪ {P, R}, V c(χ) :=
{Σ ∈ W c | χ ∈ Σ}.

The semantic evaluation of LLM formulae on Mc is defined as in Definition 5.6.

The canonical model possesses the usual properties (see Section 2.2 for the proofs).

Lemma 5.4 (Existence Lemma □U and □S ). For any world Σ ∈ W c of Mc the following
holds:

• If □U φ ∈ Σ, then there is a Θ ∈ W c such that φ ∈ Θ and Θ ∈ R□U (Σ);

• If □S φ ∈ Σ, then there is a Θ ∈ W c such that φ ∈ Θ and Θ ∈ R□S (Σ).

Corollary 5.1. For any world Σ ∈ W c of Mc the following holds:

• If for all Θ ∈ R□U (Σ), φ ∈ Θ, then □U φ ∈ Σ;

• If for all Θ ∈ R□S (Σ), φ ∈ Θ, then □S φ ∈ Σ.

The following lemma shows that the defined model is canonical for the logic LM, i.e.,
each LM-MCS is satisfiable on this model.

Lemma 5.5 (Truth Lemma). For any φ ∈ LLM and Σ ∈ W c: Mc,Σ |= φ iff φ ∈ Σ.

As discussed, the model Mc is not necessarily an LM-model. In Definition 5.9 we define
submodels of Mc that do belong to the class of LM-models (Lemma 5.8).

Definition 5.9 (Submodel of the Canonical Model for LM). Let Mc be the canonical
model for LM. We define the submodel MΣ relative to Σ ∈ W c to be the tuple MΣ =
⟨WΣ, {WΣ

dδ | dδ ∈ Wit},WΣ
P ,W

Σ
R ,RΣ

□U ,R
Σ
□S , V

Σ⟩ such that:

• WΣ := {Θ ⊂ LLM | Θ is a LM-MCS and for each □U φ ∈ Σ, φ ∈ Θ};

• For all dδ ∈ Wit, WΣ
dδ := W c

dδ ∩WΣ;

• For each α ∈ {P, R}, WΣ
α := W c

α ∩WΣ;

• For each [α] ∈ {□U ,□S } and all Θ ∈ WΣ, RΣ
[α](Θ) := Rc

[α](Θ) ∩WΣ;

• V Σ is a valuation function such that for all χ ∈ Atoms ∪ Wit ∪ {P, R}, V Σ(χ) :=
V c(χ) ∩WΣ.
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First, by the definition of WΣ and RΣ
□U , it can be immediately seen that MΣ satisfies

the condition RΣ
□U = WΣ ×WΣ. Furthermore, the model MΣ is a generated submodel of

Mc, this follows from Lemma 5.6. We refer to Blackburn et al. (2004, Ch.2) for general
results on generated submodels.

Lemma 5.6. Let [α] ∈ {□U ,□S }. For each Θ,Π ∈ W c of Mc, if Θ ∈ WΣ and Π ∈ Rc
[α](Θ),

then Π ∈ WΣ.

Proof. Assume Θ ∈ WΣ and Π ∈ Rc
[α](Θ). Suppose towards a contradiction that Π ̸∈ WΣ.

By construction of MΣ, there is a □U φ ∈ Σ such that φ ̸∈ Π. Since Θ ∈ WΣ we know
□U φ ∈ Θ. Since Θ is an LM-MCS we have □U φ → □S φ ∈ Θ and so both □S φ,□U φ ∈ Θ. By
construction of the canonical model Mc and the assumption that Π ∈ Rc

[α](Θ) we have
φ ∈ Π. Contradiction. QED

Lemma 5.7. For each φ ∈ LLM and each Θ ∈ WΣ of MΣ: Mc,Θ |= φ iff MΣ,Θ |= φ.

Proof. The proof is by induction on the complexity of φ. Base case. φ = χ ∈ Atoms ∪
Wit ∪ {P, R}. Trivial since Θ ∈ V Σ(χ) = V c ∩WΣ. Inductive step. We only consider the
modal case φ = □U ψ, the proof of φ = □S ψ is similar. Left-to-Right. Assume Mc,Θ |= □U ψ.
By semantic definition, for all Π ∈ Rc

□U (Θ) we have Mc,Π |= ψ. By Lemma 5.6 we
know that for all Π ∈ Rc

□U (Θ),Π ∈ WΣ, and by the IH we obtain MΣ,Π |= ψ. Since
RΣ
□U (Θ) = Rc

□U (Θ) ∩ WΣ, we have MΣ,Θ |= □U ψ. Right-to-Left. We prove this by
contraposition. Assume Mc,Θ ̸|= □U ψ. By semantic definition there is a Π ∈ Rc

□U (Θ) such
that Mc,Π ̸|= ψ. By Lemma 5.6 we know Π ∈ WΣ too. Hence, by IH MΣ,Π ̸|= ψ. Since
Π,Θ ∈ WΣ we have Π ∈ Rc

□U (Θ) ∩WΣ = RΣ
□U and so MΣ,Θ ̸|= □U ψ. QED

We show that MΣ belongs to the class of LM-models.

Lemma 5.8 (LM-submodel). The submodel MΣ generated from the canonical model Mc

is an LM-model.

Proof. It can be easily observed that WΣ and V Σ (for χ ∈ Atoms ∪ Wit ∪ {P, R}) are
well-defined. Note, that WΣ is non-empty since by □U φ → φ ∈ Σ and Definition 5.9,
it is the case that Σ ∈ WΣ (that W c is non-empty follows from the model defined in
Figure 5.2 Section 5.5). We only need to show that MΣ satisfies the properties R1–R5.

R1 For each dδ ∈ Wit, W c
dδ ⊆ W c follows directly from the definition of W c

dδ .

R2 Similar to R1.

R3 Similar to R1.
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R4 Take arbitrary Θ,Π ∈ WΣ and assume Π ∈ RΣ
□S (Θ) and Π ∈ WΣ

P . We construct a
LM-MCS Ω such that Ω ∈ RΣ

□S (Θ) and Ω ̸∈ WΣ
P . Let,

Ω′ = {¬P} ∪ {φ | □S φ ∈ Θ} ∪ {ψ | □U ψ ∈ Θ}

Suppose towards a contradiction that Ω′ is not LM-consistent. Hence for some
φ1, .., φn, ψ1, . . . , ψm ∈ Ω′, we have ⊢LM (φ∧ · · · ∧φn ∧ψ1 ∧ · · · ∧ψm) → P. By the
normality of □S , we have ⊢LM □S ((φ ∧ · · · ∧ φn ∧ ψ1 ∧ · · · ∧ ψm) → P), which implies
⊢LM □S (φ ∧ · · · ∧ φn ∧ ψ1 ∧ · · · ∧ ψm) → □S P. By normality of □S and monotonicity
of LM, ⊢LM (□S φ ∧ · · · ∧ □S φn ∧ □S ψ1 ∧ · · · ∧ □S ψm ∧ □S P) → ¬ □S ¬P and by maximal
consistency of Θ, ⊢LM (□S φ ∧ · · · ∧ □S φn ∧ □S ψ1 ∧ · · · ∧ □S ψm ∧ □S P) → ¬ □S ¬P ∈ Θ.
By assumption □S φ1, . . . ,□S φn, □S P ∈ Θ. Furthermore, by assumption □U ψi ∈ Θ for
1 ≤ i ≤ m, which together with axiom A5, yields □S ψi ∈ Θ for 1 ≤ i ≤ m. Hence,
¬ □S ¬P ∈ Θ. However, since Θ is an LM-MCS we have □S P → □S ¬P ∈ Θ, and thus
□S ¬P ∈ Θ. Contradiction. Consequently, Ω′ is an LM-CS. Let Ω be the LM-MCS

extending Ω′ (Lindenbaum’s lemma). By construction of Mc we obtain Ω ∈ Rc
□S (Θ)

and since ¬P ∈ Ω′ ⊆ Ω we have Ω ̸∈ W c
P . By the assumption Θ ∈ WΣ and the fact

{□U ψ | □U ψ ∈ Σ} ⊆ { □U ψ | □U ψ ∈ Θ} (due to □U ψ → □U □U ψ ∈ Σ) we know Ω ∈ WΣ,
Ω ∈ Rc

□S (Θ) ∩WΣ = RΣ
□S (Θ), and Ω ̸∈ WΣ

P = W c
P ∩WΣ.

R5 Similar to R4. QED

Theorem 5.2 (Strong Completeness of LM). For any formula φ ∈ LLM, and any
Θ ⊆ LLM: if Θ |=LM φ, then Θ ⊢LM φ.

Proof. The proof is by contraposition. Suppose φ is not LM-derivable from Θ. This
means that Θ ∪ {¬φ} is a LM-CS. Namely, if Θ ∪ {¬φ} would be LM-inconsistent, then
Θ,¬φ ⊢LM ⊥ and so Θ ⊢LM φ. By Lindenbaum’s Lemma there is a Θ′ ⊆ LLM such
that Θ′ is a LM-MCS and Θ ∪ {¬φ} ⊆ Θ′. By the construction of the canonical model,
Θ′ ∈ W c of Mc. By the truth lemma (cf. Lemma 4.5) we know that Mc,Θ′ |= Θ and
Mc,Θ′ |= ¬φ. Let MΘ′ be a submodel of Mc according to Definition 5.9. By definition
Θ′ ∈ WΘ′ of MΘ′ . By Lemma 5.7 we know MΘ′

,Θ′ |= Θ and MΘ′
,Θ′ |= ¬φ. Last, by

Lemma 5.8, MΘ′ is an LM-model and so Θ ̸|=LM φ. QED

5.4 A Formal Analysis of Man. d. ana’s Reduction
Here, we address Objective 2 and show that LM can adequately represent Man.d. ana’s
deontic theory. We provide a formal analysis of Man.d. ana’s reduction and discuss whether
the validity of four central Mı̄mām. sā principles concerning commands is preserved through
Man.d. ana’s reduction.

At the heart of Man.d. ana’s deontic theory lies the reduction of all deontic modalities
to a uniform notion of instrumentality. Following Man.d. ana, our formal definition of
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instrumentality must satisfy the following criteria: (i) The instrument relation contains
three components: an action ∆, serving as the instrument; a state of affairs φ, representing
the outcome of ∆; and a state of affairs χ defining the circumstances in which ∆ functions
as an instrument for bringing about φ. (ii) The circumstances χ must be meaningful,
which in Mı̄mām. sā terms means that χ must be possible in the broadest sense (cf. not
logically impossible).10 Moreover, the agent in question must have a proper choice to
execute action ∆ when the appropriate circumstances χ occur. We split choice into a
positive and negative component: (iii) ∆ can be performed by the agent, and (iv) the
agent can refrain from performing ∆. For a motivation of (i)–(iv), see Śabara on PMS
6.1 in (Subbāśāstr̄ı, 1929-1934).11

We propose the defined instrumentality operator I(∆/φ/χ) which is interpreted as
follows:

∆ is an instrument for guaranteeing φ in circumstances χ iff (i) If circumstance
χ holds, performance of ∆ guarantees φ, (ii) χ is possible, and if χ holds,
both (iii) ∆ is possible and (iv) ∆ is possible.

The corresponding formal definition, based on (i)-(iv), is given in Definition 5.10.

Based on the above, we can define Man.d. ana’s reduction of the various command types
to statements of instrumentality: obligatory and prohibited actions (denoted by O,
respectively F) are defined in terms of those actions being instrumental to the reduction
of bad karma (denoted by R), and the accumulation of bad karma (denoted by P),
respectively. Elective commands (denoted by E) are actions instrumental to outcomes
that are neither P nor R. Additionally, we need to ensure that the following Man.d. a-
na principle, which applies to obligations and prohibitions, is satisfied: “an action ∆
cannot be an instrument for both the reduction R and the increase P of bad karma” (cf.
Remark 5.1). This is done by introducing an additional clause requiring that the action in
question is not simultaneously instrumental to the accumulation, respectively reduction
of bad karma. We thus have that an action is obligatory (prohibited) if and only if it is
an instrument for reducing (accumulating) bad karma and at the same time the action is
not an instrument for accumulating (reducing) bad karma.

Definition 5.10. Man. d. ana’s notion of instrumentality is defined as:

10We take the term ‘meaningful’ in this context to denote possibility in a general sense. To illustrate,
the Mı̄mām. sā consider the Vedic statement “one should build an altar in the sky” meaningless as a
command, not because it is impossible to build an altar in the sky at this particular moment, but because
it is conceptually impossible. For this reason, the Mı̄mām. sā take this Vedic statement to express praise
instead of a command. We use □U further below to formally represent this notion of possibility.

11See Chapter 3 and 4 for a discussion of the closely related notions of deontic contingency, respectively,
deliberative agency.
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I(∆/φ/χ) := (i) □U (χ → □S (t(∆) → φ)) ∧

(ii) □U χ ∧

(iii) □U (χ → □S t(∆)) ∧

(iv) □U (χ → □S ¬t(∆))

Man. d. ana’s reduction of obligations, prohibitions, and elective duties is defined as:

O(∆/χ) := I(∆/R/χ) ∧ ¬I(∆/P/χ)

F(∆/χ) := I(∆/P/χ) ∧ ¬I(∆/R/χ)

E(∆/φ/χ) := I(∆/φ/χ) with φ ̸⊢LM P and φ ̸⊢LM R

In the above definition of I(∆/φ/χ), ∆ refers to an action, φ to the outcome of that
action (if applicable), and χ to the circumstances in which the instrumentality relation
holds. The side condition on the elective duty E(././.) in Definition 5.10 ensures that
results explicitly described by the command do not directly entail the accumulation
or reduction of bad karma. However, indirectly this is allowed. We will see this when
analyzing the Śyena controversy in Section 5.5. Last, we point out that obligations
O(∆/χ) could be equivalently defined as I(∆/R/χ) ∧ ¬□U (χ → □S (t(∆) → P) due to the
overlapping clauses (ii)-(iv) of the definition of instruments in I(∆/R/χ) and I(∆/P/χ).
This also holds for prohibitions. The above definitions of the three command types
ensure that Vedic actions can never be instrumental to both the reduction and the
accumulation of bad karma (with electives leading to neither). This property is motivated
by the Mı̄mām. sā principle, endorsed by Man.d. ana, stating that “an action cannot be an
instrument for both the reduction and the increase of bad karma” (Viraraghavacharya,
1971, on PMS 1.1.2).

Remark 5.2. In LM, we define commands as having states of affairs as their condition.
In addition, due to the translation t from the action language LLAN to the object level
language LLM, we can express prescriptions such as “offer to Agni once you have offered
to Soma”, which have as a condition an action that temporally precedes the prescribed
action. This sentence formally corresponds to O(Agni/t(Soma)), where t(Soma) is the
state of affairs witnessing that “the Soma offering has just been performed”.

We now show that important Mı̄mām. sā properties hold for the derived deontic operators
and that the Mı̄mām. sā principles adopted by Man.d. ana are LM-valid formulae.

Irreducibility. Recall that for Mı̄mām. sā authors, obligations, prohibitions, and elective
duties are reciprocally irreducible (Freschi and Pascucci, 2021; Lellmann et al., 2021).
Man.d. ana also adopts this view by limiting the type of results of the instruments corre-
sponding to the three command types. That Definition 5.10 preserves this property is
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due to the second conjunct of the definitions of obligations and prohibitions and the side
condition imposed on elective duties.

Contingency. For Mı̄mām. sā, actions occurring in Vedic commands must be meaningful
(cf. ŚBh on PMS 6.1, (Subbāśāstr̄ı, 1929-1934)). An action is meaningful when an agent
can perform the action and refrain from performing it. The property of meaningfulness
of actions is expressed via the following LM-valid formula, which is a consequence of
clauses (iii) and (iv) of Definition 5.10:

I(∆/φ/χ) → □U (χ → ( □S t(∆) ∧ □S ¬t(∆)))

where either φ ∈ {P, R} or both φ ̸⊢LM P and φ ̸⊢LM R. That is, the above holds for all
three command types. In deontic logic, this property is known as the contingency principle
(Anderson and Moore, 1957; von Wright, 1951) (See Chapter 3 for an extensive discussion).
We point out that for obligations and prohibitions, the property is already implied by
axioms A6 and A7, which ensure that the accumulation, respectively reduction, of bad
karma can always be avoided. Consequently, in the light of these axioms, condition (iv)
of instruments (Definition 5.10) is admissible for obligations and prohibitions but remains
necessary for ensuring the meaningfulness of actions involved in elective commands.

No Impossible Commands. The logic LM implies the validity of a deontic consistency
axiom for prohibitions (cf. the D-axiom of Standard Deontic Logic on page 13):

¬(F(∆/χ) ∧ F(∆/χ))

This valid formula corresponds to the Mı̄mām. sā principle: “It is impossible that the
Vedas tell you that you’ll fall (i.e., be reborn in hell) both if you do something and if you
don’t do it” (Viraraghavacharya, 1971, p. 32). The quote illustrates the impossibility of
the Vedas to give contradictory commands. The formula is valid due to the definition of
instrumentality together with axiom A6. We obtain a similar LM-valid formula expressing
this property for obligations:

¬(O(∆/χ) ∧ O(∆/χ))

As desired, the property does not hold for elective duties. This follows from the fact that
these duties lead to worldly results on which no additional Mı̄mām. sā property is imposed
(see Definition 5.4 and 5.10).

Furthermore, LM satisfies the Mı̄mām. sā principle that obligations and prohibitions are
mutually exclusive, namely, no action ∆ can be both obligatory and prohibited. The
following LM-valid formula expresses this:

¬(O(∆/χ) ∧ F(∆/χ))

The property is guaranteed by Definition 5.10. How obligations and prohibitions are
defined implies that, in Man.d. ana’s language, ∆ cannot simultaneously be an instrument
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for the reduction and accumulation of bad karma. Still, from a semantic perspective, LM
allows for situations where we end up at a world where both P and R hold after executing
some action ∆ (cf. Remark 5.1). However, in those cases Definition 5.10 ensures that
this action ∆ is neither obligatory nor prohibited. We refer to Chapter 3 for a discussion
of the deontic consistency principle in the field of deontic logic.

Four General Mı̄mām. sā Principles. The Mı̄mām. sā are known for using nyāyas,
i.e., general reasoning principles about commands. Three such principles were initially
introduced and discussed by Ciabattoni et al. (2015), Freschi et al. (2017), and Lellmann
et al. (2021). A fourth one was later discovered and introduced in (van Berkel et al.,
2022a). We refer to these works for a detailed discussion of these principles. The logics of
the Mı̄mām. sā authors Prabhākara and Kumārila developed and discussed in (van Berkel
et al., 2022a) are built upon these four principles. Man.d. ana conceptually deviates from
the Mı̄mām. sā tradition and does not take commands as primitive notions. Therefore, we
investigate whether the validity of these principles is preserved by Man.d. ana’s deontic
reduction.

First, we briefly elaborate on these nyāya-based principles:

P1 If the accomplishment of an action presupposes the accomplishment of another
action, the obligation to perform the first action implies the obligation to perform
the second one. Conversely, if an action necessarily implies another prohibited
action, the former is also prohibited.

P2 Two actions that exclude each other can neither be prescribed to nor prohibited for
the same group of eligible people under the same conditions.

P3 If two sets of conditions identify the same group of eligible agents, then a command
which holds for the conditions in one of those sets also holds for the conditions in
the other set.

P4 If two fixed obligations are compatible, their joint performance is obligatory too.

Principle P1, constitutes the abstraction and reformulation of various nyāyas; among
them, a nyāya present in the Tantrarahasya (IV.4.3.3) composed by the Mı̄mām. sā author
Rāmānujācārya (possibly 15th c. CE). The literal translation of this nyāya is “When the
various [requirements of a given duty], beginning with the origination [of a new duty], are
not established by other distinct prescriptions, then [the only prescription available] itself
creates the other four prescriptions that are related to it”. This quote signifies that if an
obligatory action consists of sub-actions, these constitutive actions are also obligatory.
Conversely, if an action is forbidden, all the composed rituals which include that action
are forbidden too. To illustrate, given a prohibition to cross the ocean, working at a place
across the ocean is also prohibited since it consists of (and requires) crossing the ocean.

Principle P2 constitutes the abstract formulation of the so-called principle of the half-
hen (see Kumārila’s Tantravārtika ad 1.3.3 (Subbāśāstr̄ı, 1929-1934)). In its most
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general form, this principle says that the collection of all Vedic commands is consistent,
i.e., the performance (non-performance) of an obligatory (forbidden) action cannot
lead to violating another Vedic command. Consequently, if some action is obligatory
(forbidden), then neither is that action prohibited (obligatory) nor is its opposite obligatory
(forbidden). Furthermore, P2 strongly relates to the previously discussed Mı̄mām. sā
principle, according to which nothing impossible can be commanded (see page 189).

Principle P3 comes from a discussion on the eligibility to perform sacrifices in ŚBh on
PMS 6.1.25. It expresses the generality of prescriptions concerning extensionally and
logically equivalent conditions.

Last, P4 corresponds to a restricted form of the logical property known as aggregation
(cf. Section 3.5). In Sanskrit, this property is called ‘accumulation’, i.e., samuccaya.
In common Mı̄mām. sā, cases of different fixed obligations to be performed in the same
context are handled as follows: if the two actions are compatible with one another and are
functional towards different intermediate results (e.g., brush your teeth and floss them,
achieving different intermediate results even though both having the overall purpose
of having healthy teeth), then one is obliged to perform them both. Otherwise, only
one of the two must be performed, chosen according to various criteria. The samuccaya
principle does not apply to elective sacrifices because even if the two were compatible,
they would have the same purpose and, therefore, it is enough only to perform one of the
two.12 Samuccaya is defined for prescriptions and their results and does not apply to
prohibitions.

The four Mı̄mām. sā principles are phrased in terms of commands. To address whether
they hold in LM, we have to reformulate them in terms of instrumentality statements.
We adopt □U to denote the relevant facts (e.g., the identification the same group of eligible
agents in P3) under which conclusions can be drawn about Vedic commands. We now
treat each principle in turn.

Principle P1 consists of two formalizations, one for obligations and one for prohibitions:

p1a (O(∆/χ) ∧ □U (t(∆) → t(Γ))) → O(Γ/χ)

p1b (F(∆/χ) ∧ □U (t(Γ) → t(∆))) → F(Γ/χ)

p1a and p1b are not LM-valid formulae (it is straightforward to construct a countermodel).
This is desirable: instrumentality is a notion of sufficient means, not of necessary means
such as expressed in P1. Man.d. ana appears to be aware of the fact that P1 does not hold
in his theory. To preserve the gist of P1, Man.d. ana provides an explicit explanation of the
role of necessary preconditions as independent from instrumentality. Namely, Man.d. ana
takes the reduction of bad karma as a universally desired goal. Then, he argues, from a
rational point of view no agent would be willing to omit those actions Γ1, . . . ,Γn that

12tayor ekārthatvāt samuccayo na sambhavati (ŚBh 8.1.15.26), “Since the two [actions] have the same
purpose, aggregation (samuccaya) is impossible”.
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w1χ

w2 ¬t(∆), t(Γ), R, ⊤

w3 t(∆), ¬t(Γ), R, ⊤

w4 ¬t(∆), ¬t(Γ), ¬R, ⊤

Figure 5.1: Counterexample showing that principle p2 is not LM-valid for obligations
and elective duties, φ = R for the obligation reading of p2 and φ = ⊤ for the elective
duty reading of p2. The R□U -relation is left implicit, the arrows refer to R□S .

serve as necessary preconditions for an obligatory action ∆ which reduces bad karma,
even though the actions Γ1, . . . ,Γn may not be sufficient (i.e., instruments) for reducing
bad karma.

We point out that an alternative formalization of P1 is possible where the factual
condition in the antecedent of p1a and p1b is relativized to the circumstance χ, namely,
□U (χ → □S (t(∆) → t(Γ))), respectively, □U (χ → □S (t(Γ) → t(∆))). For the same reasons
given for p1a and p1b, the resulting formalizations are not LM-valid formulae.

p2 (I(∆/φ/χ) ∧ □U (t(∆) → ¬t(Γ))) → ¬I(Γ/φ/χ) such that (†) holds

(†) it is the case that either φ ∈ {P, R} or both φ ̸⊢LM P and φ ̸⊢LM R.

Condition (†) ensures that the three properties are defined for obligations, prohibitions,
and elective duties. To illustrate, p2 as defined for obligations can be read as (O(∆/χ) ∧
□U (t(∆) → ¬t(Γ))) → ¬O(Γ/χ). Principle p2 is not LM-valid.13 The counterexample
in Figure 5.1 shows this for obligations and elective duties (a similar countermodel can
be straightforwardly constructed for prohibitions). We make three observations: First,
actions ∆ and Γ can be two mutually exclusive instruments serving the same purpose; for
instance, in the case of elective duties, they may both lead to a tautological outcome ⊤.
Second, ∆ and Γ cannot be jointly performed. However, that these actions are mutually
exclusive does not mean that not performing one of the two actions leads to a deontically
undesirable outcome. In fact, in the case of obligations, one of ∆ and Γ suffices for

13In (van Berkel et al., 2022a), principle P2 was formalized for conflicting outcomes instead of
actions, i.e., (I(∆/φ/χ) ∧ □U (φ → ψ)) → ¬I(∆/ψ/χ). This formula is LM-valid. The logics in the
aforementioned work—formalizing the deontic theories of Prabhākara and Kumārila—do not distinguish
between obligatory actions and obligatory outcomes. However, in LM, we can distinguish between the
two. Therefore, the formalization expressed in p2 is a more accurate rendition of P2.
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ascertaining a reduction of bad karma (cf. the heuristics applied for P4 discussed in
Section 5.1). Third, in cases such as the one described above, the Mı̄mām. sā principle
called Vikalpa applies (Freschi and Pascucci, 2021). The principle states that in case
two (or more) commands conflict, and no other heuristics can be applied to resolve the
conflict, one can choose to follow one of these commands (Lellmann et al., 2021). This
universally accepted Mı̄mām. sā principle only serves as a last resort in case of conflict.
Nevertheless, Vikalpa requires that the agent complies with at least one of the conflicting
commands. There is a strong connection between Vikalpa and the nonmonotonicity
principle known as disjunctive response (Horty, 2012) (see Section 3.5).

Here too, P2 can be alternatively formalized relativizing the factual condition in the
antecedent of p2 to the circumstance χ, namely, □U (χ → □S (t(∆) → ¬t(Γ))). The model
given in Figure 5.1 also serves as a countermodel to this interpretation.

p3 (I(∆/φ/χ) ∧ □U (χ′ ≡ χ)) → I(∆/φ/χ′) such that (†) holds

(†) it is the case that either φ ∈ {P, R} or both φ ̸⊢LM P and φ ̸⊢LM R.

The formalization in p3 is defined to hold for all three command types. Principle p3
is LM-valid, namely, because the universal necessity modality □U is a normal modal
operator. The principle captures a minimal property of logical reasoning: its absence
would make a formalized prescription dependent upon the particular form of a formula,
e.g., a circumstance χ would be different from the circumstance χ ∧ χ. Since the factual
condition in p3—i.e., □U (χ′ ≡ χ)—is already about the relevant circumstances, we do not
obtain an alternative formalization of p3 as we did for p1a, p1b, and p2.

Last, principle P4 expresses a restricted form of aggregation for compatible actions.
Intuitively, two actions t(∆) and t(Γ) are compatible if their joint performance is possible.
There are two ways in which we can then formalize this idea of possibility: p4a expresses
the interpretation of ‘compatible’ as a global notion—i.e., □U (t(∆) ∧ t(Γ))—whereas p4b
interprets ‘compatible’ locally, that is, relativized to the relevant circumstances χ—i.e.,
□U (χ → □S (t(∆) ∧ t(Γ))). Both p4a and p4b are formulated for instruments in general
(recall that & denotes joint action, page 177).

p4a ( □U (t(∆) ∧ t(Γ)) ∧ I(∆/φ/χ) ∧ I(Γ/ψ/χ)) → I(∆&Γ/φ ∧ ψ/χ)

p4b (□U (χ → □S (t(∆) ∧ t(Γ))) ∧ I(∆/φ/χ) ∧ I(Γ/ψ/χ)) → I(∆&Γ/φ ∧ ψ/χ)

Formula p4a is not an LM-valid formula, whereas the local interpretation of P4, expressed
by p4b, is in fact LM-valid. An intuitive explanation for this is the following: since φ,
respectively ψ, is propagated at all worlds that witness performances of ∆, respectively Γ,
both φ and ψ are also propagated at those worlds witnessing ∆&Γ. The fact that ∆&Γ
is possible, together with the fact that □S ¬t(∆) implies □S ¬t(∆&Γ), ensures that □U χ →
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□S ¬t(∆&Γ) holds, which is a necessary condition for instrumentality (Definition 5.10).
Property p4b holds for instruments in general and thus also for commands defined in
terms of them. For instance, we obtain the following LM-valid formulae for obligations:

(□U (χ → ( □S (t(∆) ∧ t(Γ))) ∧ O(∆/χ) ∧ O(Γ/χ)) → O(∆&Γ/χ)

Recall that for the Mı̄mām. sā, principle P4 is only adopted for obligations. There is
no such distinction in Man.d. ana’s deontic theory because the three command types are
just instruments whose possible joint performance gives rise to other instruments. On
this general level, there is no difference between aggregating consistent obligations or
prohibitions.14

5.5 The Śyena Controversy

The introduced logic LM enables us to understand better the underlying structure of
Man.d. ana’s deontic theory. Here, we apply LM to reconstruct and formally verify Man.d. a-
na’s solution to the Śyena controversy. Our aim (Objective 3) is to show and explain the
consistency of Man.d. ana’s solution to the controversy. The Śyena is a one-day-long ritual
in which the Soma beverage is offered. Its putative result is the death of the sacrificer’s
enemy. The controversy is due to the fact that the Śyena appears to be prescribed in the
Vedas (through the command “The one who desires to kill their enemy should sacrifice
bewitching with the Śyena”), even though the Vedas also prohibits harming any living
being. Thus, performing Śyena seems to conflict with the prohibition to harm. However,
the Vedas are unanimously assumed consist. Finding a solution to the controversy proved
challenging for many Mı̄mām. sā scholars. We refer to (van Berkel et al., 2022a) for an
extensive discussion of various authors and their solutions to the Śyena controversy. The
Śyena controversy consists of the following four statements:

(A) The one who desires to kill their enemy should sacrifice with the Śyena.

(B) One should not harm any living being.

(C) Performing Śyena implies causing someone’s death.

(D) Causing someone’s death implies harming.

We point out that (A) and (B) are direct translations from Sanskrit, whereas (C) and
(D) are derived from common Mı̄mām. sā arguments about the Śyena. Furthermore, all
Mı̄mām. sā authors agree that Śyena is an elective sacrifice (A) and that the command
not to harm any living being (B) is a prohibition. Although all Mı̄mām. sā authors agree
that the Śyena should not be performed, they disagree on the reasons underlying it.

14See Section 3.5 and the work of Parent and van der Torre (2018b) for a discussion on restricted
forms of aggregation.
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w1

des_kill

w2

t(syena)

t(harm)

death

P

w3

Figure 5.2: The Śyena model M = ⟨F, V ⟩ with Atoms = {death,des_kill} and
Wit = {syena, harm}, W = {w1, w2, w3}, Wsyena = Wharm = WP = {w2}, WR = ∅,
R□S = {(w1, w2), (w1, w3), (w2, w2), (w2, w3), (w3, w2), (w3, w3)}, V (des_kill) = {w1},
and V (death) = {w2}. Arrows represent the relation R□S . The relation R□U = W ×W
is left implicit. The sentences (ALM)−(DLM) are in fact satisfied at each world.

In what follows, we use this font to denote states of affairs, and we use this font to
denote actions. For the formalization of the controversy, let the action language LAct

consist of the atoms syena and harm, respectively describing “performing the Śyena” and
“doing harm”. Let death and des_kill be propositional atoms denoting “the death of
the enemy has occurred” and “the agent has the desire to kill the enemy”. The Śyena
controversy is formalized in LM as follows:

(ALM) E(syena/death/des_kill) = I(syena/death/des_kill)

(BLM) F(harm/⊤) = I(harm/P/⊤) ∧ ¬I(harm/R/⊤)

(CLM) □U (t(syena) → death)

(DLM) □U (death → t(harm))

The LM-model M = ⟨F, V ⟩ shows the consistency of (ALM)-(DLM) in LM, where:

• Atoms = {death,des_kill} and Wit = {syena, harm};

• W = {w1, w2, w3}, Wsyena = Wharm = WP = {w2}, WR = ∅;

• R□S = {(w1, w2), (w1, w3), (w2, w2), (w2, w3), (w3, w2), (w3, w3)};

• V (des_kill) = {w1} and V (death) = {w2}.

Observe that, by Definition 5.10, if an instrumentality statement holds at some moment
w of a model, then the instrumentality relation consisting of clauses (i)-(iv) of Defini-
tion 5.10 holds true at every moment of the model. Figure 5.2 represents the model
M graphically. It is the case that M |= □U (des_kill → □S (t(syena → death)), and
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M |= □U des_kill. Furthermore, we have M |= □U (des_kill → □S t(syena)) and also
M |= □U (des_kill → □S ¬t(syena)). So all the conditions (i)-(iv) of the instrumentality
relation are satisfied. Consequently, we have that M |= I(syena/death/des_kill)
(ALM). In a similar way we can verify that M satisfies (BLM), (CLM) and (DLM).

What is more, the sentences in Σ = {(ALM), (CLM), (DLM)} logically entail that the Śyena
is prohibited. Namely, we have that:

Σ |=LM F(syena/des_kill)

The reasoning is straightforward. First, observe that ALM entails the conditions (ii)-(iv)
of the definition of F(syena/des_kill) (Definition 5.10). For condition (i), observe
that condition (i) of (BLM) expresses that harm necessarily leads to the accumulation
of bad karma P. Since syena necessarily leads to death (CLM) and death necessarily
entails harm (DLM), the performance of syena necessarily leads to the accumulation of
bad karma P.

Recall the footnote on page 180. The conclusion F(syena/des_kill) is not a Vedic
prohibition. That is, there is no such statement in the sacred texts. The prohibition
F(syena/des_kill) follows on the derived level. On this level, it is possible that Man. -
d. ana’s theory implies elective commands and prohibitions for the same actions without
leading to an inconsistency.

For Man.d. ana, then, there is a dilemma. It is true that “if you desire to kill your enemy,
you are commanded to sacrifice with the Śyena”, but also “if you desire to kill your
enemy, you are prohibited from performing the Śyena”. He solves this dilemma not on
a deontic level but by an appeal to rationality. Man.d. ana argues that the Śyena should
not be performed because even though it provides the worldly reward of the death of
one’s enemy, this reward is strictly outweighed by the accumulation of bad karma, which
is a necessary consequence of performing the Śyena. Man.d. ana distinguishes between
two kinds of desires: worldly desires (such as desiring the death of one’s enemy) and
karma desires (the desire to diminish one’s accumulated bad karma and the desire not
to accumulate bad karma). According to Man.d. ana, the last kind of desire is necessary
for any rational being. Whereas Man.d. ana does not distinguish between types of worldly
desires, he does distinguish between worldly desires and karma desires. Our formalization
mirrors this: karma desires–i.e., P and R—define obligation and prohibition, and worldly
desires define elective duties. Additionally, Man.d. ana differentiates between the strengths
of worldly desires and those of karma desires. Namely, to resolve the apparent decision
dilemma of the Śyena controversy, Man.d. ana appeals to the different strengths of the two
desires involved: i.e., no rational agent would prefer worldly desires over karma-desires
in case of conflict. The formal representation of such strengths, thus incorporating
Man.d. ana’s account of rational decision-making, is not present in the setting of LM. Such
an extension is left for future work.

As a last remark, we point out that the Śyena controversy is based on actual prescriptions
found in the Vedas. Man.d. ana interprets the controversy as a dilemma: on the one
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hand, there is the elective command to perform the Śyena and, on the other hand, there
is a (derived) prohibition that forbids the performance of Śyena. For Man.d. ana, these
commands are two incompatible instruments that hold in the same context. However,
Man.d. ana’s solution additionally appeals to the rationality of the agent, who would never
perform the Śyena. As a benchmark challenge, the Śyena controversy fulfills a similar
role for the Mı̄mām. sā as deontic puzzles and paradoxes do in deontic logic.

5.6 Man. d. ana and the Deontic Paradoxes

In deontic logic, paradoxes and puzzles are the driving force for defining and refining
formal systems. They serve as benchmarks and are quintessential for properties that
(intuitively) should or should not hold in a deontic logic (see Chapter 1). This section
investigates how the logic LM deals with well-known puzzles (Objective 4). We consider
a selection of those paradoxes and refer to (van Berkel et al., 2022a) for an extensive
analysis of a variety of paradoxes in relation to the logics based on Man.d. ana, Prabhākara,
and Kumārila.

Remark 5.3. Observe that for common Mı̄mām. sā, negative obligations and prohibitions
are two strictly distinct deontic concepts (Section 5.1). This is contrary to standard
approaches in deontic logic where the two are taken as interdefinable (Hilpinen and
McNamara, 2013). A notable exception in this respect is Talmudic logic (Abraham et al.,
2011). Since the logic LM has the expressivity to differentiate between obligations and
prohibitions, we consider several formal interpretations of the paradoxes containing both
obligations and prohibitions. We omit consideration of elective duties (i.e., E), which are
identified through the presence of a desire.

5.6.1 Contrary-to-Duty Paradoxes

Recall that contrary-to-duty (CTD) scenarios describe subideal situations in which
obligations hold as a result of violating some other obligation (Chapter 1). In deontic
dynamic logics—i.e., deontic PDL-like logics—obligations are about actions, and actions
are taken as transitions between worlds (Meyer, 1988).15 Most CTD scenarios are then
straightforwardly addressed by assigning an inherently temporal interpretation. For
instance, the CTD obligation “If you do not keep your promise, you ought to apologize”
is interpreted as “after you do not keep your promise, you ought to apologize”. The
reason inconsistencies are avoided is that primary obligations are interpreted at a different
moment from the secondary obligation, namely, after the occurrence of the violation.
In the context of LM, we can consistently address these CTD paradoxes by adopting
the same (temporal) approach taken by Meyer (1988). Due to the presence of action
witnesses, we may formalize a CTD obligation, such as the one above, in the following
two ways:

15Meyer (1988) discusses several paradoxes in the context of dynamic deontic logic.
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• [promise]O(apologize/⊤)

• O(apologize/¬t(promise))

The first is in the spirit of deontic dynamic logic (Meyer, 1988) (recall that the bar refers
to an action’s complement), and the second employs the notion of an action witness by
conditioning the obligation on whether “not keeping one’s promise” has been successfully
performed at the present moment. Since temporal readings of CTD obligations have
a straightforward solution, we will not pursue the above two options here. Moreover,
as pointed out by Prakken and Sergot (1996), not all CTD scenarios can be resolved
by introducing temporal distinctions. In this respect, we consider the Gentle Murder
Paradox. Initially proposed by Forrester (1984), the paradox consists of the following
four sentences:

(G1) You ought not to kill.

(G2) If you kill, you ought to kill gently.

(G3) Killing gently is killing.

(G4) You do kill.

In Standard Deontic Logic (Hilpinen and McNamara, 2013) (see page 13), the above
sentences entail the following undesirable obligation:

(G5) You ought to kill.

First, we must rewrite the Gentle Murder Paradox in terms of the vocabulary of Man.d. ana,
using instruments, rewards, and sanctions. A prohibition such as “you should not kill”
can be interpreted as “the act of killing leads to the accumulation of bad karma”, which
is formalized as

(1) F(kill/⊤) := I(kill/P/⊤) ∧ ¬I(kill/R/⊤)

A sentence such as “if you kill, you ought to kill gently” can be read as “given that you
kill, if you also kill gently, a reduction of bad karma ensues”. In other words, the act of
both killing and killing gently is instrumental to reducing bad karma. The sentence is
formalized as,

(2) O(kill&gently/⊤) := I(kill&gently/R/⊤) ∧ ¬I(kill&gently/P/⊤)

At first, this formalization might seem odd. The above two formalizations suggest that
the agent has a prohibition against killing and simultaneously an obligation to kill and
do it gently. The scenario has the appearance of a dilemma. Should the agent kill or
not? To better understand the situation, we must adopt Man.d. ana’s perspective on the
matter and think of the two formalizations as instrumentality relations instead. Vedic
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prohibitions and obligations are nothing but descriptions of instrumentality relations
about the accumulation, respectively reduction of bad karma. This means that (1) and
(2) express that killing is instrumental to accumulating bad karma, and killing gently
is instrumental to reducing bad karma. If an agent desires to accumulate bad karma
(which, according to Man.d. ana, a rational agent never will), the agent can kill. If an agent
desires to reduce bad karma (which, according to Man.d. ana, a rational agent always will),
the agent can employ the act of killing gently. In Man.d. ana’s approach, a rational agent
will never kill gently in order to reduce bad karma since killing gently inevitably leads to
the abominable accumulation of bad karma (see page 196).

Since obligations and prohibitions are not interdefinable for the Mı̄mām. sā, we obtain the
following possible formalizations of this paradox:

(g1) O(kill/⊤) or F(kill/⊤)

(g2) O(kill&gently/⊤) or F(gently&kill/⊤)

(g3) □U (t(gently) → t(kill))

(g4) t(kill)

Three of the four formalizations are consistent. Table 5.1 shows the different possibilities
of formalizing sentences (g1) and (g2), and their consistency together with (g3) and (g4).
Surprisingly, the only inconsistent option arises when (G1) is interpreted as F(kill/⊤)
and (G2) as O(kill&gently/⊤), i.e., (1) and (2) above. The inconsistency is explained
as follows. By Definition 5.10 we know that F(kill/⊤) implies □S (t(kill) → P) and
that O(kill&gently/⊤) implies ¬□S ((t(kill) ∧ t(gently)) → P) (recall that kill&gently =
kill ∪ gently). With basic LM-reasoning we obtain □S (t(kill) ∧ t(gently) ∧ ¬P), which is
inconsistent with the fact that □S (t(kill) → P). In other words, it conflicts with the
Mı̄mām. sā property that actions such as kill&gently cannot be obligatory and prohibited
simultaneously. We point out that, in general, an action may imply both P and R
(cf. Remark 5.1). However, that action can neither be obligatory nor prohibited by
Definition 5.10. The only correct Man.d. ana-like interpretation of the paradox is either
the one in the first, third, or fourth row.

Consider the formal interpretation in the first row of Table 5.1. This interpretation is
consistent. It expresses that not killing leads to a reduction of bad karma and that gentle
killing leads to a reduction of bad karma. However, it does not entail that killing itself
leads to a similar reduction. This interpretation entails the following LM-valid formulae

(3) O(kill/⊤) ∧ O(kill&gently/⊤) → O(kill ∪ (kill&gently)/⊤)

and
(4) O(kill/⊤) ∧ O(kill&gently/⊤) → ¬O(kill/⊤)

In the above, (3) expresses that the paradox entails either not killing or killing gently
suffices (as an instrument) to reduce bad karma. Furthermore, (4) expresses that although
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You ought not to kill If you kill, you ought Killing gently is killing You kill Consistent

to kill gently

O(kill/⊤) O(kill&gently/⊤) □U (t(gently) → t(kill)) t(kill) yes

F(kill/⊤) O(kill&gently/⊤) □U (t(gently) → t(kill)) t(kill) no

O(kill/⊤) F(gently&kill/⊤) □U (t(gently) → t(kill)) t(kill) yes

F(kill/⊤) F(gently&kill/⊤) □U (t(gently) → t(kill)) t(kill) yes

Table 5.1: The four possible formalizations of the Gentle Murder Paradox.

w1

w2 t(mail), R, ⊤

w3 t(burn), ⊤

Figure 5.3: Counterexample showing that Ross’ Paradox does not hold in LM for the case
of obligations, i.e., w1 |= O(mail/⊤) and w1 ̸|= O(mail ∪ burn/⊤). The R□U relation is left
implicit; the arrows refer to R□S . The model is defined accordingly: MM = ⟨FM, V ⟩, with
W = {w1, w2, w3}, Wmail = {w2}, Wburn = {w3}, WP = ∅, WR = {w2}, R□U = W × W ,
R□S = {(w1, w2), (w1, w3)} and V as defined in Definition 5.5.

an agent is obliged to kill gently from the point of view of instrumentality, the agent does
not have an obligation to kill in general, as desired.

Last, we point out that the interpretations F(kill/⊤) and F(gently&kill/⊤) express a
more intuitive reading of (G1), respectively (G2) in terms of instruments. Namely, it tells
us that killing is instrumental to an accumulation of bad karma and non-gentle killing is
not an exception.

5.6.2 Ross’ Paradox

One of the oldest deontic paradoxes is Ross’ Paradox. Initially proposed by Ross (1944),
the paradox consists of deriving from the obligation in (R1) the counterintuitive obligation
expressed in (R2).

(R1) It is obligatory that agent i mails the letter.

(R2) It is obligatory that agent i mails the letter or burns it.

In most normal modal deontic logics, such as Standard Deontic Logic (page 13), the
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sentence (R2) is a logical consequence of (R1).16 Ross’ Paradox does not hold in LM.
First, observe that the sentence expressed in (R1) can be formalized as either O(mail/⊤)
or F(¬mail/⊤). We consider two formal interpretations: one in which both sentences
are taken as obligations and one in which both are considered as prohibitions. The
countermodel in Figure 5.3 shows that the following formula is not LM-valid:

(5) O(mail/⊤) → O(mail ∪ burn/⊤)

In other words, Ross’ paradox does not hold. A similar countermodel for the prohibition
interpretation of the Paradox can be straightforwardly obtained. The reason why (5) is
not LM-valid is that condition (i) of Definition 5.10 is not satisfied: only mailing the letter
suffices for the reduction of bad karma. To understand this point, recall the discussion
of principle p1 in Section 5.4. Instrumentality is a notion of sufficient means, not of
necessary means. In the case of obligations, even if the action witness t(mail) implies
the action t(mail ∪ burn) (straightforward LM reasoning), the fact that mailing the letter
is an instrument for the reduction of bad karma does not mean that either mailing or
burning the letter is an instrument for that same purpose. The solution is similar to the
one provided for dynamic deontic logics, e.g., by Meyer (1988).

5.6.3 The Alternative Service Challenge

The Alternative Service Challenge was extensively discussed by Horty (1994) in the
context of nonmonotonic deontic reasoning. One of the earliest versions of the paradox
can be found in the work of Van Fraassen (1973). It consists of the following three
sentences:

(A1) You should fight in the army or perform alternative service.

(A2) You should not fight in the army.

(A3) You should perform alternative service.

Ideally, the sentence (A3) is logically implied by (A1) and (A2) together. The paradox
is especially a problem for non-normal modal deontic logics and nonmonotonic deontic
logics. Such systems are sometimes weaker than Standard Deontic Logic due to certain
restrictions imposed on the logical consequence relation. For instance, different non-
normal deontic logics (Van Fraassen, 1973; Chellas, 1980) and nonmonotonic deontic
logics (Horty, 1994; Parent and van der Torre, 2018b) have been proposed to deal with
moral dilemmas by restricting the aggregation of obligations. In such systems the formula
Oφ ∧ O¬φ → O(φ ∧ ¬φ) is not valid. As pointed out by Van Fraassen (1973) and Horty
(1994), letting go of the principle of aggregation is arguably too strong since it also blocks

16Recall from Section 1.2.1, that Ross’ paradox holds in SDL due to the normality of the deontic
operator O which makes the formula Oφ → O(φ ∨ ψ) an SDL-theorem.
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the inference of (A3) from (A1) and (A2). Certain mechanisms may be introduced to the
logic to restore some of its inferential power.17

Concerning the logic LM, we obtain four possible formalizations of the scenario based on
the interpretation of (A1) and (A2) as either an obligation or prohibition. Of the four
possible combinations, three are inconsistent:

• O(fight ∪ service/⊤) and O(fight/⊤) are jointly inconsistent. Namely, both fight
and fight are instruments for reducing bad karma, contradicts with the Mı̄mām. sā
principle that obligations must be non-trivial (cf. axiom A7).

• O(fight ∪ service/⊤) and F(fight/⊤) are jointly inconsistent. Namely, by Defini-
tion 5.10, the prohibition implies that fight is not simultaneously an instrument
for the reduction of bad karma, which contradicts the obligation to perform either
fight or service.

• F(fight&service/⊤) and O(fight/⊤) are jointly inconsistent. The reasoning is similar
to the previous item.

• F(fight ∩ service/⊤) and F(fight/⊤) are jointly consistent. The following model,
graphically presented in Figure 5.4, demonstrates this.

It remains to check whether the only consistent formalization of the scenario also entails
the desired conclusion expressed in (A3), i.e., F(service/⊤). It does.

Proposition 5.1. The following formula is LM -valid: (F(fight∩service/⊤)∧F(fight/⊤)) →
F(service/⊤).

Proof. Take an arbitrary LM-model M and a world w ∈ W of M such that (1) M, w |=
F(fight ∩ service/⊤) and (2) M, w |= F(fight/⊤). We reason towards a contradiction by
assuming M, w ̸|= F(service/⊤). This means that either (a) M, w |= ¬I(service/P/⊤) or
(b) M, w |= I(service/R/⊤). We consider both cases.

(a) By Definition 5.10 either one of the four clauses (i)-(iv) of instrumentality does
not hold.18 We know that (ii) M, w |= □U ⊤ and by (1) we know (iii) M, w |=
□S t(service). Hence there is a v ∈ R□S (w) such that M, v |= t(service) ∧ t(fight)

and by (1) M, v |= P. By axiom A6 we know there is a u ∈ R□S (w) such that
M, u |= ¬P. Hence, by (2), we also know M, u |= t(fight). By contraposition on (1)
we obtain M, u |= ¬P → ¬(t(fight) ∧ t(service)) and so by basic LM-reasoning we
have M, u |= t(service). Consequently, we know clause (iii) M, w |= □S t(service) also
holds. Hence, clause (i) must be violated, i.e., M, w |= ¬□S (t(service → P), which

17We refer to the work of Horty (1994) and Parent and van der Torre (2018b) for solutions to this
problem. See also Chapter 3 for a discussion of restricted aggregation in deontic STIT logic.

18Since the context is ⊤ this condition can be ignored with respect to Definition 5.10.

202



5.6. Man.d. ana and the Deontic Paradoxes

w1

w2 ¬t(fight), ¬t(service), P

w3 ¬t(fight), t(service), ¬P

w4 t(fight), P

Figure 5.4: An LM-model showing the consistency of the Alternative Service Paradox
where both (A1) and (A2) are interpreted as prohibitions. The arrows denote R□S
relations, and the relation R□U = W ×W is left implicit. The LM-model M is defined
accordingly: W = {w1, w2, w3}, Wfight = {w1}, Wservice = {w1, w3}, WR = ∅, WP =
{w1, w2}, R□S = R□U = W ×W and V as in Definition 5.5

implies the existence of a z ∈ R□S (w) such that M, z |= t(service) ∧ ¬P. However,
then by (2) we have M, z |= t(service) ∧ t(fight) ∧ ¬P which contradicts with the
assumption (1). Hence, all clauses (i)-(iv) are satisfied. Contradiction.

(b) By assumption (1) we know that M, w |= ¬I(fight&service/R/⊤). However, since
clauses (ii)-(iv) of Definition 5.10 are satisfied due to M, w |= I(fight&service/P/⊤)
we know that M, w |= ¬□S ((t(fight) ∧ t(service)) → R). By the assumption that
M, w |= I(service/R/⊤) we know that M, w |= □S (t(service) → R) and thus M, w |=
□S ((t(service) ∧ t(fight)) → R). Contradiction. QED

5.6.4 Jørgensen’s Dilemma and Man. d. ana’s Reduction

In the 1930s, Jørgenson discussed the following challenges concerning logic and norms,
e.g., see (Pigozzi and van der Torre, 2018): logical inference essentially depends on
whether sentences (such as premises and conclusions) can be true or false. Norms and
imperatives have no truth value. Hence, one cannot justify a norm or imperative through
logical reasoning. That is, a logic of norms is impossible. However, valid logical reasoning
with norms or imperatives appears possible. This is a dilemma (Hilpinen and McNamara,
2013). The most common approach in deontic logic is to indirectly define reasoning about
norms via truth-functional reasoning with propositions about norms. This observation
led to the formal distinction between norms and norm propositions (von Wright, 1963a;
Makinson, 1999). Then, a deontic formula such as Oiφ is interpreted as a normative
proposition, i.e., “it is the case that φ is obligatory for agent i (given the implicit
underlying normative code)”. The problem of Jørgensen’s dilemma for deontic logic is
then avoided if we think of deontic logic as a system of logical reasoning with norm
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propositions. Hilpinen and McNamara (2013) provide an extensive historical discussion
of various solutions.

Interestingly, Man.d. ana’s deontic theory offers a novel contribution to dealing with
Jørgenson’s dilemma. Commands are for Man.d. ana descriptive sentences about the world,
namely, about relations between actions and particular states of affairs that result from
those actions. Consequently, Man.d. ana’s theory reduces norms (or normative statements,
for that matter) to truth-functional propositions about the world. In other words,
Man.d. ana’s deontic theory provides an alternative solution to the dilemma.

In sum, the discussed deontic puzzles do not lead to inconsistencies in LM. These
encouraging results may be due to the depth of Man.d. ana’s deontic theory. Although some
of the various formal interpretations of contrary-to-duty scenarios were inconsistent, most
interpretations yielded consistent formalizations. Man.d. ana’s deontic theory addresses
the paradoxes in accordance with a common solution strategy adopted in modern deontic
logics. Namely, the adaptation of a logic of actions with an Andersonian reduction (Bartha,
1993; Castañeda, 1981; Giordani and Canavotto, 2016; Meyer, 1988; Meyer et al., 1994).
This is a surprising convergence for a philosophical approach whose foundations lie
millennia back. We refer to (van Berkel et al., 2022a) for further analysis of the paradoxes.

5.7 Related Work and Future Research

Action Logics. Since Man.d. ana’s elementary concepts are actions and outcomes, we
adopted a PDL-like language (Fischer and Ladner, 1979; Meyer, 1988). For our purposes,
a minimal action language sufficed using negation, disjunction, and conjunction. Despite
its simplicity, this language allows for notions of instruments that, for instance, take
actions as preconditions. Since LM is similar to the Logic and Agency and Norms in
Chapter 4, we refer to that chapter for a more extensive discussion of action logics.

Deontic Reductions: Sanction, Violation, and Ideality. The reduction of Vedic
commands offered by Man.d. ana has some striking similarities with what is known as the
Andersonian-Kangerian reduction of (Standard) Deontic Logic. In the early days of deontic
logic, Anderson and Moore (1957) argued for a reduction of deontic modalities to the
(then) better understood alethic modalities, motivated by the striking similarity between
the two modalities, i.e., necessity and obligation behave as universal operators, whereas
possibility and permissibility behave as existential operators.19 Anderson proposed a
treatment of obligations as statements concerning necessity and violation: “φ is obligatory
if ¬φ necessary imply a sanction”.20 Later, Castañeda (1972) argued that a conceptual
modification of ‘sanctions’ to ‘violations’ solves several philosophical issues with the

19This correspondence was already noticed and discussed by von Wright (1951).
20As pointed out by Ciabattoni et al. (2021), Anderson’s reduction is similar to the stance taken by

Kelsen in his theory of law. There, Kelsen argues that “the legal order [. . . ] prohibits a certain behavior
by attaching to it a sanction or [. . . ] it commands a behavior by attaching a sanction to the opposite
behavior” (as quoted by Ciabattoni et al. (2021) on page 141).
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reduction. It is well-known that Standard Deontic Logic—a non-normal modal logic
interpreting obligation as a KD modality—can be translated into Anderson’s logic, e.g.,
see (Parent and van der Torre, 2018a). However, we recall that Anderson’s logic (1957)
is more expressive than Standard Deontic Logic, e.g., it can characterize the principle of
deontic contingency (cf. page 189). The reduction was later adopted by Meyer (1988)
to an action setting: “an action ∆ is obligatory if all performances of its complement
∆ lead to a violation”. D’Altan et al. (1996) use both approaches to provide a uniform
setting for discussing ‘ought-to-be’ versus ‘ought-to-do’. In Chapter 4 (van Berkel et al.,
2020), the reduction-setting was to the inclusion of norms of instruments.

Similarly, Man.d. ana can be regarded as a reductionist of deontic reasoning: he regards
every Vedic command as a statement concerning instruments, that is, actions leading to
different results. The results are of three types: states of affairs, sanctions, and rewards.
This trichotomy proposed by Man.d. ana has also, independently, been proposed in the
history of deontic logic: Kanger (1971) proposed the inclusion of a positive constant
“what morality prescribes” as a means to identifying obligations, whereas prohibitions
would be defined in terms of sanctions. There, an obligation is not identified in terms of
sanctions but in terms of ‘what morality prescribes’: “φ is obligatory if it is necessary
that morality prescribes φ”. Formally, the obligation is defined as Oφ := □(w_m_p → φ)
(where w_m_p is a constant denoting ‘what morality prescribes’). A significant difference
between Kanger’s approach and Man.d. ana’s, is that the former takes φ as a necessary
condition for the ‘ideal world’ whereas for Man.d. ana φ is a sufficient condition for ‘reducing
bad karma’. See the work of Glavaničová and Pascucci (2021) for another reductionist
approach to deontic modalities. There, (conditional) obligations are defined using an
ideality constant and an ideality and subideality modality. See the work of Lomuscio and
Sergot (2003) for the use of “green” constants identifying permissible states.

Formalizations of the Śyena. In this chapter, we discussed a formal analysis of
Man.d. ana’s solution to the Śyena controversy. The analysis was initially presented in
(van Berkel et al., 2021a), which also contains formal analyses of the solutions provided
by Prabhākara and Kumārila. Guhe (2021), provides a formal analysis of the solution of
the Navya-Nyāya school. We briefly discuss these analyses here.

Prabhākara’s solution. Prabhākara does not deontically distinguish between obligations
and elective commands. For him, all prescriptions are obligations proper. Prabhākara’s
solution to the Śyena is a case of CTD reasoning. Namely, the command to perform the
Śyena is an obligation activated when a specific violation occurs. The violation is the
desire to cause an enemy’s death. It must be noted that Prabhākara takes desires as
irreversible decisions. Thus, for Prabhākara, the desire to kill amounts to a decision to
kill. In ideal circumstances, no living being would desire the death of their enemy and,
therefore, would not be eligible to perform the Śyena. By contrast, once the subideal
eligibility condition of desiring the death of their enemy is satisfied, the performance of the
Śyena becomes obligatory. Prabhākara’s solution to the Śyena was consistently formalized
by Ciabattoni et al. (2015) and a more refined analysis was provided in (van Berkel et al.,
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2021a). The proposed logic for Prabhākara’s deontic theory consists of a propositional
logic extended with a global modality □U and two dyadic deontic operators O(./.) and
F(./.) for obligation and prohibition, respectively. The modal logic is a non-normal
modal (Chellas, 1980).

Kumārila’s solution. Although the deontic theories of Prabhākara and Kumārila are quite
similar, the two authors have different solutions to the Śyena controversy. Kumārila’s
solution relies on the distinction between obligations and elective commands. In his
deontic theory, elective commands have no deontic force. Elective commands are mere
Vedic recipes that provide suitable means to achieve specific goals. Consequently, in case
of a conflict with a prohibition, an agent just can refrain from performing the elective
sacrifice, thus avoiding a violation of the prohibition. Likewise, in the case of Śyena, one
simply does not perform it. Kumārila’s solution to the Śyena was consistently formalized
and analysed in (van Berkel et al., 2021a). The proposed logic extends the logic for
Prabhākara’s deontic theory (see above) with an additional dyadic modal operator E(./.)
representing elective commands. This additional modality is characterized by weaker
properties than those for the other deontic operators. The only requirement imposed on
elective commands is self-consistency.

The Navya-Nyāya solution. Guhe (2021) formally investigates Gaṅgeśa’s solution to the
Śyena controversy, Gaṅgeśa belongs to the Navya-Nyāya school. Guhe discusses the
school’s account of obligations, permissions, and prohibitions. In contrast to common
Mı̄mām. sā, injunctions have an inherently teleological meaning for the Navya-Nyāya.
Namely, in order to induce an agent to obey (Vedic) commands, the presence of the
(un)desired expected effect is postulated. The Navya-Nyāya also maintain a reduction of
commands. The approach adopted by the Navya-Nyāya is strikingly akin to Man.d. ana’s
approach. One of the main differences is that, for Man.d. ana, obligations can be neglected
without additional sanctions, whereas for the Navya-Nyāya, the neglect of an obligation
causes the accumulation of bad karma. Gaṅgeśa’s solution to the Śyena is that even
though it is prescribed, performing the Śyena is inappropriate for virtuous agents. A
virtuous agent pursues any action that ends “in a deontically perfect world” (Guhe, 2021,
p.28). The performance of Śyena is not part of any deontically perfect world.

For its formalization, Guhe (2021) adopts the dynamic deontic logic ADL, as developed by
Giordani and Canavotto (2016). It is a deontic action logic in the Andersonian tradition
(see Chapter 4 for a discussion of this logic). Guhe (2021) adopts constants referring to
deontically perfect worlds and to sanctions. An instrument is a formula of the form [∆]φ,
where [∆] is a primitive modality (cf. □S (t(∆) → φ) in the language of LM). It is clear
from Definition 5.10 that Man.d. ana’s conception of instrumentality is more involved than
the one adopted by Guhe (2021) (cf. the contingency and meaningfulness requirements
in Section 5.4). The Navya-Nyāya solution to the Śyena controversy can be consistently
formalized in ADL due to the use of two independent deontic operators. One of the
important differences between our formalization and the one by Guhe (2021) is that our
logic is solely constructed from deontic properties found in Mı̄mām. sā source texts. The
logic used by Guhe (2021) was developed independently of the former’s aim, namely, by
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Giordani and Canavotto (2016). This may lead to questions concerning the validity of
the formal analysis since certain logical consequences of the formalization may be due to
the underlying logic ADL.

The debate on Śyena is not limited to the above authors. The topic has been thoroughly
investigated in Sanskrit philosophy for more than two millennia. For an in-depth analysis
of various solutions to the controversy, we refer to (van Berkel et al., 2022a).

Related Mı̄mām. sā work. Ciabattoni et al. (2015) were the first to formalize Mı̄mām. -
sā reasoning in logic. Their system is called “basic Mı̄mām. sā Deontic Logic” (bMDL).
Although entirely based on Mı̄mām. sā principles, the necessity-free fragment of this logic
is, in fact, identical to the dyadic version of the non-normal deontic logic MD (Chellas,
1980) (also see the work by Freschi et al. (2019) and Lellmann et al. (2021)). The logic
bMDL captures the concept of obligation in common Mı̄mām. sā—encompassing both fixed
and occasional duties—but adopts obligation as its only deontic operator. The logics
formalizing the deontic theories of Prabhākara and Kumārila, called LPr+ and LKu+

respectively, were introduced in (van Berkel et al., 2021a). Preliminary versions of these
logics were presented by Lellmann et al. (2021). There, a nonmonotonic sequent-style
proof system was developed for Prabhākara’s deontic theory. The system captures a
Mı̄mām. sā-based interpretation of a contemporary defeasible principle known in AI as
specificity, e.g., see (Horty, 2012). The two logics LPr+ and LKu+ extend (a variant
of) bMDL with prohibitions and, in the case of Kumārila, also with elective duties. In
(van Berkel et al., 2022a), these two logics were refined and extended with a restriction
aggregation principle (i.e., P4 discussed in Section 5.4).

Talmudic logic and more. Mı̄mām. sā inspired logics are not the only attempts at
modeling ancient theories of normative reasoning. It goes beyond the scope of this
chapter to discuss works on non-deontic formalizations of ancient theories. One work
that deserves mention due to its closeness to the approach followed in this chapter is
Talmudic deontic logic, developed by Abraham et al. (2011). The first thing to note is
that obligation and prohibition are not interdefinable in the Talmudic interpretation.
Furthermore, the logic underlying their modal logic is intuitionistic. Consequently, ¬¬Fφ
is not equivalent to Fφ since “[t]he first is only a weak prohibition, a recommendation
for good behavior in the eyes of God, while the second is a full-fledged strong prohibition”
(Abraham et al., 2011, p.120). Another distinctive characteristic of their formalism is
that deontic conflicts are not resolved through applying general principles of reasoning,
such as for the Mı̄mām. sā, but through rabbis making decisions based on principles. Like
Man.d. ana, in Talmudic deontic logic, the fulfillment of an obligation leads to a reward
with no punishment for failing to fulfill an obligation, and the fulfillment of a prohibition
yields no reward, whereas violating it causes a sanction.

* * *
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In conclusion, we analyzed the deontic theory of Man.d. ana, one of the central authors
of the Mı̄mām. sā school. His theory reduces all Vedic commands to statements about
actions as instruments leading to specific results. We provided a sound and complete
logic LM capturing this deontic reduction (Objective 1). We employed the logic to
improve our understanding of Man.d. ana’s theory and to evaluate whether Man.d. ana’s
reduction preserves the validity of central reasoning principles used by the Mı̄mām. sā in
general (Objective 2). Thereafter, we provided a logical analysis of Man.d. ana’s solution
to the Śyena controversy (Objective 3) and evaluated the logic LM on some well-known
benchmark puzzles from the deontic logic literature (Objective 4). The present results
only scratch the surface of the research opportunities offered by formal approaches to the
study of Mı̄mām. sā deontic reasoning.
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CHAPTER 6
Deontic Explanations

In the previous chapters, we used logical methods to reason about agents in the context
of norms. This chapter investigates whether we can make formal normative reasoning
more accessible to agents: we focus on explanations. The fundamental role of norms
is to motivate, guide, and limit the choices made by agents (Chapter 1). It often does
not suffice for a real-life agent to know that an obligation applies to her. To motivate
compliance, the agent must understand why she is required to behave in a particular way
(especially if she disagrees with her alleged duty). We call answers to such why questions
deontic explanations. These explanations not only lead to a better understanding of
normative reasoning, they also motivate appropriate conduct, enhancing compliance
and improving collaboration (Chopra et al., 2018). Moreover, the importance of such
explanations increases with the continuing development of intelligent autonomous systems
that must comply with normative codes; cf. (Liao et al., 2019). For instance, in applying
formal normative reasoning to autonomous cyber-physical systems such as self-driving
cars (Shea-Blymyer and Abbas, 2021), we can better understand the behavior of those
systems when we know why particular normative choices are made. Currently, there is
no formal system that facilitates deontic explanations.

The present chapter, based on the results in (van Berkel and Straßer, 2022), introduces
Deontic Argumentation Calculi (DAC for short), which are sequent-style proof systems
tailored to the construction of deontic explanations. With this, we aim to lay a foundation
for the study of explanations in deontic logic.

Deontic Logic and Reasons. When answering the question as to why an obligation
holds, one must state reasons. However, it often does not even suffice to know why a
specific obligation holds without knowing why other obligations to the contrary do not
hold. Especially in the light of (potential) conflicts, answers to such contrastive why
questions become crucial. For example, to understand why “I am permitted to overtake
on the left, despite having to drive on the right” I must know how the first norm relates to
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the second. In this case, the first norm is an exception that renders the latter inapplicable
in the context of “overtaking another vehicle”. Unfortunately, common approaches in
deontic logic do not provide means for making explicit the reasons why certain obligations
are not derivable. Despite their central role in ethics and explanation (Brunero, 2018), a
general lack of explicit modeling of reasons in formal systems was recently identified by
Nair and Horty (2018) (a notable exception being the work of Horty (2012)).

Objective 1. Develop a deontic language in which reasons are explicitly formalized.

Complex normative systems often require reasoning with normative conflicts, exceptions,
preferences, and a variety of resolution mechanisms (Delgrande, 2020; Gabbay et al., 2013;
Tosatto et al., 2012). These challenges can be effectively addressed using nonmonotonic
reasoning (Nute, 1997). (We refer to Hilpinen and McNamara (2013) for a discussion of
alternative approaches.) In this respect, the Input/Output formalism (I/O, for short) as
developed by Makinson and van der Torre (2000) is particularly promising (see Chapter 1).
The I/O formalism facilitates reasoning with norms and contains various mechanisms to
defeasibly detach obligations from norms in a given context. In particular, constrained
I/O logics (Makinson and van der Torre, 2001) have been employed to nonmonotonically
reason with deontic conflicts, contrary-to-duty scenarios, and exceptions. One advantage
of the I/O approach is that it formalizes norms as reasons. To illustrate, let (p, q) be a
norm expressing “given fact p, it is obligatory that q”. Then, in the context of fact p,
the norm (p, q) is a reason why it is obligatory that q. Nevertheless, I/O leaves some of
the challenges mentioned above unaddressed. For instance, nonmonotonicity is captured
in the traditional constrained I/O approach by considering maximally consistent sets
of norms. In this approach, norms are not part of the object language, and reasoning
about norms takes place on a meta-level. Thus, one cannot readily use the framework to
explicitly reason with reasons, generating explanations accordingly.

Objective 2. Develop formal calculi for Input/Output logics, fully integrating meta-
reasoning about norms into the object language of the calculi. In particular, the calculi
must generate transparent arguments that provide reasons why obligations hold and why
certain norms are inapplicable.

We address the above two objectives by introducing a class of rule-based sequent-style
proof systems called Deontic Argument Calculi (DAC for short). The calculi internalize
the meta-reasoning of I/O logics and generate arguments that provide direct and explicit
reasons for obligations as well as for the inapplicability of norms. We adopt a sequent-style
approach due to its high modularity, suitability for proof-theoretic analysis, and intuitive
construction of derivations as trees (Negri et al., 2008) (also see page 10). Our approach
belongs to sequent-based tradition to logical argumentation (Arieli and Straßer, 2015;
Arieli et al., 2022b; Straßer and Arieli, 2014; Straßer and Arieli, 2015).

Formal Argumentation. Over the past decades, formal argumentation (Dung, 1995)
has proven to be a unifying framework for the representation of large classes of non-
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monotonic logics (Arieli et al., 2021). The central concept of this field is that of an
argumentation framework. It consists of a set of arguments together with an attack
relation defining conflicts between these arguments. The idea of defeasibility is then
captured in terms of counterarguments attacking an initial argument. Formal argumen-
tation provides both a natural and a transparent model of conflicts and their resolution.
Consequently, it serves as a promising basis for tackling the central challenges of norma-
tive reasoning discussed above. In recent years, argumentative representations of deontic
logics have attracted increasing interest (Beirlaen et al., 2018; Governatori et al., 2018;
Liao et al., 2018; Peirera et al., 2017; Pigozzi and van der Torre, 2018; Straßer and Arieli,
2015). In this chapter, we set out to combine the advantages of the I/O formalism with
those of formal argumentation. Namely, on the one hand, I/O is a highly expressive and
robust framework with more than two decades of development, e.g., see (Parent and van
der Torre, 2013; Parent and van der Torre, 2018b). On the other hand, I/O does not
provide the level of transparency that comes with an explicit representation of conflicts
in formal argumentation.

Objective 3. Provide a formal characterization of the nonmonotonic inference relation
of standard Input/Output approaches in formal argumentation frameworks instantiated
with DAC arguments.

By addressing this objective, we open the door to applying existing explanation methods
developed for formal argumentation to I/O reasoning.

Formal Explanations. Explanation is gradually taking up a more central position
in AI (Miller, 2019). Argumentative approaches are promising in this respect due to
their intuitive representation of and closeness to human reasoning practices (Mercier
and Sperber, 2011). In fact, the study of explanation is also gaining traction in formal
argumentation (Arieli et al., 2022b; Borg and Bex, 2021; Čyras et al., 2021; Fan and
Toni, 2015a; Liao and van der Torre, 2020; Vassiliades et al., 2021). Explanations can
be seen as specific types of arguments (Šešelja and Straßer, 2013). An argument shows
that some statement is correct, whereas an explanation additionally shows why and how
this statement is correct. The former’s aim is justification, whereas the latter’s aim is
understanding. To illustrate, a derivation provided by a proof system is a certificate that
justifies that something is derivable. However, it may not suffice as an explanation: a
derivation is not necessarily transparent, may contain redundant and irrelevant steps,
and may not be understandable by an agent not versed in proof theory. Although
certificates of derivability (such as derivations generated by a proof system) are essential
for justification, explanation requires more than justification.

There are two essential tiers of explanation related to formal argumentation (Johnson,
2000). First, there is explanation on the level of an argument (Toulmin, 1958), i.e., an
argument is not just a logical derivation; it has a structure with additional qualifying
information, e.g., warrants, strengths, defaults, and supports. We call this internal
explanation (cf. the illative tier of Johnson (2000)). Second, there is explanation on
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the level of argument interaction. Here, explanation of an argument is given by other
arguments through notions of attack and defense. We call this external explanation (cf.
the dialectic tier of Johnson (2000)). Ideally, good explanations are a mix of both, e.g.,
contrastive explanations (Stepin et al., 2021). However, so far, little to no formal work
has been done in the intersection of explanation and normative reasoning. This brings us
to our final objective.

Objective 4. Employ the developed calculi to generate deontic explanations using tools
from formal argumentation.

We illustrate the utility of our approach using the notion of related admissibility developed
by Fan and Toni (2015a). In particular, we use this notion to explain why some obligations
hold despite certain norms to the contrary.

Contributions. In this article, we take the formal argumentation path to deontic
explanation and introduce a class of Deontic Argumentation Calculi (DAC). Our focus is
on both internal and external explanations. Deontic Argumentation Calculi accommodate
explanation in a variety of ways:

1. We use labels on formulae to make the presentation transparent on the object level,
i.e., we can syntactically distinguish between facts, obligations, and constraints
without “burdening” the logics with modalities; cf. (Makinson and van der Torre,
2000; Parent and van der Torre, 2018b).

2. We internalize some of the meta-reasoning in the I/O formalism by referring to the
inapplicability of norms on the object language level.

3. We represent explicit reasons in the premises of arguments such that, by presenting
arguments for a conclusion, the reasons are immediate.

4. We provide an additional admissible DAC rule that makes DAC arguments relevance-
aware, i.e., premises only bear reasons directly relevant for the derivation of the
conclusion.

All of the above points increase the self-explanatory character of arguments, for instance,
in contrast to classical argumentation; see (Arieli et al., 2021). In sum, our calculi
generate both arguments that provide explicit reasons for obligations and arguments that
defeat other arguments by giving explicit reasons for why certain norms are inapplicable.
The second type of argument concerns the defeasibility of normative reasoning. In other
words, our approach accommodates internal and external explanations. Consequently, it
can be used to answer non-contrastive “why A?” and contrastive “why A rather than
B?” questions. The possibility to reason about the inapplicability of norms on the
object language level distinguishes our work from other proof-theoretic approaches to
Input/Output logic, e.g., by Lellmann (2021) and Straßer et al. (2016).

The technical contribution of this chapter consists of two types of completeness results:
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1. We show adequacy between DAC and a significant class of monotonic I/O conse-
quence relations.

2. We prove that formal argumentation frameworks instantiated with DAC arguments
characterize a large class of nonmonotonic I/O logics.

These contributions make our work the first to characterize a significant class of
(non)monotonic I/O logics, including all original logics by Makinson and van der Torre
(2000; 2001). The addition and removal of rules in DAC correspond to different I/O
logics, and our calculi enjoy a modularity particularly suitable for expansions. Moreover,
DAC is modular for a large class of underlying base logics (i.e., not just classical and
intuitionistic logic). Last, our work enhances the scope of previous representation results
in formal argumentation concerning systems based on maximally consistent sets (Arieli
et al., 2021).

The formalism developed in this chapter provides the foundation for a more extensive
investigation of explanation in the context of normative reasoning. In Section 6.8, we
discuss promising research directions in this respect.

Differences. Deontic Argumentation Calculi were introduced in (van Berkel and
Straßer, 2022). The additional contribution of this chapter is the inclusion of relevance
rules. These rules can be employed in two ways: They can be used to generate smaller
DAC-instantiated argumentation frameworks, excluding arguments with irrelevant reasons,
or they can be exploited to generate arguments that attack irrelevant arguments.

Outline of this work. We provide basic terminology and two running examples in
Section 6.1 and recap I/O logic in Section 6.2. In Section 6.3, we present our Deontic
Argumentation Calculi. We show soundness and completeness between traditional I/O
proof systems and Deontic Argumentation Calculi in Section 6.4. In Section 6.5, we define
formal argumentation frameworks instantiated with DAC-arguments and illustrate how
existing approaches to explanation in formal argumentation can be used in our setting.
Soundness and completeness between DAC-instantiated argumentation frameworks and
nonmonotonic inference in I/O logics are shown in Section 6.6. In Section 6.7, we extend
DAC with relevance rules. In Section 6.8, we discuss related and future work.

6.1 Basic Terminology and Benchmark Examples

Developments in deontic logic are driven by challenging examples and paradoxes (Chap-
ter 1). In this section, we introduce basic terminology by considering two examples. Here,
we focus on contrary-to-duty reasoning and deontic dilemmas. Both can be effectively
addressed using nonmonotonic reasoning (Nute, 1997; Parent and van der Torre, 2018b).1

1For alternative approaches, see the overview by Hilpinen and McNamara (2013).
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The language L employed throughout this chapter is given in Definition 6.1. To increase
the transparency of our formal representation, we label formulae of L.

Definition 6.1 (The Language L). Let Atoms = {p, q, r, . . . } be a denumerable set of
propositional atoms. The language L is defined via the following BNF grammar:

φ ::= p | ⊤ | ⊥ | ¬φ | φ ∨ φ | φ ∧ φ | φ → φ

with p ∈ Atoms.

Let the labelled language Li be defined as Li := {φi | φ ∈ L} for i ∈ {f, o, c}. We say
that Lf is the language expressing facts, Lo is the language expressing obligations, and
Lc is the language expressing constraints. Last, let Ln := {(φ,ψ) | φ,ψ ∈ L} be the
language of norms (where the superscript n refers to norms).

All connectives are primitive in order to be modular with respect to a large class of
propositional base logics. We come back to this in Section 6.2. We use p, q, r, . . . (possibly
indexed) for atoms, and reserve φ,ψ, θ, . . . (possibly indexed) for arbitrary formulae of
L. A formula φf ∈ Lf expresses “it is a fact that φ”, formula φo ∈ Lo states that “it is
obligatory that φ”, and a formula φc ∈ Lc denotes that “φ is a constraint”.2 Moreover,
following Makinson and van der Torre (2000), we take a pair of propositional formulae
(φ,ψ) to represent a norm, i.e., “given fact φ, it is obligatory that ψ”.

In contrast to the previous chapters, in this chapter, we adopt labels instead of modalities
to denote the role of the various formulae involved in normative reasoning. The main
reason for doing so is our aim to provide a novel proof-theoretic characterization of a
class of I/O logics while remaining as faithful to the original approach as possible. Labels
provide a transparent way to representing the various roles propositional formulae play
in normative reasoning.3

We work with knowledge bases of the type ⟨F ,N , C⟩, where F ⊆ Lf constitutes the
factual context, N ⊆ Ln denotes a normative code, and C ⊆ Lc represents the constraints
with which output must be consistent. The basic idea is that facts (input) trigger norms
from which obligations are detached (output). Moreover, constraints control the output
to ensure consistency. The above is in the spirit of constrained I/O logic by Makinson
and van der Torre (2001).

An explanatory argument is an argument stating reasons for a conclusion. Suppose we
have a single fact F = {pf}, a norm system N = {(p, q), (r, s)}, and no constraints, then
an argument concluding that q is obligatory is of the following form,

reasons...︷ ︸︸ ︷
pf , (p, q) ⇒

for︷︸︸︷
qo︸ ︷︷ ︸

argument
2Since we do not allow for formulae with mixed labels, we can safely omit brackets concerning the

use of labels, e.g., we write ¬φf instead of (¬φ)f .
3Modal representations of some I/O logics are available, e.g., see (Makinson and van der Torre, 2000;

Lellmann, 2021).
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a =

 (¬h)f , (¬h,¬t)

⇒ (¬t)o

 b =

 (¬h)c

⇒ ¬(⊤, h)



c =

 (⊤, h)

⇒ ho

 d =

 (⊤, h), (h, t)

⇒ to


Figure 6.1: Defeasible normative reasoning examples: The Chisholm scenario (Exam-
ple 6.1). Arrows denote defeat relations between arguments, relative to the constraint
set C′ = {¬hc} (Example 6.2).

The left-hand side (lhs) gives reasons for the conclusion on the right-hand side (rhs).
Alternatively, one can think of the lhs as the explanans and the rhs as the explanandum
(Šešelja and Straßer, 2013). The arrow ⇒ denotes that the rhs “follows from” the lhs.
We make this formally precise in Section 6.3. Furthermore, in explanatory reasoning,
we do not want arguments to contain information irrelevant to explaining the output.
For instance, in the argument pf , (p, q), (r, s) ⇒ qo the norm (r, s) is irrelevant for the
conclusion qo. As a desideratum, explanatory arguments must be relevance-aware. We
address the desideratum at the end of this chapter in Section 6.8.

Example 6.1 (Chisholm scenario (1963), Figure 6.1). Billy is obligated to go and help
her neighbors (⊤, h). A norm (⊤, h) with as a precondition the tautology ⊤ is triggered
by default, that is, even by an empty factual context. Furthermore, Billy knows that if she
goes to help, she must tell them she goes (h, t). Now, if Billy does not go, she ought not
to tell them she goes (¬h,¬t). It turns out that Billy does not go to help ¬hf . Clearly,
Billy has violated her obligation to go and help. Let the knowledge base be F = {¬hf}
and N = {(⊤, h), (h, t), (¬h,¬t)}. Figure 6.1 presents arguments a, c, and d that can be
constructed4 from the knowledge base (we explain the meaning of b and its corresponding
arrows in Example 6.2); e.g., in argument a the reasons for not telling ¬to are the fact
¬hf and the norm (¬h,¬t). What must Billy do in this contrary-to-duty scenario? The
desired answer is that she ought not to tell the neighbors she goes ¬to. Formalizations of
this scenario cause problems for Standard Deontic Logic (see page 13), e.g., both telling t
and not telling ¬t become obligatory.

Arguments do not only provide reasons in support of a concluded obligation (i.e., the
explanandum) but also defend them from potential defeaters. Different types of defeat are
possible: a rebutting defeat attacks conclusions, an undermining defeat attacks premises,
and an undercutting defeat attacks the application of rules (Modgil and Prakken, 2014).
Not all types of defeat are suitable for the kind of explanation we have in mind. For

4For now, it suffices to leave the construction of such arguments implicit. In Section 6.3, where we
introduce the envisioned Deontic Argumentation Calculi, we demonstrate how these arguments can be
derived using the calculi.
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instance, a rebutting defeat opposes the conclusion of an argument without pinpointing
the reason as to why. In contrast, attacks on reasons—i.e., undercutting defeats—are
arguments that express which reasons are inapplicable in the light of a given context,
i.e., other reasons, facts, and constraints. We adopt undercuts since they are more
transparent about attacks. Recall that constraints are consistency requirements and
suppose C = {¬qc}. Then, a defeating argument

pf ,¬qc ⇒ ¬(p, q)

expresses that if the output is to be consistent with the constraint ¬qc, in context pf , the
norm (p, q) cannot be consistently asserted as a reason (since it would detach qo). Hence,
¬(p, q) expresses that this norm is inapplicable given F and C. An argument concluding
¬(p, q) defeats all arguments that appeal to (p, q) as a reason. An argumentation
framework is then a set of arguments with defeat relations holding between them.

Example 6.2 (Example 6.1 cont.). We want to know what Billy must do in the light
of her violation ¬hf . Thus, we impose the constraint that the output must be consistent
with the fact that Billy does not help C = {¬hc} (i.e., C = F modulo relabelling). This
constraint gives us the argument b : ¬hc ⇒ ¬(⊤, h) expressing that given consistency
requirement ¬h, the norm (⊤, h) may not be asserted as a reason (it would output the
inconsistent ho).5 This argument serves as a defeater of any argument that appeals to
(⊤, h) in its reasons. In this case, this includes arguments c and d. See the defeat arrows
in Figure 6.1. So, that Billy ought not to tell ¬to is explained by argument a together
with the fact that arguments c and d concluding helping ho, respectively telling to, cannot
be defended in view of b. Namely, c and d employ reasons that are inapplicable given C.

What makes this approach more transparent than traditional formalisms such as In-
put/Output logic (Makinson and van der Torre, 2000) and logical argumentation (Arieli
and Straßer, 2019) is the use of labels to indicate different types of information (factual,
obligations, constraints), the internalized meta-reasoning about the inapplicability of
norms, the argumentative representation of reasons (lhs of ⇒) for the conclusion (rhs of
⇒), and the argumentation framework revealing the contrastive explanatory dimension
of defeasible reasoning. In Figure 6.1, the question “why shouldn’t Billy help, despite
argument c?” is answered by “since argument b attacks c and b is not attacked”.

Let us now turn to another type of deontic scenario that proves challenging for formal
systems of normative reasoning: the deontic dilemma (cf. Chapter 3, page 102).

Example 6.3 (Deontic Dilemma, Figure 6.2). Maxwell and Joan are two colleagues.
Joan built a shed and borrowed Max’s hammer for the job. She is under the obligation to
return the hammer to Max (⊤, r). At some moment, a deranged Max is standing at the
door asking Joan to give her the hammer, he claims, “in order to bang someone’s head

5Although in monadic deontic logics “not helping” and “it is obligatory to help” are consistent,
in constraint I/O reasoning the former proposition is used to block undesirable consequences like the
conclusion “it is obligatory to tell”.
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a =

 (⊤, r)

⇒ ro



c1 =

 (⊤, r)

⇒ (r ∨ p)o



c2 =

 (⊤, p)

⇒ (r ∨ p)o



e =

 (⊤, p), (¬(r ∧ p))c

⇒ ¬(⊤, r)



d =

 (⊤, r), (¬(r ∧ p))c

⇒ ¬(⊤, p)



b =

 (⊤, p)

⇒ po



Figure 6.2: Defeasible normative reasoning examples: A deontic dilemma (Example 6.3).
Argument e defends {b, c2, e}, whereas argument d defends {a, c1, d}.

in” (Maxwell has an unfortunate temper). Joan feels she has the duty to prevent Max
from hurting anyone (⊤, p). Furthermore, the constraint is that Joan cannot both return
the hammer and prevent harm from being done with it ¬(r ∧ p)c. What should Joan do?
This scenario illustrates a deontic dilemma and can be ultimately traced back to Plato
(Lemmon, 1962). The knowledge base is defined as F = ∅, N = {(⊤, r), (⊤, p)}, and
C = {¬(r ∧ p)c}. The arguments that can be constructed are presented in Figure 6.2. The
two defeating arguments, d and e, express that given the constraints, one of either two
norms cannot be asserted. Furthermore, in this example, we suppose we reason classically,
which means that p and r both entail p ∨ r; cf. arguments c1 and c2.

Intuitively, in Figure 6.2, the defensible set {a, c1, d} justifies the obligation that Joan
ought to return the hammer, whereas {b, c2, e} does this for the prevention of harm
being done. Likewise, one can give an explanation for the floating conclusion (r ∨ p)o
in Figure 6.2, by arguing that in every defensible stance either c1 or c2 is selected; cf.
disjunctive response in Chapter 3. A floating conclusion is a formula that is derivable
through several conflicting arguments (Straßer and Antonelli, 2019), e.g., the arguments
c1 and c2 both conclude (r ∨ p)o but belong to the two conflicting sets of arguments
{a, c1, d}, respectively {b, c2, e}. However, following a more skeptical reasoning style, one
can argue why r∨ p is not obligatory since there is no single argument concluding (r∨ p)o
that is selected in every defensible set. Defeasible reasoning by means of argumentation
gives rise to various reasoning styles, including those mentioned above. The framework
presented in Section 6.5 can disambiguate between them.

All notions discussed in this section are made formally precise in subsequent sections.
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6.2 Constrained Input/Output Logic

We briefly recall the basics of Constrained Input/Output logic, the systems for which we
provide argumentative characterizations. The formalism was developed by Makinson and
van der Torre (2001) and is particularly suitable for normative reasoning (Parent and
van der Torre, 2018b). Its central feature is the employment of syntactic objects of the
form (φ,ψ), called norms.6 I/O logics are construed over the non-labelled propositional
language L of Definition 6.1 and a propositional base logic L. We use Greek capital letters
∆,Γ, . . . for finite sets of L-formulae and write ∧ ∆ to denote the conjunction of elements
of ∆. To obtain results as general as possible, we define a large class of underlying base
logics for which we provide the envisioned results in this chapter. Definition 6.2 stipulates
the properties these base logics must satisfy. This class includes but is not limited to
classical and intuitionistic logic.

Definition 6.2 (Base Logic L). Let L = ⟨L,⊢⟩ be a propositional logic, where L is
the language from Definition 6.1 and ⊢L denotes the consequence relation on ℘(L) × L
(henceforth, we omit the subscript L). Let S ⊆ L, ⊢ satisfies the following properties:

• reflexivity: if φ ∈ S, then S ⊢ φ;

• monotonicity: if S ′ ⊢ φ and S ′ ⊆ S, then S ⊢ φ;

• transitivity: if S ⊢ φ and S ′, φ ⊢ ψ then S,S ′ ⊢ ψ;

• non-triviality: S ⊬ φ for some S ≠ ∅ and φ;

• structurality: if S ⊢ φ, then {θ(ψ) | ψ ∈ S} ⊢ θ(φ) for every substitution θ;

• compactness: if S ⊢ φ then Γ ⊢ φ for some finite Γ ⊆ S.

Furthermore, we assume that conjunction ∧ and disjunction ∨ are distributive, i.e.,
⊢ (φ ∧ ψ1) ∨ (φ ∧ ψ2) ≡ (φ ∧ (ψ1 ∨ ψ2)) and ⊢ (φ ∨ ψ1) ∧ (φ ∨ ψ2) ≡ (φ ∨ (ψ1 ∧ ψ2)).

Constrained I/O logics work with knowledge bases as defined below.

Definition 6.3 (Knowledge Base K). Let L be the underlying base logic. Let K =
⟨F ,N , C⟩ be a knowledge base, where F ⊆ L is the factual input, N ⊆ L × L a
normative code, and C ⊆ L a set of constraints containing the formulae with which
output must be consistent. We assume F and C to be consistent, i.e., F ̸⊢ ⊥ and C ̸⊢ ⊥.
The sets F , N , and C may be countably infinite.

6The Input/Output formalism was applied by Bochman (2021) to causal and doxastic reasoning, where
a pair (φ,ψ) is interpreted as “φ causes ψ”, respectively “believing φ leads to believing ψ”. Ciabattoni
et al. (2021) extend the I/O formalism to model legal reasoning in the spirit of Kelsen’s theory of norms.
More general, one can read (φ,ψ) as a generator, i.e., “input (premises) φ generates output (conclusion)
ψ”. We discuss other applications in Section 6.8.
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T(⊤,⊤) ID(φ,φ)

(φ,ψ) ψ ⊢ γ
WO(φ, γ)

(φ,ψ) (φ, γ)
AND(φ,ψ ∧ γ)

(φ,ψ) γ ⊢ φ
SI(γ, ψ)

(φ,ψ) (φ ∧ ψ, γ)
CT(φ, γ)

(φ,ψ) (γ, ψ)
OR(φ ∨ γ, ψ)

Figure 6.3: Rules for constructing derivR,L proof systems. The topmost level contains
initial rules. The minimal set of deriv-rules is {WO,AND, SI}.

Proof theory for the I/O formalism was introduced by Makinson and van der Torre
(2000) for a class of monotonic I/O logics. The resulting systems are referred to as “deriv”
and contain inference rules that derive I/O pairs from other I/O pairs. The deriv-rules
considered in this chapter are those developed by Makinson and van der Torre (2000)
and presented in Table 6.3. We refer to the work of Parent and van der Torre (2018b)
for a discussion of other deriv rules.

Definition 6.4 (unconstrained I/O proof systems). Let derivR,L be a proof system, with
R a set of rules from Table 6.3. Let L be the base logic, and let N ⊆ Ln. A derivation
of (φ,ψ) ∈ derivR,L(N ) is a tree of rule-applications of R where the leaves are either
members of N or instances of T and ID (provided T, ID ∈ R), and the root is (φ,ψ).

We say ψ is obligatory (detached) under N and F if (φ,ψ) ∈ derivR,L(N ) with F ⊢ φ.
We write ψ ∈ derivR,L(∆,N ) if (∧ ∆, φ) ∈ derivR,L(N ).

Paradigmatic I/O logics are characterized by the sets of rules R1 = {T,WO, SI,AND},
R2 = {OR}∪R1, R3 = R1∪{CT}, and R4 = R2∪R3. The system R1 represents a single
deontic detachment procedure which allows for weakening of the output (WO), combining
output (AND), and strengthening of the input (SI). All propositional tautologies are
among the output (T). System R2 extends R1 with reasoning by cases (OR), i.e., if both
φ and γ generate output ψ, then φ ∨ γ generates ψ too. System R3 extends R1 with
reusability (CT) allowing for iterations of successive deontic detachment (cf. chaining
reasons in Example 6.4).7 Last, R4 combines reasoning by cases R2 and successive
detachment R3. The above systems may be closed under throughput (ID), i.e., input is
‘put through’ as output. Throughput indicates that facts are considered as part of the
obligations in the output.8 We write R+

i = Ri ∪ {ID} for i ∈ {1, 2, 3, 4}. The resulting
eight systems are sound and complete with respect to their semantic characterizations
(Parent and van der Torre, 2018b). We omit the semantics here.

7CT stands for cumulative transitivity.
8A more intuitive application of ID would be in the context of doxastic reasoning.
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Remark 6.1 (Free-Floaters). Consider a knowledge base K = ⟨F ,N , C⟩. A free-floater
is a norm (φ,ψ) ∈ N that cannot be (indirectly) triggered, in any way, by the context F .
To illustrate, let F = ∅ and N = {(p, q), (⊤, r)}. It can be straightforwardly observed that
(p, q) is a free-floater for all of the derivR,L systems for which OR ̸∈ R (L is consistent
and non-trivial). Formally, we say (φ,ψ) is a free-floater with respect to K = ⟨F ,N , C⟩
and derivR,L whenever for all derivations with root (θ, γ) containing (φ,ψ) as a leaf,
F ̸⊢ θ. Since free-floaters cannot be triggered at all, they do not influence the detachable
obligations of any of the eight Input/Output operations. In what follows, we only consider
knowledge bases void of free-floaters.

Remark 6.2 (Relevance). Through the application of rules, a derivation contains only
norms used for deriving the norm at its root. However, this does not guarantee that all
norms in the derivation are relevant for deriving the derivation’s conclusion. Let F = {p}
and N = {(p, q), (p, r)} be the knowledge base, the following two example deriv-derivations
demonstrate that deriv cannot assure relevance in derivations (cf. Section 6.1).

(p, q)
(p, q) (p, r)

AND(p, q ∧ r)
WO(p, q)

Both derivations show that q is obligatory (detached) under N and F . The derivation
on the left derives q from the norm set N ′ = {(p, q)}, i.e., q ∈ derivR,L(F ,N ′). The
derivation on the right, however, also derives q but from the norm set N = {(p, q), (p, r)},
i.e., q ∈ derivR,L(F ,N ). Clearly, N ′ is more relevant than N in explaining the obligation
q. In fact, N ′ is the only relevant set explaining q. The approach we presented in
Section 6.7 does preserve relevance in explaining obligations.

The above deriv systems are still monotonic. Scenarios, such as those presented in
Examples 6.1 and 6.3, can be effectively addressed using methods of nonmonotonic
reasoning. To see that unconstrained monotonic deriv leads to problems, reconsider
Example 6.1 with F = {¬h} and N = {(⊤, h), (h, t), (¬h,¬t)}. The following derivation
shows that the example is inconsistent in a monotonic I/O setting.

¬t ∧ t ⊢ ⊥

(⊤, h)
(h, t) ⊤ ∧ h ⊢ h

SI(⊤ ∧ h, t)
CT(⊤, t) ⊤ ∧ ¬h ⊢ ⊤

SI(⊤ ∧ ¬h, t)
(¬h,¬t) ⊤ ∧ ¬h ⊢ ¬h

SI(⊤ ∧ ¬h,¬t)
AND(⊤ ∧ ¬h,¬t ∧ t)

WO(⊤ ∧ ¬h,⊥)

That is, ⊥ ∈ derivR,L(F ,N ) (with CT ∈ R). The derivation shows that given the context
F , we can derive both the obligation to tell and the obligation not to tell. Instead, we
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want to derive Billy’ obligation given that she already violated the norm (⊤, h) ∈ N , i.e.,
given the fact ¬h ∈ F . For this, we need defeasible detachment.

The solution developed by Makinson and van der Torre (2001) is to put constraints on
I/O reasoning. The resulting nonmonotonic systems are called constrained I/O logics
(Makinson and van der Torre, 2001).9 The use of constraints may yield various maximal
sets of norms N ′ ⊆ N whose detachable output is consistent with the constraints C. If
the output is required to be consistent per se, it suffices to let C be empty, i.e., C = ∅. If
the output is to be consistent with the input, we take the factual context to be a subset
of the constraints, i.e., F ⊆ C (e.g., Example 6.2). Constrained I/O logics draw inferences
from such maximally consistent norm sets. As is common to nonmonotonic reasoning in
general, there are two main approaches to drawing conclusions from such sets. Skeptic
inference allows us only to infer what is common to all of these sets. Credulous inference
considers each set as an acceptable solution, and we may infer a formula whenever it
belongs to one such set. Let us make this formally precise.

Definition 6.5 (Constrained I/O Logics). Let derivR,L be a system from Figure 6.3 and
let K = ⟨F ,N , C⟩ be a knowledge base void of free-floaters (Remark 6.1). The set of
maximally consistent families of N (maxfam) is defined as:

• maxfamR,L(K) is the set of max-elements of {N ′ ⊆ N | for all (φ,ψ) ∈ derivR,L(N ′),
if F ⊢ φ, then C, ψ ̸⊢ ⊥}.

We define skeptic (|∼s), respectively credulous (|∼c) nonmonotonic inference for con-
strained I/O logic as follows:

• K |∼s
R,L φ iff for each N ′ ∈ maxfamR,L(K), there is a (ψ,φ) ∈ derivR,L(N ′) with

F ⊢ ψ;

• K |∼c
R,L φ iff for some N ′ ∈ maxfamR,L(K), there is a (ψ,φ) ∈ derivR,L(N ′) with

F ⊢ ψ.

Example 6.4 (Example 6.1 cont.). Reconsider the Chisholm scenario, where F = {¬h},
and N = {(⊤, h), (h, t), (¬h,¬t)}. Let the I/O system be defined by R3 and a classical base
logic L. For the empty constraint set C = ∅, we have maxfamR3,L(F ,N , C) = {{(⊤, h),
(h, t)}, {(¬h,¬t), (⊤, h)}, {(¬h,¬t), (h, t)}}. In other words, we have both K |̸∼s

R3,L h ∧ t
and K |̸∼s

R3,L ¬t. Still, we conclude K |∼c
R3,L h ∧ t and K |∼c

R3,L h ∧ t. For instance, we
derive (⊤, h ∧ t) ∈ derivR3,L({(⊤, h), (h, t)}) as follows:

(⊤, h)
(⊤, h)

(h, t) ⊤ ∧ h ⊢ h
SI(⊤ ∧ h, t)

CT(⊤, t)
AND(⊤, h ∧ t)

9We stress that these logics were only introduced semantically.
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Furthermore, since F ⊢ ⊤ and C, h∧t ̸⊢ ⊥, we have {(⊤, h), (h, t)} ∈ maxfamR3,L(F ,N , C)
(it can be straightforwardly observed that this set is also maximal).

However, once we set the constraints to Billy’s violation, i.e., C′ = F , we obtain a
singleton set maxfamR3,L(F ,N , C) = {N ′}, with N ′ = {(¬h,¬t), (h, t)}. Intuitively, only
N ′ remains because C′, h ⊢ ⊥ and C′,¬t ̸⊢ ⊥. (In addition, observe that (h, t) ∈ N ′

cannot be triggered by F .) Given C′, Billy is therefore obliged not to tell her neighbors
she is coming to help, i.e., K |∼s

R3,L ¬t. What is more, Billy is not obliged to help in this
contrary-to-duty scenario, i.e., K |̸∼s

R3,L h.

Before introducing Deontic Argumentation Calculi in the next section, we stress the
following three points: First, deriv does not guarantee that all norms used in a derivation
are strictly relevant for the derivation’s conclusion (i.e., Remark 6.2). Second, maxfam
sets (of arbitrary size) do not provide formal ways of pinpointing the reasons why certain
norms are inapplicable. For instance, the set maxfamR3,L(F ,N , C) = {{(¬h,¬t), (h, t)}}
in Example 6.4 does not explain why (⊤, h) is inapplicable given C = F . Third, deriv
is not suitable for generating transparent arguments. For example, as a certificate the
derivation in Example 6.4 may justify that (⊤, h ∧ t) is derivable, its conclusion does not
explain why h ∧ t is obligatory (cf. page 213). Our calculi address all three challenges.

6.3 Deontic Argumentation Calculi

Our first step towards realizing more transparent I/O arguments, is to label propositional
formulae as facts Lf , obligations Lo, and constraints Lc. Second, we allow for Boolean
operations over the more complex meta-logical objects (φ,ψ) denoting norms. Operations
over these higher-order syntactic objects enable undercuts that explain why certain norms
should (not) be applied. For the present chapter, it suffices to consider negation only. A
formula ¬(φ,ψ) is interpreted as “the norm (φ,ψ) is inapplicable”. The full labelled I/O
language is given below.

Definition 6.6 (The Labelled I/O Language Lio). Let Li with i ∈ {f, o, c, n} be as
defined in Definition 6.1. The language of norms is defined as Ln ∪ Ln, where Ln =
{¬(φ,ψ) | (φ,ψ) ∈ Ln} is the language expressing the inapplicability of norms. Let
Lio = Lf ∪ Lo ∪ Lc ∪ Ln ∪ Ln be the labelled I/O language.

We write φ for an arbitrary formula of Lio and write ∆i to denote the labelled set of
formulae ∆i ⊆ Li with i ∈ {f, o, c, n}.

Our aim is to develop a large class of sequent-style calculi characterizing various I/O
logics (Objective 2). For this purpose, we introduce Deontic Argumentation Calculi,
DAC for short. These calculi are sequent-style proof systems (Gentzen, 1934). The main
syntactic object of a sequent-style calculus is that of a sequent, i.e., ∆ ⇒ Γ where ∆ and
Γ are sets of formulae. Sequent calculi are proof systems characterized by sets of rules (cf.
Hilbert-style proof systems, which take axioms and a few inference rules as their central
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6.3. Deontic Argumentation Calculi

components). Such rules lay down the conditions under which sequents may be derived
from other sequents. By using rules, sequent systems generate proofs as trees: The leaves
of a tree are sequents that are either trivial logical truths or assumptions, branches are
the result of rule applications, and the root of the tree is the proof’s concluding sequent
(Negri et al., 2008).

Remark 6.3. We refer to ∆ ⇒ Γ as an argument, where ∆ denotes the reasons for
Γ; cf. Section 6.1 and (Arieli and Straßer, 2015). In the remainder of this chapter,
we interpret ∆ on the lhs of an argument ∆ ⇒ Γ as a regular finite set. The use of
regular sets instead of multi-sets accommodates a higher modularity with respect to the
underlying base logic L. Moreover, we only consider arguments with single-conclusions,
that is, whose rhs is either a formula or the empty-set. In the sequel, we assume that a
set Γ on the rhs of an argument ∆ ⇒ Γ is restricted to at most one formula.

For each base logic of Definition 6.2 we assume a corresponding sound and complete
sequent calculus LC. In Definition 6.7, we stipulate some minimal properties that the
sequent calculus LC must satisfy.

Definition 6.7. Let L be a base logic of Definition 6.2 over the language L of Defini-
tion 6.1. Let LC be a sequent calculus such that LC is sound and complete for L. That is,
for each ∆ ⊆ L and φ ∈ L, ∆ ⊢ φ iff the sequent ∆ ⇒ φ is LC-derivable. Furthermore,
we assume admissibility of the following logical rules in LC:

φ ⇒ ψ1 φ ⇒ ψ2 R∧1
φ ⇒ ψ1 ∧ ψ2

φ1, φ2 ⇒ ψ
R∧2

φ1 ∧ φ2 ⇒ ψ

φ1 ⇒ ψ φ2 ⇒ ψ
R∨2

φ1 ∨ φ2 ⇒ ψ

φ ⇒ ψ1 R∨1
φ ⇒ ψ1 ∨ ψ2

φ ⇒ ψ
R¬1

φ,¬ψ ⇒
φ,ψ ⇒

R¬2
φ ⇒ ¬ψ

∅ ⊥⊥ ⇒ ψ
∆ ⇒ R⊥∆ ⇒ ⊥

The top sequents of a rule denote the rule’s premises (or conditions). The bottom-sequent
expresses the conclusion of a rule. Double lines in a rule indicate the invertibility of the
rule, i.e., derivability in both directions.10 We refer to the work of Negri et al. (2008) for
an extensive introduction to sequent-style proof systems.

Definition 6.8 (Deontic Argumentation Calculi). Let LC be the underlying base calculus.
We say ∆ ⇒ Γ is a DAC-sequent whenever ∆ ⊆ Lio is a finite set, and Γ ⊆ Lio is a set
restricted to at most one formula.

The minimal system, referred to as DAC∅, contains the rules Ax,Detach,R-C,R-N,
and Cut from Figure 6.4. The calculus DACS extends DAC∅ with the set of rules

10Notice that the inverted version of an invertible rule with two premises corresponds to two rules.
For instance, given φ ⇒ ψ1 ∧ ψ2, the inverted rules of R ∧ 1 derive φ ⇒ ψ1, respectively φ ⇒ ψ2.
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S ⊆ {Taut,TP,L-OR,L-CT}. This leads to a total of 16 DAC-systems. We write S+

when TP ∈ S and S− when TP ̸∈ S.

A DACS-derivation of ∆ ⇒ Γ is a tree whose leaves are initial sequents of DACS , whose
root is ∆ ⇒ Γ, and whose rule-applications are instances of the rules of DACS . We write
⊢S ∆ ⇒ Γ if ∆ ⇒ Γ is DACS-derivable. We write ⊢nS ∆ ⇒ Γ if ∆ ⇒ Γ is DACS-derivable
in at most n steps (a step is defined by a rule application).

Definition 6.8 stipulates that all propositional formulae occurring in a DAC-sequent
are labelled f, o, or c. Let LC be an adequate sequent calculus for the base logic L,
then, intuitively, DAC takes labelled versions of any LC-derivable ∆ ⇒ Γ as an initial
sequent (i.e., ∆i ⇒ Γi for each i ∈ {f, o, c}) and contains logical- and structural rules
for transforming labelled formulae of Lio (Figure 6.4). Since DACS takes labelled LC-
derivable sequents as initial sequents, the rules of LC are not part of DACS . Still, LC
rules can be straightforwardly shown admissible in DAC due to the presence of Cut.
For instance, that the rule R∧1 in Definition 6.7 is admissible in DAC is shown by the
following derivation (where ∆,Γ ⊆ Lio):

∆ ⇒ φi
Γ ⇒ ψi φi, ψi ⇒ (φ ∧ ψ)i

Cut
φi,Γ ⇒ (φ ∧ ψ)i

Cut∆,Γ ⇒ (φ ∧ ψ)i

The rule Taut ensures that all propositional tautologies are considered as output. The
rule Detach is an initial explanatory argument stating that the fact φ and the norm
(φ,ψ) are reasons for the obligation ψ. Instead of deriving pairs from other pairs (as
in deriv), we keep norms as primitive reasons from a given normative code N and only
modify facts, obligations, and constraints. This gives us some explanatory advantages
(see R-C and R-N below). The rule TP corresponds to throughput. The rule L-CT
corresponds to successive detachment, expressing that a norm may likewise be triggered
by the output of some other norm (cf. Example 6.5). L-OR reflects reasoning by cases
over input. The side-condition on L-OR is dropped whenever TP ∈ S. Namely, since
TP allows us to conclude obligations from facts without the intermediate use of norms,
L-OR no longer requires the presence of norms in the premises of the rule when TP is
part of the calculus. Cut suffices as the only structural rule. The absence of the structural
rule weakening in DAC (i.e., ∆ ⇒ Γ implies φ,∆ ⇒ Γ, for φ ∈ Lio) is deliberate because
we desire relevance in constructing arguments. Namely, only those norms relevant for
explaining a particular obligation or defeat are present in the argument. Although the
absence of weakening is necessary, in Section 6.7 we show that it is not sufficient, and
extend the calculi with relevance rules.

More interesting for explainability are the rules R-C and R-N. Concerning R-C, think
of a sequent with an empty right-hand side as an argument expressing inconsistent
reasons. For instance, an argument φf , (φ,ψ), (¬ψ)c ⇒ explains that the fact φ and
the norm (φ,ψ) (which are reasons for ψ) are inconsistent whenever the output must
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Ax∆i ⇒ Γi , for each LC-derivable ∆↓ ⇒ Γ↓, with i ∈ {f, o, c} and ∆↓,Γ↓ ⊆ L

Taut⇒ (⊤,⊤) Detach
φf, (φ,ψ) ⇒ ψo

TP
φf ⇒ φo

∆ ⇒ φo
R-C∆, (¬φ)c ⇒

∆, (φ,ψ) ⇒
R-N∆ ⇒ ¬(φ,ψ)

φf ,∆ ⇒ Γ
L-CTa

φo,∆ ⇒ Γ

∆, φf ⇒ Γ ∆′, ψf ⇒ Γ
L-ORb

∆,∆′, (φ ∨ ψ)f ⇒ Γ
∆ ⇒ φ φ,∆′ ⇒ Γ

Cutc∆,∆′ ⇒ Γ

Figure 6.4: Rules for constructing DACS (Definition 6.8). The upper level contains initial
sequents, and the lower level logical and structural rules. For Ax, let ∆↓ := { φ | φi ∈ ∆i }
denote the set ∆i stripped from its labels. Side-condition (a) on L-CT denotes ∆∩Ln ̸= ∅;
(b) on L-OR denotes ∆ ∩ Ln ̸= ∅ and ∆′ ∩ Ln ≠ ∅, and is only imposed when TP ̸∈ S;
(c) on Cut stipulates that φ ∈ Lio.

be consistent with ¬ψ. Moreover, whenever such an argument expresses inconsistent
reasons, we know at least one of its norms is inapplicable. The rule R-N expresses this:
from φf , (φ,ψ), (¬ψ)c ⇒ we obtain the defeating argument φf , (¬ψ)c ⇒ ¬(φ,ψ). Hence,
φf and (¬ψ)c are reasons for the inapplicability of the norm (φ,ψ). DACS sequents will
be the building blocks for the desired argumentative characterizations (Section 6.5).

Example 6.5 (Example 6.1 cont.). The DAC-argument d in Figure 6.1, concluding that
Billy should tell her neighbors she is coming to help, is derived through chaining (⊤, h)
and (h, t). The DACS-derivation below on the left demonstrates this (where L-CT ∈ S).

Detach
⊤f , (⊤, h) ⇒ ho

Detach
hf , (h, t) ⇒ to

L-CT
ho, (h, t) ⇒ to

Cut
⊤f , (⊤, h), (h, t) ⇒ to

Detach
⊤f , (⊤, h) ⇒ ho

R-C
⊤f , (¬h)c, (⊤, h) ⇒

R-N
⊤f , (¬h)c ⇒ ¬(⊤, h)

Given the constraint C′ = {¬hc}, the question “why should Billy not tell she is coming to
help, despite argument d?” is answered by argument b in Figure 6.1. A DACS-derivation
of argument b is provided above on the right. The fact ⊤f can be omitted by an application
of Cut with the sequent ⇒ ⊤f .

Example 6.6 (Example 6.3 cont.). In the dilemma, Joan cannot both return the hammer
and prevent harm from being done. So, we find (⊤, r) applicable if and only if (⊤, p) is
inapplicable. This is expressed by arguments e and f . The following DACS-derivation
shows the derivability of argument e:
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Detach
⊤f , (⊤, r) ⇒ ro

Detach
⊤f , (⊤, p) ⇒ po

R∧1
⊤f , (⊤, r), (⊤, p) ⇒ (r ∧ p)o

R-C
⊤f , (⊤, r), (⊤, p),¬(r ∧ p)c ⇒

R-N
⊤f , (⊤, p),¬(r ∧ p)c ⇒ ¬(⊤, r)

The LC-rule R∧1 used in the above derivation is DAC-admissible (see page 226). We can
apply the R-N rule to (⊤, p) in the above derivation to obtain argument f .

6.4 Soundness and Completeness, Part 1
In what follows, we demonstrate the first of our two soundness and completeness proofs:
the correspondence between the I/O proof system deriv and our proof system DAC. We
start by proving general lemmas concerning the inference relation ⊢S .

6.4.1 Some Technical Lemmas Concerning DAC

First, we prove some facts about derivability in the base logic LC, which are used in the
proofs below (without further reference).

Observation 6.1. Let LC be the underlying base logic, the following hold:

1. ⊢LC ψ ⇒ ¬¬ψ

2. If ⊢LC φ ⇒ ¬
∧ ∆ then ⊢LC φ,∆ ⇒

3. If ⊢LC φ ⇒ ¬ψ1 then ⊢LC φ ⇒ ¬(ψ1 ∧ ψ2)

4. If φ1 ⇒ ¬
∧ ∆1 and ⊢LC φ2 ⇒ ¬

∧ ∆2 then ⊢LC φ1 ∨ φ2 ⇒ ¬
∧ ∆1 ∪ ∆2

Proof. We consider each item consecutively:

Ad 1. The following derivation suffices:

by the reflexivity of ⊢⊢LC ψ ⇒ ψ
R¬1

ψ,¬ψ ⇒
R¬2

ψ ⇒ ¬¬ψ

Ad 2. The following derivation suffices:

Item 1∧ ∆ ⇒ ¬¬
∧ ∆

R∧2∆ ⇒ ¬¬
∧ ∆

...
φ ⇒ ¬

∧ ∆
R¬1

φ,¬¬
∧ ∆ ⇒

Cut
φ,∆ ⇒
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Ad 3. The following derivation suffices:

Ax
ψ1, ψ2 ⇒ ψ1

...
φ ⇒ ¬ψ1 Item 2
φ,ψ1 ⇒

Cut
φ,ψ1, ψ2 ⇒

R∧2
φ, (ψ1 ∧ ψ2) ⇒

R¬2
φ ⇒ ¬(ψ1 ∧ ψ2)

Ad 4. The following derivation suffices:

...
φ1 ⇒ ¬

∧ ∆1 Item 3
φ1 ⇒ ¬

∧ ∆1 ∪ ∆2

...
φ2 ⇒ ¬

∧ ∆2 Item 3
φ2 ⇒ ¬

∧ ∆1 ∪ ∆2 R∨2
φ1 ∨ φ2 ⇒ ¬

∧ ∆1 ∪ ∆2

QED

We now prove some lemmas concerning ⊢S . Unless stated otherwise, capital Greek letters
∆,Θ, . . . refer to finite sets in Lio. Recall that ∆↓ := {φ | φx ∈ ∆ for some x ∈ {o, f, c}}
denotes the set of formulae ∆ stripped from its labels. We write φ↓ denote the formula φx
stripped from its label x. Lemma 6.1 expresses that norms, e.g., (φ,ψ) cannot occur on
the rhs of a sequent (with the exception of (⊤,⊤)) and that negated norms, e.g., ¬(φ,ψ),
cannot occur on the lhs of a sequent. Lemma 6.2 states that the tautological (⊤,⊤) only
occurs on the rhs of a sequent whenever the lhs is empty. More importantly, Lemma 6.3
expresses the height-preserving invertibility of the R-N rule, i.e., if ⊢nS ∆ ⇒ ¬(φ,ψ),
then ⊢nS ∆, (φ,ψ) ⇒. Lemma 6.4 demonstrates that any tautological constraint ψc on
the lhs of a sequent, i.e., ⊢ ψc, can be height-preservingly eliminated from that sequent.
Next, Lemma 6.5 expresses some useful facts about the conditions under which DACS
sequents stripped from their labels (cf. ∆↓ and φ↓ above) correspond to derivability
in the underlying base logic L. Lemma 6.6 tells us that whenever a sequent ∆ ⇒ ψo

concludes some obligation ψo, then this obligation can be height-preservingly concluded
in a sequent that does not contain any constraint formula, i.e., ∆ \ Lc ⇒ ψo. We end
this section with the central result Lemma 6.7, which demonstrates that if a sequent
∆ ⇒ concludes an empty rhs, this means that we can conclude from its constraint-free
lhs ∆ \ Lc the negation of any obligation implied by the set of constraints on the lhs of
the sequent, i.e., ∆ \ Lc ⇒ φo with φ ⊢ ¬

∧(∆ ∩ Lc)↓. A special case is when there are
no constraints on the lhs. In that case, we can derive falsum, i.e., ∆ ⇒ ⊥o. The last
lemma is an invertibility lemma since it allows us to restore the obligations from which
the constraints were obtained using R-C.

Lemma 6.1. If ⊢S ∆ ⇒ Γ then (i) ∆ ∩ Ln = ∅ and (ii) Γ ∩ (Ln \ {(⊤,⊤)}) = ∅.
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Proof. The proofs are by induction on the length of the derivation of ∆ ⇒ Γ. Ad 1.
Base case. No initial sequent introduces an Ln formula on the lhs. Inductive step. None
of the remaining rules introduces such a formula. Ad 2. Base case. No initial sequent
except for Taut has an Ln formula on the rhs. Inductive step. No rule introduces such a
formula. QED

Lemma 6.2. If ⊢S ∆ ⇒ (⊤,⊤) then ∆ = ∅.

Proof. The proof is by induction on the length of the derivation of ∆ ⇒ (⊤,⊤). Base
case. The only way to introduce ∆ ⇒ (⊤,⊤) is by Taut. Inductive step. R-C and R-N
can be safely ignored since their consequent is not of the right form. We consider Cut:

∆1 ⇒ σ σ,∆2 ⇒ (⊤,⊤)
∆1,∆2 ⇒ (⊤,⊤)

The right premise is impossible due to the IH. The premise of L-CT is impossible due
to the IH, and the same reasoning applies to L-OR. QED

Lemma 6.3. If ⊢nS ∆ ⇒ ¬(φ,ψ) then ⊢nS ∆, (φ,ψ) ⇒.

Proof. The proof is by induction on the length of the derivation of ∆ ⇒ ¬(φ,ψ). Base
case (n = 1). No axiom produces a conclusion of the form ¬(φ,ψ).

Inductive step (n 7→ n+ 1). The rule R-C can be safely ignored.

R-N. If ∆ ⇒ ¬(φ,ψ) is derived from ∆, (φ,ψ) ⇒, then, by R-N, the statement holds
trivially.

L-CT. Let ∆ = ∆1 ∪ {σo}, ∆1, σ
o ⇒ ¬(φ,ψ) is derived from ∆1, σ

f ⇒ ¬(φ,ψ). By the
IH, ⊢nS ∆1, σ

f , (φ,ψ) ⇒. By L-CT, ⊢n+1
S ∆1, σ

o, (φ,ψ) ⇒.

L-OR. The case is analogous to L-CT.

Cut. Let ∆ = ∆1 ∪ ∆2. Suppose

⊢nS ∆1 ⇒ σ ⊢nS ∆2, σ ⇒ ¬(φ,ψ)
Cut

⊢n+1
S ∆1,∆2 ⇒ ¬(φ,ψ)

By the IH, ⊢nS ∆′, σ, (φ,ψ) ⇒. By Cut, ⊢n+1
S ∆,∆′, (φ,ψ) ⇒.

QED

Lemma 6.4. If ⊢nS ∆, ψc ⇒ Θ and ⊢ ψ, then ⊢nS ∆ ⇒ Θ.
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Proof. The proof is by induction on the length of the derivation of ∆, ψc ⇒ Θ. Base
case (n = 1). Suppose ⊢1

S ∆, ψc ⇒ Θ. Then ∆, ψc ⇒ Θ has been introduced by Ax.
So, ∆,Θ ⊆ Lc and ⊢LC ∆↓, ψ ⇒ Θ↓. Since ⊢LC ⇒ ψ, by Cut, ⊢LC ∆↓ ⇒ Θ↓. By Ax,
⊢1

S ∆ ⇒ Θ.

Inductive step (n 7→ n+ 1). Suppose ⊢n+1
S ∆, ψc ⇒ Θ. We consider the rules applied in

deriving ∆, ψc ⇒ Θ.

R-C. Suppose

⊢nS ∆ ⇒ φo

⊢n+1
S ∆, ( ¬φ︸︷︷︸

ψ

)c ⇒

with ψ = ¬φ. We have:

⊢nS ∆ ⇒ φo

⊢LC φ ⇒ φ
R¬1⊢LC φ,¬φ ⇒
R¬2⊢LC φ ⇒ ¬¬φ

⊢LC⇒
ψ︷︸︸︷

¬φ
R¬1 ⊢LC ¬¬φ ⇒

Cut⊢LC φ ⇒
Ax

⊢1
S φ

o ⇒
Cut

⊢n+1
S ∆ ⇒

R-N, L-OR, and L-CT. In each case, ψc is not the result of the rule’s application
(i.e., ψc is not principal), and we can apply the IH to the premises.

Cut. Assume ∆, ψc ⇒ Θ is obtained by an application of Cut. We have two possibilities:

⊢nS ∆1, ψ
c ⇒ σ ⊢nS ∆2, σ ⇒ Θ

Cut
⊢n+1

S ∆, ψc ⇒ Θ

respectively,

⊢S ∆1 ⇒ σ ⊢S ∆2, ψ
c, σ ⇒ Θ

Cut
⊢n+1

S ∆, ψc ⇒ Θ

By the induction hypothesis ⊢nS ∆1 ⇒ σ, respectively ⊢nS ∆2, σ ⇒ Θ, and so:

⊢nS ∆1 ⇒ σ ⊢nS ∆2, σ ⇒ Θ
Cut

⊢n+1
S ∆ ⇒ Θ

QED

Lemma 6.5. Let ⊢S ∆ ⇒ γ. Then,
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1. ∆ ⊆ Lx and ∆↓ ⊢ γ↓, if γ ∈ Lx with x ∈ {c, f}.

2. ∆↓ ⊢ γ↓, if ∆ ⊆ Lf ∪ Lo ∪ {(⊤,⊤)} and γ ∈ Lf ∪ Lo.

3. ⊢ γ↓, if ∆ ⊆ Lf ∪ {(⊤,⊤)}, γ ∈ Lo, and TP ̸∈ S.

Proof. The proofs are by induction on the length of the derivation of ∆ ⇒ γ. Base case
(n = 1). Ad 1. In this case, ⊢LC ∆↓ ⇒ γ↓ and, by Ax, ⊢1

S ∆ ⇒ γ. By the adequacy of
LC, ∆↓ ⊢ γ↓. Ad 2. We only have the possible cases where ∆ ⇒ γ is introduced by TP,
by Ax, or by Detach. The first case follows by the reflexivity of ⊢, the second by the
adequacy of LC. Else, it is introduced by Detach, where ∆ = {⊤f , (⊤,⊤)} and γ = ⊤o.
Trivially ⊢ γ↓. Ad 3. When ∆ ⇒ γ is introduced by Detach, proceed as in Item 2. The
only other way ∆ ⇒ γ can be introduced is by Ax. Since ∆ ⊆ Lf and γ ∈ Lo, ∆ = ∅.
⊢ γ↓ follows by the adequacy of LC.

Inductive step (n 7→ n+ 1). We can exclude the cases R-C, R-N.

Cut. Consider, where ∆ = ∆1 ∪ ∆2,

⊢nS ∆1 ⇒ ψ ⊢nS ∆2, ψ ⇒ γ
Cut

⊢n+1
S ∆1,∆2 ⇒ γ

By Lemma 6.1, ψ ∈ Lf ∪ Lo ∪ Lc ∪ {(⊤,⊤)}.
Ad 1. Since γ ∈ Lx, by the IH, ∆2 ∪ {ψ} ⊆ Lx and (∆2 ∪ {ψ})↓ ⊢ γ↓. Since ψ ∈ Lx,
by the IH, ∆1 ⊆ Lx with ∆↓

1 ⊢ ψ↓. So, ∆ ⊆ Lx and so ∆↓ ⊢ γ↓.

Ad 2. In case ψ ∈ Lf , by the IH, (∆2 ∪ {ψ})↓ ⊢ γ↓. By Item 1, ∆↓
1 ⊢ ψ↓ and so

∆↓ ⊢ γ↓. If ψ ∈ Lo, by the IH, ∆↓
1 ⊢ ψ↓ and (∆2 ∪ {ψ})↓ ⊢ γ↓. So, ∆↓ ⊢ γ↓. In

case ψ ∈ Lc, by item 1, and since ∆1 ⊆ Lf ∪ Lo, we have ∆1 = ∅. By Lemma 6.4,
⊢nS ∆2 ⇒ γ. By the IH, ∆↓

2 ⊢ γ↓ and ∆↓ = ∆↓
2. If ψ = (⊤,⊤), by Lemma 6.2 we

know ∆1 = ∅ and so ∆2 = ∆. By the IH, ∆↓
2 ⊢ γ↓ and so ∆↓ ⊢ γ↓.

Ad 3. If ψ ∈ Lf ∪ {(⊤,⊤)}, by the IH, ⊢ γ↓. Else, ψ ∈ Lc. By item 1, and
since ∆1 ⊆ Lf ∪ Lo ∪ {(⊤,⊤)}, we know ∆1 = ∅ and so ⊢ ψ↓. By Lemma 6.4,
⊢nS ∆↓

2 ⇒ γ↓. By the IH, ⊢ γ↓.

L-OR. Suppose, where ∆ = ∆′ ∪ {(φ ∨ ψ)f} and ∆1 ∩ Ln ̸= ∅ ≠ ∆2 ∩ Ln,

⊢nS ∆1, φ
f ⇒ γ ⊢nS ∆2, ψ

f ⇒ γ
L-OR

⊢n+1
S ∆′, (φ ∨ ψ)f ⇒ γ

Ad 1. If x = c or TP /∈ S, the premises are not derivable by the IH. Else, by the
IH, ∆1,∆2 ⊆ Lf and ∆↓

1, φ ⊢ γ↓ and ∆↓
2, ψ ⊢ γ↓. By R∨2, ∆′↓, φ ∨ ψ ⊢ γ↓.
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Ad 2. Since ∆ ⊆ Lo ∪ Lf ∪ {(⊤,⊤)}, (∆1 ∩ Ln) ∪ (∆2 ∩ Ln) ⊆ {(⊤,⊤)}. By the
IH, (∆1 ∪ {φ})↓ ⊢ γ↓ and (∆2 ∪ {ψ})↓ ⊢ γ↓. By R∨2, (∆′ ∪ {φ ∨ ψ})↓ ⊢ γ↓ and so
∆↓ ⊢ γ↓.
Ad 3. Since ∆ ⊆ Lo ∪ Lf ∪ {(⊤,⊤)}, (∆1 ∩ Ln) ∪ (∆2 ∩ Ln) ⊆ {(⊤,⊤)}. By the
IH, ⊢ γ↓.

L-CT. Suppose, where ∆ = ∆1 ∪ {φo} and ∆ ∩ Ln ̸= ∅,

⊢nS φf ,∆1 ⇒ γ
L-CT

⊢n+1
S φo,∆1 ⇒ γ

Ad 1. By the IH, the premise cannot be derived.
Ad 2. By the IH, φ,∆↓

1 ⊢ γ↓ and so ∆↓ ⊢ γ↓.
Ad 3. By the IH, ⊢ γ↓. QED

Lemma 6.6. If ⊢nS ∆ ⇒ ψo then ⊢nS ∆ \ Lc ⇒ ψo.

Proof. The proof is by induction of the length of the derivation of ∆ ⇒ ψo. Base case
(n = 1). No sequent that can be derived in one step fits the form ∆, φc ⇒ ψo.

Inductive step (n 7→ n+ 1). The sequents introduced by R-C and R-N have a different
form and can be ignored.

L-CT. Consider,

⊢nS σf ,∆ ⇒ ψo
L-CT

⊢n+1
S σo,∆ ⇒ ψo

By the IH, ⊢nS ∆ \ Lc, σf ⇒ ψo. By L-CT, ⊢n+1
S σo,∆ \ Lc ⇒ ψo.

L-OR. Consider, where ∆ = ∆1 ∪ ∆2 ∪ {(φ1 ∨ φ2)f},

⊢nS ∆1, φ
f
1 ⇒ ψo ⊢nS ∆2, φ

f
2 ⇒ ψo

L-OR
⊢n+1

S ∆1,∆2, (φ1 ∨ φ2)f ⇒ ψo

By the IH, ⊢nS ∆1 \ Lc, φf1 ⇒ ψo and ⊢nS ∆2 \ Lc, φf2 ⇒ ψo. By L-OR, ⊢n+1
S

(∆1 ∪ ∆2) \ Lc, (φ1 ∨ φ2)f ⇒ ψo.

Cut. Consider, where ∆ = ∆1 ∪ ∆2,

⊢nS ∆1 ⇒ σ ⊢nS σ,∆2 ⇒ ψo
Cut

⊢n+1
S ∆ ⇒ ψo

233



6. Deontic Explanations

By Lemma 6.1, σ ∈ Lf ∪ Lo ∪ Lc ∪ {(⊤,⊤)}. If σ ∈ Lf , by Lemma 6.5.1, ∆1 ⊆ Lf .
By the IH, ⊢nS ∆2 \ Lc ⇒ ψo. By Cut, ⊢n+1

S ∆1 ∪ (∆2 \ Lc) ⇒ ψo and since
∆1 ∪ (∆2 \ Lc) = ∆ \ Lc, ⊢n+1

S ∆ \ Lc ⇒ ψo. If σ ∈ Lo, by the IH, ⊢nS ∆1 \ Lc ⇒ σ
and ⊢nS ∆2 \ Lc ⇒ ψo. By Cut, ⊢n+1

S ∆ \ Lc ⇒ ψo. If σ ∈ Lc, by Lemma 6.5.1,
∆1 ⊆ Lc. By the IH, ⊢nS ∆2 \ Lc ⇒ ψo. Since ∆ \ Lc = ∆2 \ Lc, ⊢nS ∆ \ Lc ⇒ ψo.

QED

Lemma 6.7. If ⊢S ∆ ⇒ then ⊢S ∆ \ Lc ⇒ φo such that φ ⊢ ¬
∧(∆ ∩ Lc)↓ (where

¬
∧

∅ := ⊥).

Proof. The proof is by induction on the length of the derivation of ∆ ⇒. Base case
(n = 1). If ⊢1

S ∆ ⇒ then ∆ ⇒ is introduced by Ax. Suppose ∆ ⊆ Lc. So ⊢LC ∆ ⇒. By
R∧1, ⊢LC

∧ ∆ ⇒ and by R¬1, ⊢LC⇒ ¬
∧ ∆. By Ax, ⊢1

S⇒ (¬ ∧ ∆)o. By the reflexivity of
⊢, ⊢LC ¬

∧ ∆↓ ⇒ ¬
∧ ∆↓. Suppose now that ∆ ⊆ Lx for x ∈ {f, o}. Hence, ⊢LC

∧ ∆ ⇒ ⊥,
so by Ax we know ⊢1

S ∆o ⇒ ⊥o and ∧ ∆ ⊢ ⊥.

Inductive step (n 7→ n+ 1). Suppose ⊢n+1
S ∆ ⇒.

R-C Suppose, where ∆ = ∆1 ∪ {(¬φ)c},

⊢nS ∆1 ⇒ φo
R-C

⊢n+1
S ∆1, (¬φ)c ⇒

By Lemma 6.6, ⊢nS ∆1 \ Lc ⇒ φo and so ⊢n+1
S ∆1 \ Lc ⇒ φo. Since φ ⊢ ¬¬φ,

φ ⊢ ¬
∧(∆ ∩ Lc)↓.

R-N does not apply.

L-CT Suppose, where ∆ = ∆1 ∪ {φo},

⊢nS φf ,∆1 ⇒
L-CT

⊢n+1
S φo,∆1 ⇒

By the IH, ⊢S ∆′ \ Lc ∪ {φf} ⇒ σo such that σ ⊢ ¬ ∧ (∆′ ∩ Lc)↓. Then:

φf ,∆1 \ Lc ⇒ σo
L-CT

φo,∆1 \ Lc ⇒ σo

L-OR Suppose, where ∆ = ∆1 ∪ ∆2 ∪ {(φ1 ∨ φ2)f},

⊢nS ∆1, φ
f
1 ⇒ ⊢nS ∆2, φ

f
2 ⇒

L-OR
⊢n+1

S ∆1,∆2, (φ1 ∨ φ2)f ⇒
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By the IH, there are σ1, σ2 ∈ Lp for which ⊢S ∆1\Lc, φf1 ⇒ σo1, ⊢S ∆2\Lc, φf2 ⇒ σ′
2,

σ1 ⊢ ¬
∧(∆1 ∩ Lc)↓ and σ2 ⊢ ¬

∧(∆2 ∩ Lc)↓. Then,

∆1 \ Lc, φf1 ⇒ σo1

⊢LC σ1 ⇒ σ1 R∨1⊢LC σ1 ⇒ σ1 ∨ σ2 Ax
σo1 ⇒ (σ1 ∨ σ2)o

Cut
∆1 \ Lc, φf1 ⇒ (σ1 ∨ σ2)o

...
∆2 \ Lc, φf2 ⇒ (σ1 ∨ σ2)o

L-OR
∆1 \ Lc,∆2 \ Lc, (φ1 ∨ φ2)f ⇒ (σ1 ∨ σ2)o

Since σ1 ∨ σ2 ⊢ ¬
∧(∆ ∩ Lc)↓ this completes our case.

Cut Suppose, where ∆ = ∆1 ∪ ∆2,

⊢nS ∆1 ⇒ σ ⊢nS σ,∆2 ⇒
Cut

⊢n+1
S ∆1,∆2 ⇒

By the IH, ⊢S (∆2 ∪ {σ}) \ Lc ⇒ φo such that φ ⊢ ¬
∧((∆2 ∪ {σ}) ∩ Lc). If

σ ∈ Lc, by Lemma 6.5.1, ∆1 ⊆ Lc and so ∆ \ Lc = ∆2 \ Lc. Since ∆↓
1 ⊢ σ↓,

φ ⊢ ¬
∧(∆1 ∪ ∆2) ∩ Lc. If σ ∈ Lf then by Lemma 6.5.1 ∆1 ⊆ Lf and so

⊢nS ∆1 \ Lc ⇒ σ. If σ ∈ Lo then by Lemma 6.6 ⊢nS ∆1 \ Lc ⇒ σ. In both cases, by
IH, σ,∆2 \ Lc ⇒ φo such that φ ⊢ ¬

∧(∆2 ∩ Lc)↓ and we apply

⊢nS ∆1 \ Lc ⇒ σ ⊢nS σ,∆2 \ Lc ⇒ φo
Cut

⊢n+1
S ∆1 \ Lc,∆2 \ Lc ⇒ φo

QED

6.4.2 Soundness and Completeness: DAC and deriv

This section provides the proof of soundness and completeness between I/O proof systems
deriv and our DAC systems (Theorem 6.1). The assumed correspondence between the
rules of deriv and those of DAC are presented in Table 6.1. First, we prove a useful result
concerning deriv: Lemma 6.8 can be interpreted as proving a transitivity property of
deriv when merging two sets of norms.

Lemma 6.8. Let Θ1,Θ2 ⊆ Ln. If (γ1, φ) ∈ derivR,L(Θ1) and (γ2, ψ) ∈ derivR,L(Θ2) such
that (⊤, φ) ∈ Θ2 and γ1 ⊢ γ2, then (γ1, ψ) ∈ derivR,L(Θ∗) with Θ∗ = Θ1 ∪ (Θ2 \ {(⊤, φ)}).

Proof. The proof is by induction on the length of the derivation of (γ2, ψ) ∈ derivR,L(Θ2).

Base case. In this case, (⊤, φ) = (γ2, ψ) and {(⊤, φ)} = Θ2. Since (γ1, φ) ∈ derivR,L(Θ1)
we have (γ1, φ) ∈ derivR,L(Θ∗) since Θ1 = Θ∗ (nb. γ1 ⊢ ⊤).

Inductive step. We consider the rules through which (ψ2, ψ) can be derived.
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Rules of derivR,L Rules of DACS

{WO, AND, SI} {Ax,Detach,R-C,R-N,Cut}

T Taut

ID TP

CT L-CT

OR L-OR

Table 6.1: Correspondence between derivR,L rules and DACS rules. E.g., {ID,OR} ⊆ R
iff {TP,L-OR} ⊆ S. The first row represents the minimal set of rules both systems
must satisfy. We use boldface to distinguish DAC rules from deriv rules.

SI. Let (γ2, ψ) ∈ derivR,L(Θ2) through an application of SI to (γ3, ψ) and γ2 ⊢ γ3. We
know γ1 ⊢ γ3 and, by the IH, we obtain (γ1, ψ) ∈ derivR,L(Θ∗).

WO. Let (γ2, ψ) ∈ derivR,L(Θ2) through an application of WO to (γ2, ψ2) and ψ2 ⊢ ψ.
We apply the IH to the premise and obtain (γ1, ψ2) ∈ derivR,L(Θ∗), then we apply
WO and obtain (γ1, ψ) ∈ derivR,L(Θ∗).

AND. Let (γ2, ψ) ∈ derivR,L(Θ2) through an application of AND to (γ2, ψ1) ∈ derivR,L(Θ1
2)

and (γ2, ψ2) ∈ derivR,L(Θ2
2), where ψ = ψ1 ∧ ψ2 and Θ2 = Θ1

2 ∪ Θ2
2. By the IH,

(γ1, ψ1) ∈ derivR,L(Θ1,∗) and (γ1, ψ1) ∈ derivR,L(Θ2,∗), where Θj,∗ = Θ1 ∪ (Θj
2 \

{(⊤, φ)}) (for j ∈ {1, 2}). By AND, (γ1, ψ) ∈ derivR,L(Θ∗).

OR. Let (γ2, ψ) ∈ derivR,L(Θ2) with γ2 = γ3 ∨ γ4 through an application of OR to
(γ3, ψ) ∈ derivR,L(Θ1

2) and (γ4, ψ) ∈ derivR,L(Θ2
2), where Θ2 = Θ1

2 ∪ Θ2
2. By R∨2,

γ3 ⊢ γ2 and γ4 ⊢ γ2. By SI and R∧1, (γ1 ∧ γ3, φ), (γ1 ∧ γ4, φ) ∈ derivR,L(Θ1). By
the IH, (γ1 ∧ γ3, ψ) ∈ derivR,L(Θ1,∗) and (γ1 ∧ γ4, ψ) ∈ derivR,L(Θ2,∗), where Θj,∗ =
Θ1 ∪(Θj

2 \{(⊤, φ)}) (for j ∈ {1, 2}). By OR, ((γ1 ∧γ3)∨(γ1 ∧γ4), ψ) ∈ derivR,L(Θ∗).
By D2, γ1 ∧γ2 ⊢ (γ1 ∧γ3) ∨ (γ1 ∧γ4) and by R∧1, γ1 ⊢ γ1 ∧γ2. Since ⊢ is transitive,
γ1 ⊢ (γ1 ∧ γ3) ∨ (γ1 ∧ γ4). By SI, (γ1, ψ) ∈ derivR,L(Θ∗).

CT. Let (γ2, ψ) ∈ derivR,L(Θ2) through an application of CT to (γ2, ψ2) ∈ derivR,L(Θ1
2)

and (γ2 ∧ψ2, ψ) ∈ derivR,L(Θ2
2), where Θ2 = Θ1

2 ∪Θ2
2. For j ∈ {1, 2}, let Θ∗,j = Θ1 ∪

(Θj
2 \ {(⊤, ψ)}). By IH, (γ1, ψ2) ∈ derivR,L(Θ∗,1

1 ). By SI, (γ1 ∧ψ2, φ) ∈ derivR,L(Θ1).
By the IH and since γ1 ∧ ψ2 ⊢ γ2 ∧ ψ2, (γ1 ∧ ψ2, ψ) ∈ derivR,L(Θ∗,2). By CT,
(γ1, ψ) ∈ derivR,L(Θ∗).

QED

The following lemma shows the admissibility of (⊤,⊤) whenever T ∈ R of derivR,L.
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Lemma 6.9. Let Θ ⊆ Ln and T ∈ R. If (φ,ψ) ∈ derivR,L(Θ ∪ {(⊤,⊤)}) then (φ,ψ) ∈
derivR,L(Θ).

Proof. We show this by induction on the length of the proof of (φ,ψ).

Base case. In this case {(φ,ψ)} = Θ ∪ {(⊤,⊤)}. Clearly, by T, (φ,ψ) ∈ derivR,L(∅).

Inductive step. We consider the rules through which (φ,ψ) can be derived.

WO. Suppose (φ,ψ) has been derived from (φ,ψ′) ∈ derivR,L(Θ ∪ {(⊤,⊤)}) by WO. By
the IH, (φ,ψ′) ∈ derivR,L(Θ) and so (φ,ψ) ∈ derivR,L(Θ).

SI. The case for SI is analogous to that of WO.

AND. Suppose (φ,ψ) has been derived from (φ,ψ1) ∈ derivR,L(Θ1) and (φ,ψ2) ∈
derivR,L(Θ2) where Θ ∪ {(⊤,⊤)} = Θ1 ∪ Θ2 and ψ = ψ1 ∧ ψ2. By the IH,
(φ,ψ1) ∈ derivR,L(Θ1 \ {(⊤,⊤)}) and (φ,ψ2) ∈ derivR,L(Θ2 \ {(⊤,⊤)}). So,
(φ,ψ) ∈ derivR,L(Θ).

OR and CT. The cases for OR and CT are analogous to that of AND.

QED

We prove the two adequacy directions separately. For the Left-to-Right direction, we
prove a slightly stronger result:

Lemma 6.10. Let Ω ⊆ Lp, Θ ⊆ Ln, and Ω↑ = {(⊤, φ) | φ ∈ Ω}. If ⊢S ∆f ,Θ,Ωo ⇒ φo,
then φ ∈ derivR,L(∆,Θ ∪ Ω↑).

Proof. We show this by induction on the length of the proof of ∆f ,Θ,Ωo ⇒ φo.

Base case. We consider the axioms.

Ax. ⊢S Ωo ⇒ φo, ∆ = Θ = ∅ and Ω ⊢ φ. By AND, ∧ Ω ∈ derivR,L(∅,Ω↑) and by WO,
φ ∈ derivR,L(∅,Ω↑).

Detach. ⊢S ψ
f , (ψ,φ) ⇒ φo. Clearly, φ ∈ derivR,L({ψ}, {(ψ,φ)}).

Taut. Nothing to show.

TP. ⊢S φ
f ⇒ φo. In this case, (φ,φ) ∈ derivR,L(∅) by ID, and hence φ ∈ derivR,L({φ}, ∅).

Inductive step. The rules R-C and R-N can be ignored.

Cut. Θ,∆f ,Ωo ⇒ φo is derived by Cut from Θ1,∆f
1 ,Ωo

1 ⇒ σ and Θ2,∆f
2 ,Ωo

2, σ ⇒ φo,
where Θ = Θ1 ∪ Θ2, ∆ = ∆1 ∪ ∆2, and Ω = Ω1 ∪ Ω2. By Lemma 6.1, we need to
consider the cases (1) σ = ψf ∈ Lf , (2) σ = ψo ∈ Lo, (3) σ = ψc ∈ Lc, and (4)
σ = (⊤,⊤).

237



6. Deontic Explanations

1. By Lemma 6.5.1, Θ1∪Ω1 = ∅ and (†) ⊢ ∆↓
1 ⇒ σ↓. By the IH, φ ∈ derivR,L(∆2∪

{σ},Θ2 ∪ Ω↑
2) and so (∧ ∆2 ∪ {σ}, φ) ∈ derivR,L(Θ ∪ Ω↑). By SI and (†),

(∧ ∆, φ) ∈ derivR,L(Θ ∪ Ω↑) and so φ ∈ derivR,L(∆,Θ ∪ Ω↑).
2. By the IH, ψ ∈ derivR,L(∆1,Θ1 ∪ Ω↑

1) and φ ∈ derivR,L(∆2,Θ2 ∪ (Ω2 ∪ {ψ})↑).
So, (∧ ∆1, ψ) ∈ derivR,L(Θ1 ∪ Ω↑

1) and (∧ ∆2, φ) ∈ derivR,L(Θ2 ∪ (Ω2 ∪ {ψ})↑).
By SI, (∧ ∆, ψ) ∈ derivR,L(Θ1 ∪Ω↑

1) and (∧ ∆, φ) ∈ derivR,L(Θ2 ∪ (Ω2 ∪{ψ})↑).
By Lemma 6.8 and since ∧ ∆ ⊢

∧ ∆, (∧ ∆, φ) ∈ derivR,L(Θ ∪ Ω↑) and so
φ ∈ derivR,L(∆,Θ ∪ Ω↑).

3. By Lemma 6.5.1, ⊢ ψ and Θ1 ∪ ∆1 ∪ Ω1 = ∅. By Lemma 6.4, Θ2,∆f
2 ,Ωo

2 ⇒ φo

is derivable in a proof of the same length as the one of Θ2,∆f
2 ,Ωo

2, σ ⇒ φo.
By the IH, we have φ ∈ derivR,L(Θ ∪ Ω↑,∆).

4. By Lemma 6.2, Θ1 ∪∆1 ∪Ω1 = ∅ and so Taut ∈ S. Consequently, by Table 6.1,
T ∈ R too. By the IH, φ ∈ derivR,L(∆,Θ ∪ {(⊤,⊤)} ∪ Ω↑). By Lemma 6.9,
φ ∈ derivR,L(∆,Θ ∪ Ω↑).

L-CT. ∆f ,Θ,Ωo, ψo ⇒ φo is derived from ∆f ,Θ,Ωo, ψf ⇒ φo. By the IH, φ ∈
derivR,L(∆ ∪ {ψ},Θ ∪ Ω↑) and so (∧ ∆ ∪ {ψ}, φ) ∈ derivR,L(Θ ∪ Ω↑). By SI,
from (⊤, ψ) follows (∧ ∆, ψ). Together with (∧ ∆ ∪ {ψ}, φ) and CT, (∧ ∆, φ) ∈
derivR,L(Θ ∪ Ω↑ ∪ {(⊤, ψ)}) and so φ ∈ derivR,L(∆,Θ ∪ (Ω ∪ {ψ})↑).

L-OR. ∆f ,Θ,Ωo, (σ∨ψ)f ⇒ φo is derived from ∆f
1 ,Θ1,Ωo

1, σ
f ⇒ φo and ∆f

2 ,Θ2,Ωo
2, ψ

f ⇒
φo, where ∆ = ∆1 ∪ ∆2, Θ = Θ1 ∪ Θ2, and Ω = Ω1 ∪ Ω2. By the IH, φ ∈
derivR,L(∆1 ∪ {σ},Θ1 ∪ Ω↑

1) and φ ∈ derivR,L(∆2 ∪ {ψ},Θ2 ∪ Ω↑
2). So, by SI,

(∧ ∆ ∪ {σ}, φ) ∈ derivR,L(Θ1 ∪ Ω↑
1) and (∧ ∆ ∪ {ψ}, φ) ∈ derivR,L(Θ2 ∪ Ω↑

2).
By OR, ((∧ ∆ ∪ {σ}) ∨ (∧ ∆ ∪ {ψ}), φ) ∈ derivR,L(Θ ∪ Ω↑). By SI and D1,
(∧ ∆ ∧ (σ ∨ ψ), φ) ∈ derivR,L(Θ ∪ Ω↑) and so φ ∈ derivR,L(∆,Θ ∪ Ω↑).

QED

Lemma 6.11. Let Θ ⊆ Ln. If (φ,ψ) ∈ derivR,L(Θ) then ⊢S φ
f ,Θ ⇒ ψo.

Proof. We show this inductively over the length of the derivR,L-proof of (φ,ψ).

Base case. If {(φ,ψ)} = Θ, then by Detach, ⊢S φ
f , (φ,ψ) ⇒ ψo. If (⊤,⊤) is derived by

T with Θ = ∅, then by Detach, ⊢S ⊤f , (⊤,⊤) ⇒ ⊤o and by Taut, ⊢S⇒ (⊤,⊤) and by
Cut, ⊢S ⊤f ⇒ ⊤o. If (φ,φ) is derived by ID with Θ = ∅, then by TP, φf ⇒ φo.

Inductive step. We consider all the rules through which (φ,ψ) can be derived.

WO. (φ,ψ) is derived from (φ, σ) ∈ deriviR,L(Θ) and σ ⊢ ψ by WO. By the IH, ⊢S
φf ,Θ ⇒ σo. Since σ ⊢ ψ, ⊢S σ

o ⇒ ψo by Ax. By Cut, ⊢S φ
f ,Θ ⇒ ψo.

SI. (φ,ψ) is derived from (σ, ψ) ∈ derivR,L(Θ) and φ ⊢ σ by SI. By the IH, ⊢S σ
f ,Θ ⇒ ψo.

Since φ ⊢ σ, by Ax, ⊢S φ
f ⇒ σf . By Cut, ⊢S φ

f ,Θ ⇒ ψo.
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AND. (φ,ψ) is derived from (φ,ψ1) ∈ derivR,L(Θ1) and (φ,ψ2) ∈ derivR,L(Θ2), where
Θ = Θ1 ∪ Θ2 and ψ = ψ1 ∧ ψ2. By the IH, ⊢S φ

f ,Θ1 ⇒ ψo1 and ⊢S φ
f ,Θ2 ⇒ ψo2.

By R∧2, ψ1, ψ2 ⊢ ψ. By Ax, ⊢S ψo1, ψ
o
2 ⇒ ψo. By two applications of Cut,

⊢S φ
f ,Θ ⇒ ψo.

CT. (φ,ψ) is derived from (φ, σ) ∈ derivR,L(Θ1) and (φ ∧ σ, ψ) ∈ derivR,L(Θ2) by CT,
where Θ = Θ1 ∪ Θ2. By the IH, ⊢S φf ,Θ1 ⇒ σo and ⊢S (φ ∧ σ)f ,Θ2 ⇒ ψo. By
R∧2, φ, σ ⊢ φ ∧ σ. By Ax, ⊢S φ

f , σf ⇒ (φ ∧ σ)f and by Cut, φf , σf ,Θ2 ⇒ ψo.

1. If Θ2 ̸= ∅, by L-CT, ⊢S φ
f , σo,Θ2 ⇒ ψo and by Cut, ⊢S φ

f ,Θ ⇒ ψo.
2. If Θ2 = ∅ (and hence Θ = Θ1), we consider: (i) TP ∈ S and (ii) TP /∈ S.

Ad (i). By Lemma 6.5.2, φ, σ ⊢ ψ and by Ax, ⊢S φo, σo ⇒ ψo. By TP,
⊢S φ

f ⇒ φo and by twice Cut, ⊢S φ
f ,Θ ⇒ ψo. Ad (ii). By Lemma 6.5.3, ⊢ ψ

and so σ ⊢ ψ by monotonicity. By Ax, ⊢S σ
o ⇒ ψo. By Cut, ⊢S φ

f ,Θ ⇒ ψo.

OR. (φ,ψ) is derived from (φ1, ψ) ∈ derivR,L(Θ1) and (φ2, ψ) ∈ derivR,L(Θ2), where
φ = φ1 ∨ φ2 and Θ = Θ1 ∪ Θ2. By the IH, ⊢S φ1,Θ1 ⇒ ψo and ⊢S φ2,Θ2 ⇒ ψo.
If Θ1 ̸= ∅ ≠ Θ2, by L-OR, ⊢S φ

f ,Θ ⇒ ψo. Else, Θ1 = ∅ or Θ2 = ∅. Wlog suppose
Θ1 = ∅. We consider: (i) TP ∈ S or (ii) TP /∈ S. Ad (i). By L-OR, ⊢S φ

f ,Θ ⇒ ψo.
Ad (ii). Since ⊢S φ

f
1 ⇒ ψo, by Lemma 6.5.3, ⊢ ψ. By Detach, ⊢S ⊤f , (⊤,⊤) ⇒ ⊤o.

Since ⊢S ⊤o ⇒ ψo, ⊢S ⊤f , (⊤,⊤) ⇒ ψo by Cut. Since ⊢S φf1 ⇒ ⊤f , by Cut,
⊢S φf1 , (⊤,⊤) ⇒ ψo. If Θ2 = ∅, by the same reasoning ⊢S φf2 , (⊤,⊤) ⇒ ψo. By
L-OR, φf , (⊤,⊤) ⇒ ψo. Else, by L-OR, ⊢S φf ,Θ2, (⊤,⊤) ⇒ ψo. By Taut,
⊢S⇒ (⊤,⊤) and by Cut ⊢S φ

f ,Θ ⇒ ψo in both cases.

QED

Theorem 6.1 (Soundness and Completeness). Let ∆ ⊆ L, ψ ∈ L, and Θ ⊆ Ln
(where L is the non-labelled language from Definition 6.1). Then, ⊢S ∆f ,Θ ⇒ ψo iff
ψ ∈ derivR,L(∆,Θ).

Proof. Left-to-Right. This is Lemma 6.10 with Ω = ∅. Right-to-Left. Suppose
ψ ∈ derivR,L(∆,Θ). So, (∧ ∆, ψ) ∈ derivR,L(Θ). By Lemma 6.11, ⊢S (∧ ∆)f ,Θ ⇒ ψo.
Since ∆ ⊢

∧ ∆, ⊢S ∆f ⇒ (∧ ∆)f by Ax. By Cut, ⊢S ∆f ,Θ ⇒ ψo. QED

6.5 Formal Argumentation and Explanation
So far, we have shown that Deontic Argumentation Calculi are sound and complete with
respect to the class of monotonic I/O proof systems deriv. However, as demonstrated
in Section 6.3, these calculi generate more than arguments concluding obligations. The
central DAC arguments are of two types: they either give reasons for obligations or
they give reasons for why certain norms are inapplicable.11 The latter type captures

11Other DAC arguments include arguments about facts and constraints.
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the defeasibility of normative reasoning and defines the interaction among arguments.
Namely, an argument concluding ¬(φ,ψ), defeats all arguments making an appeal to
(φ,ψ) in their reasons (see page 217). We define DAC-induced argumentation frameworks
to model this interaction. In fact, the two types of arguments are sufficient for an argu-
mentative characterization of nonmonotonic I/O logics when instantiating argumentation
frameworks with DAC-arguments. This result—corresponding to Objective 3—is formally
proven in Section 6.6.

An Argumentation Framework (AF) (Dung, 1995) is a tuple ⟨Arg,Att⟩ consisting of a
(denumerable) set Arg of arguments a, b, c, . . . , and a binary relation Att ⊆ Arg × Arg
representing defeats between these arguments.12 In Definition 6.9 below, we define
DAC-based representations of AFs. These are AFs instantiated with DAC-arguments.

Definition 6.9 (DAC-induced Argumentation Frameworks). Let DACS be a calculus and
K = ⟨F ,N , C⟩ a labelled knowledge base (i.e., F ⊆ Lf ,N ⊆ Ln, and C ⊆ Lc). We define
a DACS-induced argumentation framework AFS(K) = ⟨Arg,Att⟩ as follows:

• ∆ ⇒ Γ ∈ Arg iff ∆ ⇒ Γ is DACS-derivable and ∆ ⊆ F ∪ N ∪ C.

Let a, b ∈ Arg,

• a defeats b, i.e., (a, b) ∈ Att iff a = ∆ ⇒ ¬(φ,ψ) and b = Γ, (φ,ψ) ⇒ Θ.13

We write Arg(Σ) to denote the set of DACS-arguments ∆ ⇒ Γ for which ∆ ⊆ Σ ⊆ Lio.

For a DACS -induced AFS(K) it suffices to only consider arguments relevant to the given
knowledge base K, i.e., the set of arguments Arg(F ∪ N ∪ C). We sometimes say that an
argument ∆ ⇒ Γ is triggered by the knowledge base K whenever ∆ ⊆ F ∪ N ∪ C.14

We are interested in which arguments can be accepted given an AF . Different semantics
are available to determine arguments’ acceptability (Baroni et al., 2011). These semantics
give rise to extensions, i.e., collections of arguments that can be jointly defended from
attacking arguments. For our purpose, stable semantics suffice.

12Various extensions of argumentation frameworks have been proposed, capturing support relations,
preference-based defeats, collective defeats, and more. For our purpose, the basic defeat relation suffices.
Furthermore, one may distinguish between abstract and structured argumentation (Prakken, 2018). In
abstract argumentation (Dung, 1995), one abstracts away from the content of arguments and studies their
external relations together with the acceptability conditions that constitute sets of justified arguments.
In structured argumentation, the content of arguments—including claims, reasons, argument schemes,
and premises—is additionally taken into account, which, among others, yields various types of attacks
(Modgil and Prakken, 2014; Pollock, 1987; Walton and Reed, 2003) (cf. page 217).

13We do not consider argument strengths. Thus, every ‘attack’ between arguments is taken as a defeat,
i.e., a successful attack. See (Modgil and Prakken, 2013) for a discussion of argument strength and defeat.

14We point out that the absence of weakening as a structural rule of DAC guarantees that all DAC-
arguments triggered by a knowledge base K are void of free-floaters (cf. Remark 6.1).
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Definition 6.10 (Stable Semantics and Nonmonotonic Inference). Let ⟨Arg,Att⟩ be an
AF and let E ⊆ Arg:

• E defeats an argument a ∈ Arg if there is a b ∈ E that defeats a, i.e., (b, a) ∈ Att;

• E is conflict-free if it does not defeat any of its own elements;

• E is stable if it is conflict-free and defeats all b ∈ Arg \ E.

Let Stable be the set of stable extensions of AF . We define skeptic (s), skeptic∗ (s∗),
and credulous (c) nonmonotonic inference as follows:

• AF |∼s
stable φ iff for each E ∈ Stable, there is an a ∈ E concluding φ;

• AF |∼s∗

stable φ iff there is an a ∈
⋂

Stable concluding φ;

• AF |∼c
stable φ iff there is an E ∈ Stable s.t. there is an a ∈ E concluding φ.

The use of DAC-arguments introduces nuances in argumentative inference. This is
reflected in the distinction between skeptic and skeptic∗ inference: the consequence
relation |∼s denotes a conclusion shared by all stable extensions, whereas |∼s∗

denotes a
shared argument by all stable extensions. In the context of DAC explanations, we can
speak of shared reasons with respect to |∼s∗

. The distinction between |∼s and |∼s∗
also

relates to our discussion of floating conclusions (see page 219). Last, |∼c denotes the
existence of reasons in favor of a conclusion φ with respect to some stable extension.

Example 6.7 (Example 6.1 cont.). The AF in Figure 6.1 is defined by Arg = {a, b, c, d}
and Att = {(b, c), (b, d)}. It has exactly one stable extension {a, b}. Consequently, the
three inference relations equate: AF |∼s,s∗,c

stable(¬t)o. In other words, given that Billy does
not go to help her neighbors, she ought not to tell them she is coming. This is the desired
outcome of this CTD scenario.

Example 6.8 (Example 6.3 cont.). Joan is faced with a dilemma of conflicting duties.
The AF of Figure 6.2 represents this conflict, where Arg = {a, b, c1, c2, d, e} and Att =
{(e, a), (e, c1), (e, d), (d, e), (d, c2), (d, b)}. The AF has two stable extensions {a, c1, d}
and {b, c2, e}. The extensions defend the views that Joan ought to return the hammer,
respectively prevent harm. Hence, AF |∼c

stable r
o, AF |∼c

stable p
o, whereas AF |̸∼c

stable(r ∧
p)o, AF |̸∼s

stable r
o, and AF |̸∼s

stable p
o. For the floating conclusion that Joan ought to

either return the hammer or prevent harm from being done (r∨p)o, we have AF |∼s
stable(r∨

p)o but AF |̸∼s∗

stable(r ∨ p)o.

To illustrate the utility of our approach with respect to existing explanation techniques
in formal argumentation (Objective 4), we consider the notion of related admissibility by
Fan and Toni (2015a).
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Definition 6.11 (Related Admissibility (Fan and Toni, 2015a)). Let ⟨Arg,Att⟩ be an
AF and let E ⊆ Arg:

• An extension E is admissible if it is conflict-free and E defeats all arguments
defeating some a ∈ E;

• An argument a defends b iff a = b, or there is a c such that a defeats c and c defeats
b, or there is a c such that a defends c and c defends b.

• A set Ea ⊆ Arg is related admissible with topic a iff a ∈ Ea, for all b ∈ Ea, b defends
a, and Ea is admissible.

In other words, a related admissible set Ea identifies the relevant arguments that justify
the acceptability of a. Let E+ = {a ∈ Arg | E defeats a} and E− = {a ∈ Arg | a defeats
some b ∈ E} be the set containing the arguments that are defeated by E , respectively
defeat arguments in E . Using the above, we can explain why certain obligations hold.

Example 6.9 (Example 6.3 cont.). Recall that, in Example 6.3, argument b concludes
that Joan is obliged to prevent harm. The answer to “why is Joan obliged to prevent
harm?” is given by the related admissible set Eb = {b, e}. Furthermore, the sets E−

b = {d}
and {d}− ∩ Eb = {e} explain that the only counterargument to b is argument d, the latter
which is defeated by argument e expressing that the norm (⊤, r) used in d is inapplicable
given the reasons (⊤, p) and ¬(r ∧ p)c offered in e. Thus, Joan is obliged to prevent harm
because of the applicable norm (⊤, p), together with the fact that, given she cannot both
prevent harm and return Maxwell’s hammer, the conflicting norm (⊤, r) is inapplicable.
A similar explanation can be given in favor of Joan being obliged to return the hammer
(that is, it remains a dilemma). We point out that the related admissible set Eb is a proper
subset of the stable extension {b, c2, e} discussed in Example 6.8. It shows us that the
argument c2 is not relevant for explaining why Joan is obliged to prevent harm.

The above shows us that undercutting defeats and DAC-induced argumentation frame-
works enable a more refined analysis of the relevant norms explaining the (non-)acceptability
of specific arguments and obligations. The DAC approach is, therefore, more precise
compared to using maximally consistent sets of norms in the traditional I/O formalism.

6.6 Soundness and Completeness, Part 2
In this section, we provide the proofs for the soundness and completeness results between
constrained I/O logics and DAC-instantiated argumentation frameworks (Theorem 6.2).
With this, we accomplish Objective 3. The main theorem uses the following lemma,
expressing that for each sequent whose constraints on the lhs are implied by the constraint
set C, there is a derivable sequent containing only members of C on the lhs.

Lemma 6.12. If ⊢S ∆,Γc1 ⇒ Σ and C ⊢
∧ Γ1, then there is a Γ2 ⊆ C for which

⊢S ∆,Γc2 ⇒ Σ and Γ2 ⊢
∧ Γ1.
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Proof. Since C ⊢
∧ Γ1, by the compactness of ⊢ there is a Γ2 ⊆ C for which Γ2 ⊢

∧ Γ. By
Ax and R∧1, ⊢S Γc2 ⇒ γc for each γ ∈ Γ2. By ⊢S ∆,Γc1 ⇒ Σ and multiple applications
of Cut, ⊢S ∆,Γc2 ⇒ Σ. QED

Theorem 6.2 (Soundness and Completeness). Let K = ⟨F ,N , C⟩ be a knowledge base.
Let R be a set deriv-rules and S a set of DAC-rules according to Table 6.1.

1. If N ′ ∈ maxfamR,L(K) then Arg(Ff ∪ N ′ ∪ Cc) is a stable extension of AFS(K) =
⟨Arg,Att⟩.

2. If A is a stable extension of AFS(K) = ⟨Arg,Att⟩ then there is a N ′ ⊆ N such
that N ′ ∈ maxfamR,L(K) for which A = Arg(Ff ∪ N ′ ∪ Cc).

Proof. We prove both items consecutively.

Ad 1. Let N ′ ∈ maxfamilyR,L(K) and A = Arg(Ff ∪ N ′ ∪ Cc).
For conflict-freeness assume towards a contradiction that there are a = ∆f ,Θ,Γc ⇒
¬(φ,ψ) ∈ A (where Θ ⊆ N ′) and b = Ω, (φ,ψ) ⇒ Σ ∈ A such that a attacks b.
By Lemma 6.3 and since (φ,ψ) ∈ N ′, we have, ∆f ,Θ,Γc, (φ,ψ) ⇒ ∈ A. There
are two cases: Γc = ∅ or not. If Γc = ∅, by Lemma 6.7, ∆f ,Θ, (φ,ψ) ⇒ ⊥o ∈ A.
By Theorem 6.1, ⊥ ∈ derivR,L(∆,Θ ∪ {(φ,ψ)}). Since Θ ⊆ N ′, this contradicts
the C-consistency of N ′. If Γc ̸= ∅, by Lemma 6.7, ∆f ,Θ, (φ,ψ) ⇒ σo ∈ A for
some σ for which σ ⊢ ¬

∧ Γ. By Theorem 6.1, σ ∈ derivR,L(∆,Θ ∪ {(φ,ψ)}), which
contradicts the C-consistency of N ′.
For A defeats all a ∈ Arg \ A, let a = ∆f

1 ,Θ1,Γc1 ⇒ Σ ∈ Arg \ A, where Θ1 ⊆ Ln.
So, there is a (φ,ψ) ∈ Θ1 \ N ′. By the maximal consistency of N ′, N ′ ∪ {(φ,ψ)}
is inconsistent with C. So, there is a θ ∈ derivR,L(∆2,Θ2) for some ∆2 ⊆ F and
Θ2 ⊆ N ′ ∪ {(φ,ψ)} such that C ⊢ ¬θ. By Theorem 6.1, ∆2,Θ2 ⇒ θo ∈ Arg. Note
that (φ,ψ) ∈ Θ2 since otherwise Θ2 ⊆ N ′, which contradicts the consistency of
N ′. By R-C and R-N, ⊢S ∆2,Θ2 \ {(φ,ψ)}, (¬θ)c ⇒ ¬(φ,ψ). By Lemma 6.12,
b = ∆2,Θ2 \ {(φ,ψ)},Γc2 ⇒ ¬(φ,ψ) ∈ Arg for some Γ2 ⊆ C for which Γ2 ⊢ ¬θ.
Note that b ∈ A and b attacks a.

Ad 2. Let A be a stable extension of AF(K). Let N ′ = {(φ,ψ) ∈ N | ¬∃a ∈
A with Con(a) = ¬(φ,ψ)}. We first show that A = Arg(Ff ∪ N ′ ∪ Cc).

• Left-to-Right. Let a ∈ Arg \ Arg(Ff ∪ N ′ ∪ Cc) with a = ∆ ⇒ Γ. So, there is
a (φ,ψ) ∈ ∆ for which there is a b ∈ A with b = Θ ⇒ ¬(φ,ψ). So b attacks a
and by the stability of A, a /∈ A.

• Right-to-Left. Let a ∈ Arg(Ff ∪ N ′ ∪ Cc). By the definition of N ′, there is no
b ∈ A that attacks a and since a ∈ Arg and by the stability of A, a ∈ A.

It remains to show that N ′ ∈ maxfamR,L(K), i.e., N ′ is (i) C-consistent and (ii)
maximal.
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Ad (i). Assume towards a contradiction that N ′ is inconsistent with C. So, there
is a θ ∈ derivR,L(∆,Θ) for some ∆ ⊆ F and Θ ⊆ N ′ for which C ⊢ ¬θ. By
Theorem 6.1, a = ∆f ,Θ ⇒ θo ∈ A.
We first show that Θ ̸= ∅. Assume towards a contradiction that Θ = ∅.
If TP /∈ S, by Lemma 6.5.3, ⊢ θ and thus C is inconsistent which is a
contradiction. If TP ∈ S then, by Lemma 6.5.2, ∆ ⊢ θ. However, then F ∪ C
is inconsistent, which is a contradiction. Thus, Θ ̸= ∅.
Let (φ,ψ) ∈ Θ. By R-N and R-C, ⊢S ∆,Θ \ {(φ,ψ)}, (¬θ)c ⇒ ¬(φ,ψ). By
Lemma 6.12, there is a Γ ⊆ C for which b = ∆,Θ \ {(φ,ψ)},Γc ⇒ ¬(φ,ψ) ∈ A.
Since b attacks a, we reached a contradiction to the conflict-freeness of A.
Altogether this shows that N ′ is consistent with C.

Ad (ii). Assume for a contradiction that there is a (φ,ψ) ∈ N \ N ′ such that
N ′ ∪ {(φ,ψ)} is consistent with C, i.e., N ′ is not maximal. By the defi-
nition of N ′, there is a b = ∆f ,Θ,Γc ⇒ ¬(φ,ψ) ∈ A. By Lemma 6.3,
⊢S ∆f ,Θ, (φ,ψ),Γc ⇒. By Lemma 6.7, ⊢S ∆f ,Θ, (φ,ψ) ⇒ σo such that
σ ⊢ ¬

∧ Γ. By Theorem 6.1, σ ∈ derivR,L(∆,Θ ∪ {(φ,ψ)}) which shows that
N ′ ∪ {(φ,ψ)} is inconsistent with C (note that Γ ⊆ C). Contradiction. This
completes our proof.

QED

6.7 Reasoning About Relevance
In this section, we further address Objective 4 and consider an extension of DAC with
relevance rules. Concerning relevance, it can easily be observed that DAC suffers from the
same problem as deriv does (cf. Remark 6.2 on page 222). Namely, DAC-arguments ∆ ⇒ Γ
can be derived where ∆ contains norms and facts that are not strictly relevant for the
conclusion expressed in Γ. Relevance rules yield more concise arguments, eliminating those
arguments containing irrelevant reasons. The result is a more explanatory DAC-induced
argumentation framework. We start with an example.

Example 6.10 (Irrelevant Reasons). Let F = {p} and N = {(p, q), (p, r)} be the
knowledge base. Consider the following DAC-derivation:

Detach
pf , (p, q) ⇒ qo

Detach
pf , (p, r) ⇒ ro

Ax
qo, ro ⇒ qo

Cut
qo, pf , (p, r) ⇒ qo

Cut
pf , (p, r), (p, q) ⇒ qo

Clearly, the norm (p, r) is irrelevant for concluding the obligation qo. In fact, the following
derivation contains sufficient reasons for concluding qo:

Detach
pf , (p, q) ⇒ qo
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We extend DAC with relevance rules. Such rules exclude arguments like pf , (p, r), (p, q) ⇒
qo from Example 6.10 as irrelevant. The basic idea is that these rules conclude which
sequents are irrelevant by eliminating them. We use the sequent arrow ̸⇒ to denote that
the sequent is eliminated. Thus, an argument ∆ ̸⇒ Θ is interpreted as “the argument
∆ ⇒ Θ is eliminated since it contains irrelevant reasons”.

We consider the following general relevance rule:

∆,∆′ ⇒ Θ ∆ ⇒ Θ
Rela∆,∆′ ̸⇒ Θ

where the side-condition (a) requires that ∆′ ̸= ∅.15 That is ∆ ⇒ Θ must be strictly
more relevant. Rel ensures that only arguments with minimal support are allowed. The
rule subsumes the following rule, which eliminates irrelevant defeating arguments:

∆,∆′ ⇒ ¬(φ,ψ) ∆, (φ,ψ) ⇒
Rel’a∆,∆′ ̸⇒ ¬(φ,ψ)

with the side-condition (a) ∆′ ̸= ∅. The difference between the two rules is that the
former additionally eliminates sequents with irrelevant facts and constraints.

In relation to Example 6.10, we obtain the following derivation:

...
pf , (p, r), (p, q) ⇒ qo

Detach
pf , (p, q) ⇒ qo

Rel
pf , (p, r), (p, q) ̸⇒ qo

Definition 6.12 (Irrelevant Arguments). Let ∆ ⇒ Γ be a DAC-derivable argument. We
say that ∆ ⇒ Γ is an irrelevant argument whenever there is a DAC-derivation applying
Rel deriving ∆ ̸̸⇒ Γ. We say the argument is relevant otherwise.

There are two ways to employ irrelevant arguments of the form pf , (p, r), (p, q) ̸⇒ qo in
our argumentative characterization of nonmonotonic normative reasoning:

1. We exclude irrelevant arguments from the DAC-instantiated AFs;

2. We include irrelevant arguments in the DAC-instantiated AFs.

The upshot of the first approach is that the DAC-instantiated AFs are smaller, i.e.,
containing fewer and more concise arguments. The upshot of the second approach is
that we can use irrelevant arguments to explain why specific reasons are irrelevant for
explaining an obligation. For instance, in the context of dialogues an explainee may

15Recall that sequents are expressed in terms of finite regular sets.
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provide irrelevant information (such as irrelevant counterarguments) while querying for a
deontic explanation. Then, the explainer may provide a more relevant argument attacking
it, thus pointing out its irrelevance. In what follows, we only pursue the first option and
leave the second for future work (see Section 6.8).

Remark 6.4. We address a possible objection to the two rules Rel’ and Rel. Consider
the knowledge base F = {p ∧ q}, N = {(p, r)}, C = ∅. The following two arguments are
DAC-derivable: a = pf , (p, r) ⇒ ro and b = (p ∧ q)f , (p, r) ⇒ ro. Clearly, argument a is
more relevant than argument b since argument b contains the redundant fact q as part of
the conjunction p∧ q. The rule Rel is insufficient for concluding b′ = (p∧ q)f , (p, r) ̸⇒ ro.
However, this is a desired effect. Namely, in Definition 6.9 we defined DAC-instantiated
AFs to contain only those arguments ∆ ⇒ Θ triggered by the knowledge base K =
⟨F ,N , C⟩, that is, where ∆ ⊆ F ∪ N ∪ C. Since we do not require knowledge bases to be
either minimal or elementary (think of the set F decomposed to literals only), we want to
ensure that only those relevant arguments triggered by K are considered. The argument a
is in fact not part of the DAC-instantiated AF , whereas b is. The rule Rel ensures that
this is the case.

Since Rel subsumes the rule Rel’, we only consider extensions of DAC with the former
(i.e., Rel’ is admissible in the light of Rel).

Definition 6.13 (Relevance-aware Deontic Argumentation Calculi). Let DACS be a
system from Definition 6.8. We write DACr

S to denote DACS extended with the rule Rel.
We write Rel ⊢S ∆ ⇛ Γ if ∆ ⇛ Γ is DACr

S-derivable (with ⇛ ∈ {⇒, ̸⇒}).

We observe that Rel can only be applied as the last rule of a derivation. The reason is
that no rule in DACr

S takes irrelevant arguments as its premise. For now, this suffices
since our interest is not in DAC-reasoning with irrelevant arguments but in obtaining
more concise and explanatory DAC-induced argumentation frameworks.16 Consequently,
since all lemmas proven in the context of DAC are about ⇒ sequents, they also hold in
the context of DACr. The following lemma demonstrates height-preserving derivability in
the light of Rel.

Lemma 6.13. Let DACS be a system from Definition 6.8 and let DACr
S be a corresponding

system from Definition 6.13. Then, ⊢nS ∆ ⇒ Θ iff Rel ⊢nS ∆ ⇒ Θ.

Proof. Left-to-Right. Straightforward since the rules of DACS are rules of DACr
S . Right-

to-Left. The only rule in DACr
S different from those in DACS is the Rel rule introducing

sequents of the form ∆′ ̸⇒ Γ′. Hence, no other ∆′ ⇒ Γ′ sequent is additionally derivable
by Rel. QED

16Rel causes irrelevant arguments to be permanently eliminated because no DACr
S-rule enables

reinstatement of a previously eliminated sequent ∆ ̸⇒ Γ. In Chapter 7, we propose an account of
sequent-style reasoning with arguments that can be eliminated and, subsequently, reinstated.

246



6.7. Reasoning About Relevance

Theorem 6.3. Let DACr
S be a system from Definition 6.13. Let ∆ ⊆ L, ψ ∈ L, and

Θ ⊆ Ln. Then, Rel ⊢S ∆f ,Θ ⇒ ψo iff ψ ∈ derivR,L(∆,Θ).

Proof. Since we only consider ∆f ,Θ ⇒ ψo arguments, the result follows immediately
from Theorem 6.1 and Lemma 6.13. QED

We prove that DACr-instantiated AFs—excluding irrelevant arguments—preserve sound-
ness and completeness with respect to the considered class of constrained I/O logics.

Definition 6.14 (DACr-induced Argumentation Frameworks). Let DACr
S be a calculus

and K = ⟨F ,N , C⟩ a labelled knowledge base. We define a DACr-induced argumentation
framework AF r

S(K) = ⟨Argr,Attr⟩ as follows:

• ∆ ⇒ Γ ∈ Argr iff ∆ ⇒ Γ is DACr
S-derivable, ∆ ⊆ F ∪ N ∪ C, Γ ⊆ Lio, and ∆ ̸⇒ Γ

is not DACr
S-derivable.

Where Attr is as defined as Att in Definition 6.9. We write Argr(Σ) to denote the set
of DACr

S-derivable arguments ∆ ⇒ Γ for which ∆ ⊆ Σ ⊆ Lio such that ∆ ̸⇒ Γ is not
DACr

S-derivable.

We first show a useful lemma that ensures that for every irrelevant argument triggered
by the knowledge base, there exists a relevant argument that is a member of the
argumentation framework based on that knowledge base.

Lemma 6.14. Let DACr
S be a system from Definition 6.13 and K = ⟨F ,N , C⟩ a knowledge

base. Let AF r
S(K) = ⟨Argr,Attr⟩ be the DACr

S-induced argumentation framework. For
each DACr

S-derivable ∆ ̸⇒ Γ such that ∆ ⊆ F ∪ N ∪ C there is a ∆′ ⇒ Γ ∈ Argr such
that ∆′ ⊂ ∆ and ∆′ ̸⇒ Γ is DACr

S-underivable.

Proof. The proof is straightforward. First, observe that the side condition on Rel requires
that for each irrelevant argument ∆ ̸⇒ Γ there is a ‘more’ relevant argument ∆′ ⇒ Γ
that has strictly fewer reasons, i.e., ∆′ ⊂ ∆. ∆′ ⇒ Γ, in turn, might also be derived as
irrelevant, i.e., ∆′ ̸⇒ Γ, but since ∆ is a finite set this process eventually halts (with the
extreme case ⇒ Γ). QED

Theorem 6.4. Let K = ⟨F ,N , C⟩ be a knowledge base. Let R be a set of deriv-rules and
S a set of corresponding DACr-rules according to Table 6.1.

1. If N ′ ∈ maxfamR,L(K) then Argr(Ff ∪ N ′ ∪ Cc) is a stable extension of AF r
S(K) =

⟨Arg,Att⟩.

2. If A is a stable extension of AF r
S(K) = ⟨Argr,Att⟩ then there is a N ′ ⊆ N such

that N ′ ∈ maxfamR,L(K) for which A = Argr(Ff ∪ N ′ ∪ Cc).
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Proof. We prove each item consecutively.

Ad 1. Let N ′ ∈ maxfamR,L(K) and Ar = Argr(Ff ∪ N ′ ∪ Cc).

First, we observe that AF r
S(K) = ⟨Argr,Attr⟩ is a sub-framework of AFS(K) =

⟨Arg,Att⟩ of Definition 6.9. In particular Argr ⊆ Arg and Attr ⊆ Att. Consequently,
we know that Ar ⊆ Arg(Ff ∪ N ′ ∪ Cc) = A. By Theorem 6.2 we know that A
is a stable extension of AFS(K) and so A is conflict-free. Consequently, Ar is
conflict-free too.

We show that Ar defeats all a ∈ Argr \ Ar. Let a = ∆f
1 ,Θ1,Γc1 ⇒ Σ ∈ Argr \ Ar

with Θ1 ⊆ Ln. There is a (φ,ψ) ∈ Θ1 \ N ′ since if otherwise Θ1 ⊆ N ′ by the
assumption Ar = Argr(Ff ∪ N ′ ∪ Cc) we have a ∈ Ar, which contradicts our
initial assumption. Consequently, a ∈ Arg \ A too. Since A is stable there is a
b ∈ A such that b = ∆f

2 ,Θ2,Γc1 ⇒ ¬(φ,ψ), ∆f
2 ∪ Θ2 ∪ Γc ⊆ Ff ∪ N ′ ∪ Cc, and

b attacks a. There are two options: if b ∈ Argr (i.e., b is relevant), then since
∆f

2 ∪ Θ2 ∪ Γc ⊆ Ff ∪ N ′ ∪ Cc we have b ∈ Ar and we are done. If b ̸∈ Argr (i.e., b is
irrelevant), then by Lemma 6.14 there is a relevant argument b′ ∈ Argr such that
b′ = ∆3 ⇒ ¬(φ,ψ) and ∆3 ⊂ ∆f

2 ∪ Θ2 ∪ Γc. Clearly, b′ defeats a and b′ ∈ Ar. We
are done.

Ad 2. This proof is similar to the one of Theorem 6.2. The sole difference is that now
we use Theorem 6.3 for the correspondence between deriv and DACr, instead of
Theorem 6.1. QED

The upshot of the approach pursued in this section is that the argumentation framework
contains only arguments with minimal support (Theorem 6.5). Thus, the argumentation
is more concise and only generates arguments that provide minimal reasons for why
certain norms are applicable or inapplicable.

Theorem 6.5. Let DACr
S be a system from Definition 6.13 and K = ⟨F ,N , C⟩ a knowledge

base. Let AF r
S(K) = ⟨Argr,Attr⟩ be the DACr

S induced argumentation framework: if
∆ ⇒ Γ ∈ Argr, then ∆′ ⇒ Γ ̸∈ Argr for all ∆′ ⊂ ∆.

Proof. Suppose towards a contradiction that ∆ ⇒ Γ,∆′ ⇒ Γ ∈ Argr with ∆′ ⊂ ∆. Since
both arguments are DACr

S -derivable, we can construct a derivation of both and apply Rel,
thus deriving ∆′ ̸⇒ Γ. Since both ∆,∆′ ⊆ K by assumption, we have a contradiction
with Definition 6.14. QED

6.8 Related Work and Future Research

In the remainder of this chapter, we discuss the related literature. We point out some
open questions and future work directions along the way.
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Default Logic. In Default Logic (Reiter, 1980), the main components are default rules
and a set of assumptions (e.g., a partial description of the world). Default rules are
defeasible, and the set of assumptions is taken as strict. A default rule is an inference
rule of the form (φ : θ1, . . . , θn)/ψ where φ is the pre-requisite, θ1, . . . , θn signify the
justification, and ψ is the conclusion. Roughly, such a rule is interpreted as “if φ holds,
and there is no proof that θ1, . . . , θn do not hold, then ψ may be derived”. A central aim
is to preserve consistency while applying default rules. Default logic generates consistent
extensions of inferred formulae utilizing a fixed point approach, e.g., see (Reiter, 1980;
Straßer and Antonelli, 2019). Normal Defaults are defaults of the form (φ : ψ)/ψ, where
the conclusion ψ may be inferred whenever the antecedent φ holds, and it is not derived
that ψ does not hold. As shown by Parent (2011), under certain conditions prioritized
Input/Output logics strongly relate to greedy reasoning with Reiter’s (1980) normal
default logic. The following remains to be investigated:

Open question 6.1. Is there a formal correspondence between DAC and (variations of)
Reiter’s default logic?

Variations of Reiter’s default logic were developed by, e.g., Horty (2012) and Gelfond et al.
(1991). In particular, Horty (1997) proposes Deontic Default Logic, which is strongly
related to Input/Output logic (Parent, 2011) (see the discussion in Chapter 7, page 293).

Extensions of I/O logics. The I/O formalism knows other applications, including
normative reasoning with consistency checks, permissions, and constitutive norms (Pigozzi
and van der Torre, 2018; Tosatto et al., 2012). Due to the presence of norms as
objects in the logical language of DAC, one can similarly introduce other types of norms,
such as permissive and constitutive norms, together with logical rules defining their
interaction. In particular, we aim to exploit the internalization of meta-reasoning in
DAC for characterizing various types of permission (Makinson and van der Torre, 2003;
Olszewski et al., 2021; Tosatto et al., 2012). For instance, negative permissions can
be defined in terms of the absence of applicable norms to the contrary. DAC-rules
that introduce negative permissions—denoted as objects of the form (φ,ψ)p with a
corresponding detached formula ψp—would be of the following form:

DetachPer
φ, (φ,ψ)p ⇒ ψp

∆ ⇒ ¬(φ,¬ψ)
NegPer∆ ⇒ (φ,ψ)p

The rule on the left is a Detach rule for negative permission. The rule on the right
derives a permissive norm (φ,ψ)p from the inapplicability of a regulative norm (φ,¬ψ)
to the contrary.

Open question 6.2. Does DAC extended with the rules DetachPer and NegPer
characterize constrained I/O logics with negative permissions?
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Next, Bochman (2021) investigates I/O pairs as production/explanation rules, where the
pairs (φ,ψ) and (θ.φ, ψ) are interpreted as “φ produces/explains ψ”, respectively “After
θ, φ produces/explains ψ”. The logics do not satisfy identity (ID) and contain a falsity
preservation rule (⊥,⊥). Furthermore, they are shown to be conceptually close to the
action description language C+ (Bochman, 2014; Giunchiglia et al., 2004). Adaptation of
Bochman’s (2021) work on abductive causal inference to the context of abductive deontic
inference in DAC remains to be investigated.

Alternative proof systems for I/O logics. Lellmann (2021) proposes a sequent-style
system for unconstrained I/O logics with consistency checks. It utilizes a translation from
I/O to modal conditional logics, treating norms as dyadic modalities instead. The results
hold for a class of I/O logics based on the systems R1 and R3 (defined on page 221).
The calculi proposed by Lellmann (2021) are shown to possess the critical proof-theoretic
property of cut-freeness and enjoy the property of analyticity (Negri et al., 2008) (see
the footnote on page 10). Furthermore, decidability and complexity results are provided.
Whether modifications of DAC enjoy similar properties remains to be determined. At the
moment, DAC still depends on applications of Cut and the cut-like rule L-CT.

Open question 6.3. Under what extensions of DAC can we ascertain cut-free calculi?

Straßer et al. (2016) provide an adaptive logic approach to the I/O formalism using
dynamic proof systems. First, they translate the monotonic unconstrained I/O logics into
modal logics, using unary modalities to characterize ‘input’, ‘output’, and ‘constraints’.
Second, they use adaptive logics on top of these modal logics to characterize nonmonotonic
constrained I/O logics (see also the discussion of adaptive logics in Chapter 7 on page 289).
The class of I/O logics considered by Straßer et al. (2016) subsumes the class of logics
discussed for DAC. For instance, they consider systems that contain the rule (⊥,⊥)
used in causal interpretations of I/O logics (Bochman, 2014). The use of modalities
for ‘input’ and ‘output’ allows for reasoning about statements such as “input φ is not a
reason for output ψ” or “input φ is a reason against output ψ”. DAC uses labels instead
of modalities, and we leave it for future work to investigate the expressive power of
DAC in relation to these adaptive logics. Although the introduced adaptive logics are
shown sound and complete for a large class of I/O logics, a correspondence with formal
argumentation is not given. Straßer (2014) provides a general correspondence between
adaptive logics and formal argumentation. Furthermore, the central purpose of DAC is
to generate arguments that provide explicit reasons and facilitate explanations.

Last, Straßer and Arieli (2015) use sequent-based argumentation to model defeasible
reasoning with Standard Deontic Logic. Relations to formalisms based on I/O logics
are also discussed. Their presentation is not aimed at explanatory reasoning: e.g., the
resulting sequents are not relevance-aware (the calculus has unrestricted weakening).
Moreover, since norms are modeled with material implications, their approach allows
for less fine-tuning of norms than in DAC. Furthermore, DAC additionally represents all
standard constrained I/O systems.
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Argumentative characterizations of normative reasoning. Dong et al. (2020),
Governatori et al. (2018), Liao et al. (2018), and Straßer and Pardo (2021) study
argumentative characterizations of normative systems employing priority orderings. The
latter two use a version of the I/O system R3 extended with priorities. They all use
languages restricted to literals, whereas our approach adopts a full propositional language.
Liao et al. (2018) and Straßer and Pardo (2021) take arguments to consist only of (sets of)
norms. The approach by Straßer and Pardo (2021) extends the work by Liao et al. (2018).
Dong et al. (2020) and Governatori et al. (2018) additionally use deontic modalities to
characterize obligations. It is left to future work to incorporate priority reasoning with a
full propositional language in the more transparent context of DAC.

Open question 6.4. How can we incorporate explicit priority reasoning in DAC?

An alternative approach to modeling reasoning with norms is to instantiate ASPIC+—as
developed by Modgil and Prakken (2013; 2014)—with conditionals representing norms
and a defeasible modus ponens rule. This approach leads to a “greedier” style of reasoning
than our approach. To see this point, consider F = ∅ and N = {(⊤, p), (p, q), (⊤,¬q)}.
An ASPIC+-based approach yields the obligation p with stable semantics since the
argument for p from (⊤, p) is unchallenged. In contrast, our approach yields the argument
(⊤,¬q), (p, q) ⇒ ¬(⊤, p) concluding the inapplicability of (⊤, p) (given L-CT). The latter
is in line with the I/O approach to normative reasoning.

Multi-agent systems and the BOID architecture. The BOID architecture, as
developed by Broersen et al. (2001), extends the Belief-Desire-Intention view on practical
reasoning (Rao and Georgeff, 1995) with obligations. Obligations are taken as external
motivational attitudes. In contrast to BDI logics (Rao and Georgeff, 1998), BOID is
not a modal logic. The formalism processes input in order to output beliefs, obligations,
intentions, and desires. Its main focus is on conflicts among beliefs, obligations, intentions,
and desires. Conflicts are resolved by imposing priorities that indicate which of the four
types overrules others in case of conflict. Broersen et al. (2001) propose several types of
agents with different preferences (similar to the BDI formalism). To illustrate, a social
agent prioritizes obligations over desires. The framework is in the spirit of Default Logic
(Reiter, 1980) and Input/Output logic (Makinson and van der Torre, 2000). The input is
a set of propositional formulae interpreted as the context. Beliefs, obligations, intentions,
and desires are taken as conditionals similar to normal defaults and I/O pairs. Roughly,
the context triggers conditionals, resulting in output, i.e., goals. Conflicts arise whenever
an inconsistent set of goals is generated (Broersen et al., 2002). Priorities are employed
to resolve conflicting output. Under different BOID formalisms, either single or multiple
extensions are generated. Consistency constraints are employed to restrict the inference
process while generating output (Broersen et al., 2002).

The BOID architecture shows a strong conceptual relation to the formalism developed in
this chapter due to its similarity to Default Logic and Input/Output logic. Since BDI
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and BOID systems have been influential in the development of multi-agent systems in AI,
a promising future research direction is the investigation of BOID in the context of DAC.

Open question 6.5. Can we provide an argumentative characterization of BOID using
extensions of DAC?

Answering this question involves labeling different types of (φ,ψ) pairs to syntactically
differentiate between beliefs, desires, intentions, and obligations. Furthermore, DAC must
be extended with explicit priorities over these pairs.

Explanation and formal argumentation. A different type of explanation, not
treated in this chapter, clarifies why certain norms are added to a normative code. Such
explanations enhance our understanding of why normative codes are the way they are.
Here, one may think of value-based reasoning where the inclusion of certain norms is
explained by reference to the general values promoted by the norm (Bench-Capon, 2002;
Bench-Capon, 2003; Bench-Capon and Sartor, 2003). To illustrate, one may answer a
question of the form “why I am obliged to wear a safety belt while driving a car” by
referring to “safety” as a value endorsed by society. We leave such explanations for future
work.

In Section 6.5, we illustrated our approach using the semantic notion of related admis-
sibility, developed by Fan and Toni (2015a). The notion identifies relevant information
explaining the defensibility of an argument. Fan and Toni (2015a) extend their work to
Assumption-Based Argumentation (Dung et al., 2009) for a more fine-grained analysis.
Their definitions refer to assumptions (premises) and conclusions of structured arguments,
which conceptually correspond to reasons (lhs) and conclusions (rhs) in DAC-arguments.
We note that the relevance property that DAC enjoys (Section 6.7) makes the calculi
particularly interesting for related-admissibility. Namely, relevant deontic arguments
contain only relevant norms.

Borg and Bex (2021) provide an extension of the work by Fan and Toni (2015a) and study
explanations of (non)-acceptance of arguments and formulae. For instance, a formula φ
is not accepted if there is no derivable argument for it or all its supporting arguments
are attacked. Consequently, an explanation of non-acceptance pinpoints the gaps in the
knowledge base. Our use of adequate sequent calculi opens the door for reasoning about
non-acceptance through underivable sequents denoted by ̸⊢ ∆ ⇒ Γ (Bonatti and Olivetti,
2002). For instance, if ̸⊢ F ⇒ φ holds, we may also conclude that ̸⊢ F , (φ,ψ) ⇒ ψo. In
other words, if F does not imply φ, it is a fortiori insufficient to trigger the norm (φ,ψ).
Also, see the work of Fan and Toni (2015b) and Saribatur et al. (2020) for other notions
of non-acceptance.

The above works on explanation propose formalisms on top of abstract ad structured
argumentation (see the footnote on page 240). These formalisms mainly deal with
the relations between arguments, thus serving external explanation. Our approach
accommodates explanation by constructing suitable arguments that facilitate internal
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and external explanations. Consequently, our approach focuses on a different level of
explanation (the level of argument construction), and is, for that reason, compatible with
these accounts. The work by Borg and Bex (2021), Fan and Toni (2015a), and Šešelja
and Straßer (2013) can be readily applied to DAC-induced argumentation frameworks.

Dialogues and Irrelevance Attacks. Last, explanations typically occur in the context
of dialogues, (Prakken, 2005; Walton, 2010). Dialogical episodes are often characterized
by an exchange of reasons, questions, and (explanatory) arguments. Consequently,
explanations are ideally tailored to the background of the explainee. This motivates the
use of formal models of explanation based on dialogues (Arioua and Croitoru, 2015; Bex
and Budzynska, 2012; Bex and Walton, 2016; Feldhus et al., 2022). There is literature
on formal dialogues, ranging from inquiry, information-seeking, and persuasion dialogues
of argumentation, to dialogues of deliberation (McBurney and Parsons, 2009). Several
of these works provide dialogical generalizations of monological argumentation, e.g., see
(Caminada, 2017). The seminal work by Prakken (2005) contains models for two-player
persuasion dialogues that determine membership of the grounded semantics. Fan and
Toni (2014) propose dialogue systems for Assumption-Based Argumentation dealing with
three types of semantics. Furthermore, Modgil (2017) develops preference dialogues for
admissible and grounded semantics (see Definition 7.11 in Chapter 7 for the definitions
of grounded semantics). Closely related are argumentation games, which determine the
acceptability of an argument with respect to a given semantics utilizing a restricted
two-player dialogue (Modgil and Caminada, 2009).

In dialogues, agents often exchange arguments containing seemingly irrelevant information.
In this respect, we can further exploit irrelevant DAC-arguments ∆ ̸⇒ Γ. In Section 6.7,
we used irrelevance to obtain a more concise DAC-induced argumentation framework
containing only arguments providing minimal support. There, we excluded irrelevant
arguments from the argumentative discourse. Alternatively, we can include irrelevant
arguments triggered by the knowledge base. Based on these arguments, ‘irrelevance’
attacks can be defined between arguments. Then, an argument ∆ ⇒ Γ attacks an
argument ∆′ ⇒ Γ on the basis of being irrelevant, provided that ∆ ⊂ ∆′ and ∆′ ̸⇒ Γ is
DACr-derivable. In the context of dialogues, this enables the explainee and explainer to
pinpoint irrelevant premises to one another. We conjecture that the inclusion of irrelevant
arguments and corresponding attacks preserves soundness and completeness.

Conjecture 6.1. Soundness and completeness are preserved for nonmonotonic I/O
logic and DACr-induced argumentation frameworks in the presence of explicit irrelevance
attacks between arguments.

* * *

In this chapter, we addressed deontic explanations, which are answers to why questions
such as “Why is Joan obliged to return a borrowed weapon, despite her obligation
to prevent harm?” (Example 6.3). We introduced a highly modular proof theoretic
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formalism called Deontic Argumentation Calculi (DAC), which explicitly formalizes
reasons (Objective 1) and integrates meta-reasoning about the inapplicability of norms
into the object language of proofs (Objective 2). We proved that DAC are sound
and complete for a large class of monotonic Input/Output logics and employed DAC to
provide a sound and complete argumentative characterization of the class of nonmonotonic
constrained Input/Output logics (Objective 3). We discussed the explanatory nature of
DAC-induced argumentation frameworks by applying the notion of related admissibility
(Fan and Toni, 2015a) and by extending DAC with relevance rules that exclude irrelevant
reasons (Objective 4). By identifying relevant norms explaining the (non-)acceptability
of specific arguments and obligations, the DAC approach proved more precise compared
to using maximally consistent sets of norms in the traditional I/O formalism.
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CHAPTER 7
Defeasible Reasoning

In the previous chapter, we developed the monotonic sequent-style Deontic Argumentation
Calculi (DAC). We showed that nonmonotonic inference of Input/Output (I/O) logics
can be argumentatively characterized by argumentation frameworks instantiated with
arguments generated by DAC. A natural question that arises from these results is whether
DAC can be modularly extended with specific rules such that derivability in the resulting
calculi corresponds directly to nonmonotonic inference. That is, can we provide a general
proof-theoretic approach to defeasible normative reasoning? In this chapter, we provide
several results addressing this question by pursuing a more general objective. We make
use of two central observations.
First, an essential feature of nonmonotonic logics is that previous inferences can be
retracted in the light of novel information (Chapter 1). For instance, in the context of
normative reasoning (Chapter 6), one may find that an obligation must be revised in the
context of exceptional circumstances. To illustrate, an agent may not be permitted to
drive on the left side of the road. However, this prescription is revised in the additional
context of overtaking another vehicle, where a permission to overtake via the left is
triggered instead. Thus we say, in the context of nonmonotonic reasoning, the status of a
formula as a logical conclusion may have to be revised (several times).
Second, since its beginning, formal argumentation (Dung, 1995) has proven to be a
unifying framework for the representation of large classes of nonmonotonic logics (Arieli
et al., 2021). In formal argumentation, inferences from a given knowledge base can be
represented through arguments. The relations between arguments concluding conflicting
information are defined in terms of attacks between these arguments. The resulting
argumentation framework can then be analyzed to determine which arguments are
collectively defensible (or acceptable). Various semantics have been proposed that
define different types of defensible sets of arguments (Baroni et al., 2011). For many
nonmonotonic logics, it can be shown that nonmonotonic inference of the logic corresponds
to membership of specific semantic extensions (Arieli et al., 2021; Straßer, 2014) (e.g.,
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autoepistemic logics, adaptive logics, default logics, and logic programs). The notion of
attack is central in this respect since it expresses which arguments are compatible with
one another and which are incompatible.

Our primary objective is to integrate these two central concepts of revision and attack
into a proof-theoretic approach to nonmonotonic logic.

Objective 1. Develop a class of proof systems for nonmonotonic reasoning with con-
flicting information where revision considerations based on attacks are fully integrated
into the object level of the proofs.

In this chapter, we introduce Annotated Calculi (AC, for short), which is a robust family
of nonmonotonic sequent-style proof systems. Unlike in ordinary calculi, sequents derived
in annotated calculi may still be retracted in the presence of conflicting sequents. Thus,
inferences are made under stricter conditions. The calculi extend standard analytic
sequent calculi (Gentzen, 1934; Negri et al., 2008) in the following way: First, we extend
the language of sequents with annotations on sequents which represent the sequents’
status in a derivation. It must be noted that unlike annotated logics (Abe et al., 2019),
the annotations are attached to sequents instead of formulae in the language. Second, we
extend these calculi with rules that represent various types of attacks between sequents,
leading to a revision of the status (i.e., annotation) of the sequent under attack. The
result is a novel proof-theoretic approach for nonmonotonic reasoning with conflicting
information in which revision procedures are fully integrated on the object level of proofs.

An annotated sequent is an expression of the form Γ⇒[a] ∆, where Γ⇒∆ is an ordinary
sequent and the superscript [a] is the annotation of the sequent (see Chapter 6, page 224 for
an introduction to sequent systems). We use the following annotations: The annotation
[i] means that the sequent is introduced (conditionally accepted) but is not yet inferred
(finally accepted) because a counter-sequent may still attack it. The annotation [e]
means that the sequent is eliminated because of an attack by an accepted sequent.
Last, the annotation [!] is attached to finally accepted sequents, whose attackers are
counter-attacked altogether.

To reach the first objective, we must ensure that the resulting proof systems behave
well. As a minimal requirement, we first demonstrate that the inference relation of AC is
nonmonotonic. Second, we show that in the absence of conflict (i.e., the presence of a
consistent knowledge base), the nonmonotonic inference relation of AC corresponds to
the monotonic inference relation of the underlying base logic. Last, we show that the
resulting nonmonotonic logics are paraconsistent, i.e., given an inconsistent knowledge
base, AC does not generate an explosive set of finally accepted conclusions.

In nonmonotonic reasoning, conflicting information often yields several alternative ex-
tensions of a theory. There are two main approaches to drawing conclusions from such
extensions. Skeptic inference allows us only to infer what is common to all of these
extensions. Credulous inference considers each extension as an acceptable solution, and
we may infer a formula whenever it belongs to one such extension (even though this
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may contradict with certain inferences from other extensions). In the context of AC,
we interpret sequents annotated with [!] as skeptically inferred and those with [i] as
credulously inferred. An important question that must be answered is whether there is
a correspondence between various annotations of sequents and skeptical and credulous
inference in formal argumentation.

Objective 2. Determine the formal correspondence between the nonmonotonic inference
relations of annotated calculi and formal argumentation.

Coming back to our initial aim, we will leverage the results for AC to enhance the Deontic
Argumentation Calculi (DAC) of Chapter 6 to obtain a class of nonmonotonic proof
systems for normative reasoning. In particular, since DAC was shown to correspond to
a large class of I/O logics, we require that the resulting calculi will preserve a similar
correspondence. This chapter contains the first step towards this result by addressing
the following objective.

Objective 3. Extend DAC with rules such that derivability in the resulting calculi
characterizes skeptical and credulous nonmonotonic inference in formal argumentation.

In addressing this objective, we provide a class of sequent calculi for defeasible normative
reasoning based on the I/O formalism.

Contributions. A distinctive property of annotated sequent calculi is their modularity.
Namely: they can be based on any (propositional) logic with a sound and complete
sequent calculus and any set of attack rules. In this chapter, we demonstrate this novel
approach, initially introduced in (Arieli et al., 2022a), by focusing on defeat attacks.
Other attack rules can be found in Arieli and Straßer, 2019. We adopt defeat attacks
mainly due to their commonness and simplicity (Baroni et al., 2018; Toulmin, 1958).
The technical contributions are threefold:

• First, we show that the resulting proof systems are nonmonotonic and paraconsistent.
The latter expresses that a contradictory set of premises does not have an explosive
set of finally accepted conclusions.

• Second, we demonstrate that the derivations of annotated calculi faithfully represent
the semantics of logical argumentation frameworks.

• Third, reasoning aspects that are typically reserved for the meta-level of nonmono-
tonic reasoning (i.e., credulous and skeptical inference) are fully internalized in
annotated sequent calculi and can be expressed in the object-level language of the
derivation.

This work is the first fully integrate both skeptical and credulous inference of logical
argumentation through a proof-theoretic approach. From a conceptual point of view, our
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approach demonstrates that, despite the calculi’s relative simplicity, their derivations are
particularly appropriate for modeling and describing inference processes involving the
revision of beliefs and defeasible reasoning.

The majority of the results in this chapter are proof-theoretical. Additionally, we extend
our formalism to the context of defeasible normative reasoning and illustrate the obtained
calculi by analyzing deontic benchmark examples.

Differences. We first published the results in this chapter in (Arieli et al., 2022a). Novel
contributions presented in this chapter are Proposition 7.1 (Section 7.1), Proposition 7.3
and 7.7 (Section 7.3), and the entire Section 7.5 on the integration of Deontic Argument
Calculi (Chapter 6) with annotated calculi. Furthermore, we also introduce the novel
annotation [⊥] representing finally eliminated sequents in Section 7.5.

Outline. In Section 7.1, we introduce Annotated Calculi (AC). To illustrate our
approach, we discuss various examples in Section 7.2. After that, in Section 7.3, we
demonstrate various properties of the AC-inference relation. The correspondence to
logical argumentation is addressed in Section 7.4. In Section 7.5, we extend Deontic
Argumentation Calculi DAC with AC-rules and annotations and prove correspondence
with formal argumentation. Last, we discuss related and future work in Section 7.6.

7.1 Annotated Sequent Calculi
We aim to develop a nonmonotonic proof-theoretic approach that is modular for a large
class of underlying base logics (Objective 1). Therefore, we provide general definitions of
the languages and logics forming this class.

Definition 7.1 (Base Language L). Let Atoms be a set of propositional atoms p, q, r, . . .
(possibly indexed). Let L be an arbitrary well-formed propositional language recursively
defined over Atoms and a set of propositional connectives Connectives. We require that L
contains at least a negation and a conjunction operator, i.e., ¬,∧ ∈ Connectives.

We use lowercase Greek letters φ,ψ, χ, . . . to refer to arbitrary formulae of L. Arbitrary
sets of formulae from L are denoted by S, T and we use upper case Greek letters
Γ,∆,Σ, . . . to refer to finite sets of formulae. Both formulae and sets may be indexed.

Definition 7.2 (Base Logic L). Let L = ⟨L,⊢⟩ be a propositional logic, where L is a
propositional language from Definition 7.1 and ⊢L is a consequence relation on ℘(L) × L
(henceforth, we omit the subscript L). Let S ⊆ L, ⊢ satisfies the following properties:
reflexivity, monotonicity, transitivity, non-triviality, structurality, and compactness (see
Definition 6.2 for the formal specifications of these properties). We assume that negation
¬ and conjunction ∧ satisfy the following ⊢-properties:

• p ̸⊢ ¬p and ¬p ̸⊢ p (for p ∈ Atoms);
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• S ⊢ ψ ∧ φ iff S ⊢ ψ and S ⊢ φ.

As a consequence of the above characterization of ∧, we have that φ ∧ ψ ⊢ φ, φ ∧ ψ ⊢ ψ,
and φ,ψ ⊢ φ ∧ ψ. Thus, L also satisfies S, φ, ψ ⊢ σ iff S, φ ∧ ψ ⊢ σ. In the sequel, we
write ∧Γ for the conjunction of all formulae in Γ.

We are interested in defining annotated sequent-style proof systems (Gentzen, 1934).
For this reason, we limit ourselves to base logics L that have a corresponding sound
and complete sequent calculus LC. We refer to Chapter 6, page 224, for a discussion of
sequent calculi.

Definition 7.3 (Base Calculus LC). Let L be a language from Definition 7.1. A sequent
based on S ⊆ L is a structure of the form

Γ ⇒ ∆

where ⇒ is a symbol not in L, Γ ⊆ S, and ∆ ⊆ L is either the empty-set or a singleton-set.

Let L be a logic from Definition 7.2, Γ ⊆ L, and ∆ ⊆ L be either the empty-set or a
singleton-set. We say that a sequent calculus LC is sound and complete with respect to L
whenever Γ ⇒ ∆ is LC-derivable iff Γ ⊢ ∆.

The restriction imposed on ∆ in the above definition facilitates a large class of base logics.
As a terminological clarification, for an arbitrary sequent rule of the form

Γ1 ⇒ ∆1 · · · Γn ⇒ ∆n

Γm ⇒ ∆m

we refer to the topmost sequents Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n as the rule’s conditions and refer
to bottom sequent Γm ⇒ ∆m as the rule’s conclusion. Last, we refer to the left-hand side
(lhs) Γi as the sequent’s premises and to the right-hand side (rhs) ∆i as the sequent’s
conclusion.

Definition 7.4 (Annotated Sequents). Let LC be a sequent calculus from Definition 7.3.
An annotated LC-sequent (annotated sequent, for short) is a structure of the form
Γ ⇒[a] ∆, where Γ ⇒ ∆ is an LC-sequent and a ∈ {i, e, !}. We denote by s[a] the sequent
s whose annotation is [a] with a ∈ {i, e, !}. We use [∗] to express that the annotation of
the sequent is arbitrary.

Recall that the annotated sequent Γ ⇒[i] ∆ denotes an introduced sequent (conditionally
accepted), Γ ⇒[e] ∆ expresses that the sequent is eliminated (conditionally refuted), and
Γ ⇒[!] ∆ denotes a finally accepted sequent.

Next, we define Annotated Calculi (AC, for short), extending a sequent calculus LC of the
base logic L with annotation revision rules. The latter rules are presented in Figure 7.1.
We briefly discuss the intuition behind these rules.
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Γ1,Γ′
1 ⇒[i] ∆ Γ2 ⇒[i] ψ2 ψ2 ⇒[∗] ¬

∧Γ1 Defa
Γ1,Γ′

1 ⇒[e] ψ1

Γ1,Γ′
1 ⇒[e] ∆ Γ2 ⇒[e] ψ2 ψ2 ⇒[∗] ¬

∧Γ1 React
Γ1,Γ′

1 ⇒[i] ψ1

Γ2,Γ′
2 ⇒[e] ∆

Γ1,Γ′
1 ⇒[i] ∆ Γ2,Γ′

2 ⇒[e] ψ2 ψ2 ⇒[∗] ¬
∧Γ1

Retrob
Γ1,Γ′

1 ⇒[e] ψ1
...

Γ3 ⇒[e] ψ3 ψ3 ⇒[∗] ¬
∧Γ2 React

Γ2,Γ′
2 ⇒[i] ψ2

Γ ⇒[i] ψ (∀∆ ∈ Def(Γ)) ∆ ⇒[∗] ¬
∧Γ (∀∆ ∈ Def(Γ), ∃Σ ∈ Def(∆)) Σ ⇒[!] ¬

∧∆
Final

Γ ⇒[!] ψ

Figure 7.1: The annotation revision rules Def,React,Retro, and Final of AC. In
Final, Def(Γ) = {∆ ⊆ S | ∆ ⊢ ¬

∧Γ}. Let S ⊆ L: side-condition (a) denotes that
Γ1,Γ′

1,Γ2 ⊆ S; and (b) denotes that Γ1,Γ′
1,Γ2,Γ′

2,Γ3 ⊆ S. The rule Retro is a system
of rules, which stipulates that each application of the topmost rule must be followed by
an application of a corresponding React rule further down in the derivation.

Annotated rules of the base calculus LC. Each sequent Γ ⇒[a] ∆ in an AC derivation
is initially introduced through an application of a rule of the underlying base calculus
LC. These rules are extended with annotations: both the sequents in the conditions of a
LC-rule and the sequent in the conclusion are annotated by [i]. For instance, consider the
following annotated LC-admissible rule for lhs conjunction introduction, which follows
from Definition 7.2:

Γ, φ, ψ ⇒[i] ∆
Γ, φ ∧ ψ ⇒[i] ∆

Hence, each sequent introduced to a AC-derivation is by default taken as accepted.

Attack rules. These are inference rules for changing the annotations of an attacked
sequent from [i] to [e]. In this chapter, we consider one such attack rule Def, which
simulates an undermining defeat on a sequent’s premises.1 The rule Def is defined as
follows:

1Further sequent-based attack rules can be imported from, e.g., (Arieli and Straßer, 2019), using
annotations similar to Def. We leave the consideration of alternative rules for future work.
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attacked︷ ︸︸ ︷
Γ1,Γ′

1 ⇒[i] ψ1

attacker︷ ︸︸ ︷
Γ2 ⇒[i] ψ2

attack condition︷ ︸︸ ︷
ψ2 ⇒[∗] ¬

∧
Γ1

Defa
Γ1,Γ′

1 ⇒[e] ψ1

where (a) stipulates that Γ1,Γ′
1,Γ2 ⊆ S for some given set S ⊆ L. The side-condition (a)

restricts Def to a set S of premises, which means that the attacking and the attacked
sequent must be S-based. The reason for doing so is to avoid arbitrary attacks. In Def,
the introduced sequent Γ2 ⇒[i] ψ2 attacks Γ1,Γ′

1 ⇒[i] ψ1, and so changes the latter’s
status from ‘introduced’ to ‘eliminated’. The derivation status of the attack condition
on the right does not matter as long as it is logically valid. Furthermore, the attack
condition defines the type of attack. In this case, the attack is on some premises of
the attacked sequent in the first condition and, so, the attack undermines. To facilitate
readability, in the sequel, we present the attacked sequent in the rule’s conditions on the
far left, the attacker in the middle, and the attacking condition on the far right.

The Def attack rule is accompanied by a variation, in which the attacker Γ2 ⇒[i]ψ2 is
replaced by a finally accepted sequent Γ2 ⇒[!]ψ2. Thus, attacking sequents in Def are
either accepted or finally accepted. We discuss finally accepted sequents further down
below. In what follows, we assume this variation to be implicitly present.

Reactivation rules. These are inference rules that reactivate sequents, changing the
annotation of a sequent from eliminated [e] to introduced [i]. In general, each attack
rule has a corresponding reactivation rule (cf. footnote 1). The reactivation rule React,
which corresponds to the attack rule Def, is defined as follows:

Γ1,Γ′
1 ⇒[e] ψ1 Γ2 ⇒[e] ψ2 ψ2 ⇒[∗] ¬

∧Γ1 React
Γ1,Γ′

1 ⇒[i] ψ1

The rule indicates that if the sequent in the first condition was previously attacked and
one of its attackers is counter-attacked (second condition), then the initially attacked
sequent changes its status from ‘eliminated’ back to ‘introduced’, i.e., conditionally
accepted.2 The third condition expresses the attacking condition.

Retrospective attack rules. Unlike attack rules that allow only introduced attackers,
retrospective attack rules allow for eliminated attackers, provided that the attacker in
question can be reactivated.3 These rules may thus be viewed as pairs of attack and
reactivation rules and are similar to systems of rules in sequent-style proof systems (Negri,
2014). The retrospective attack rule Retro is defined accordingly:

2One may stipulate that the attacker of the sequent must be the sequent through which the attacked
sequent was initially eliminated, but this is not necessary for the present purpose.

3Intuitively, retrospective attacks deal with attack cycles. We discuss this in Section 7.2, page 269.
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Γ2,Γ′
2 ⇒[e] ψ2

Γ1,Γ′
1 ⇒[i] ψ1 Γ2,Γ′

2 ⇒[e] ψ2 ψ2 ⇒[∗] ¬
∧Γ1

Retrob
Γ1,Γ′

1 ⇒[e] ψ1

(attack rule with the eliminated attacker)
...

Γ3 ⇒[e] ψ3 ψ3 ⇒[∗] ¬
∧Γ2 React

Γ2,Γ′
2 ⇒[i] ψ2

(the eliminated attacker is reactivated)

where (b) stipulates that Γ1,Γ′
1,Γ2,Γ′

2,Γ3 ⊆ S for some given set S ⊆ L. Note that
the rules above need not be consecutive in the derivation, but the reactivation of the
attacker must be part of the, what we call, revision process following the attack rule.
A retrospective attack rule is only applicable in case the revision process leads to a
reactivation. However, the second React rule may be applied irrespective of whether
Retro has been applied previously (cf. systems of rules (Negri, 2014)). We formally
introduce this revision procedure in Definition 7.5. See also the examples in Section 7.2.

Final acceptability rules. These are rules for assuring final inferences of sequents. A
finally accepted sequent s[!] corresponds to a skeptical inference in the proof system (see
Definition 7.9 below). For now, we consider one such rule: Final. Below, we also present
several alternative rules, which are all AC-admissible in the light of Final. The rule
Final depends on the attack rule Def (which determines the attack condition) and the
sequent whose final acceptability is verified. In our case, the attack condition expresses
an undermining attack (see Def above). Furthermore, Final is relative to a finite set
S ⊆ L of premises.4 Let Def(Γ) = {∆ ⊆ S | ∆ ⊢ ¬

∧Γ} be the set of all sets of formulae
from S that contradict with the set Γ. The rule Final is defined as follows:

Γ ⇒[i] ψ (∀∆ ∈ Def(Γ)) ∆ ⇒[∗] ¬
∧Γ (∀∆ ∈ Def(Γ), ∃Σ ∈ Def(∆)) Σ ⇒[!] ¬

∧∆
Final

Γ ⇒[!] ψ

The Final rule signifies that Γ ⇒ ψ is finally accepted if it is conditionally accepted
(the first condition of the rule), all of its attackers are produced in the derivation (this
is the second condition of the rule), and each such attacker is counter-attacked by a
finally accepted sequent (the last condition of the rule).5 Notice that the second and
third conditions of the rule represent sets of sequents. If the lhs of a sequent ∆ ⇒[∗] Γ is
empty, there are no attackers identified by Def(∆).

4Finiteness is required to ensure that the rule does not contain infinitely many conditions.
5One can alternatively verify that all attackers are produced in a derivation by employing a refutation

calculus R for which Γ ̸⇒ ψ is R-provable iff Γ ̸⊢ ψ. See (Bonatti and Olivetti, 2002; Pkhakadze and
Tompits, 2020). One may additionally impose a relevance condition on Def(Γ). Namely, by monotonicity on
the base logic L it suffices to refer in Final to the set MinAtt(Γ) = {∆ ∈ Def(Γ) | (∀∆′ ⊊ ∆)∆′ ̸∈ Def(Γ)}.
We will not pursue these options here.
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Admissible rules. We highlight that certain additional rules are admissible in light
of the above rules. For instance, sequents that cannot be Def-attacked by any S-based
sequent, either since their left-hand side is empty (these are tautological sequents) or
because S ̸∈ Def(Γ), are finally accepted too. Thus, we also have the following:

⇒[i] ψ

⇒[!] ψ

Γ ⇒[i] ψ S ̸∈ Def(Γ)
Γ ⇒[!] ψ

Further admissible final derivability rules may be expressed. For instance, since we only
consider the premise-attack rule Def, we can have rules which express that if a sequent
is finally derived, so is any derivable sequent with weaker support:

Γ,Γ′ ⇒[!] φ Γ ⇒[i] ψ

Γ ⇒[!] ψ

Γ1 ⇒[!] φ Γ1 ⇒[i] ∧Γ2 Γ2 ⇒[i] ψ with Γ1,Γ2 ⊆ S
Γ2 ⇒[!] ψ

We construct annotated sequent calculi from the above collection of rules.

Definition 7.5 (Annotated Calculi AC). Let L be a base logic with language L and let
LC be its corresponding sound and complete sequent calculus. An Annotated Calculus,
referred to as AC, consists of the following components:

• The initial and inference rules of LC, where the sequents in the conditions
and conclusion of a LC-rule are annotated by [i];

• The annotation revision rules Def, React, Retro, and Final from Figure 7.1.

For any S ⊆ L, an S-based derivation D of an annotated calculus AC is a finite sequence
of tuples D = ⟨T1, . . . , Tn⟩ where the index 1 ≤ i ≤ n determines the tuple’s order in
the derivation D. Each Ti contains the derived annotated sequent (the tuple’s sequent),
the derivation rule that is applied (the tuple’s rule), and the indexes of the tuples whose
sequents serve as the conditions of the tuple’s rule. Applications of the rules Def, Retro,
and Final in D are S-dependent.

We impose the following restrictions of S-based derivations:

• During the construction of a derivation D, after each extension with a tuple Ti
containing an attack rule (Def) or a retrospective attack rule (Retro), an annota-
tion revision process is initiated, and the derivation is extended with new attack or
reactivation rules for updating the sequent annotations when necessary.

• Reactivation rules are applied only during a revision process.

Definition 7.7 describes the revision process.
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Since the status of sequents may change several times throughout an AC-derivation, we
are interested in a sequent’s most recent status. In what follows, we make frequent use
of the following definition.

Definition 7.6 (Most Recent Status). Let D be an AC-derivation and let s be an AC-
sequent . If s[a1] is derived in D and at no later stage in the derivation s[a2] is derived,
we say that the most recent status of s in D is [a1].

Definition 7.7 (The Annotation Revision Process). Let p(s) denote the sequent s[a]
stripped from its annotation [a] and let RevSeq consist of the sequents whose annotations
are revised during the revision process: During the construction of a derivation, when a
tuple Ti with a (retrospective) attack on a sequent s is introduced at derivation step i, we
let RevSeq = {p(s)} and the derivation sequence is traversed backward, starting from the
tuple directly preceding Ti. Proceed as follows:

• If during the traversal a tuple Tj (j < i) containing a (retrospective) attack is
encountered, with attacker s1 and attacked s2, such that p(s1) ∈ RevSeq while
p(s2) ̸∈ RevSeq6, then:

– If the most recent status of s1 is [e] (i.e., p(s1) was (counter-)attacked during
the revision), then Tj is revised by means of extending the derivation with a
new tuple Tk containing a reactivation rule React for p(s2). As a consequence,
the most recent status of p(s2) in the derivation becomes [i], and p(s2) is added
to RevSeq.

– If the most recent status of s1 is [i] (i.e., p(s1) was reactivated during the
revision), and the most recent status of the attacked sequent p(s2) is also [i],
then Tj is revised by means of extending the derivation with a new tuple Tk
containing a re-application of the original attack rule Def on p(s2). As a
consequence, the most recent status of p(s2) in the derivation becomes [e], and
p(s2) is added to RevSeq.

• If during the traversal a reactivating tuple Tj is encountered, where the condition
of the reactivation is s1 and the reactivated sequent is s2, such that p(s1) ∈ RevSeq
and p(s2) ̸∈ RevSeq, then:

– If the most recent status of s1 is [i] (i.e., p(s1) has been reactivated during the
traversal), then Tj is revised by means of extending the derivation with a new
tuple Tk containing a re-application of the original attack rule on p(s2). As a
consequence, the most recent status of p(s2) becomes [e] and p(s2) is added to
RevSeq.

6That is, the status of the attacker has been modified, but the status of the attacked sequent has not
been modified yet.
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It can be the case that during a revision process initiated by a tuple T , one must traverse
the derivation sequence prior to T several times. Nevertheless, this process is finite.

Proposition 7.1. Let D be a derivation such that at the last derivation step of D, a
tuple T is introduced, initiating a revision process: The revision process is finite.

Proof. First, observe that D is finite by Definition 7.5 and thus the derivation sequence
preceding T , denoted by D′, is finite too. Consequently D′ contains finitely many sequents
s[a]. Observe that by Definition 7.7, RevSeq only increases during the revision process
and can only contain sequents occurring in D. Then: Either, at some point during
the revision, none of the sequents p(s1) ∈ RevSeq triggers a revision in D′ such that s1
(retrospectively-)attacks/reactivates s2 and p(s2) ̸∈ RevSeq; thus, the revision halts. Or,
at some point, all sequents in finite D′ are in RevSeq; thus, the revision halts too. The
revision is finite. QED

In what follows, we introduce the notion of a coherent derivation. Coherence ensures that
problematic odd-cycles of attacks are excluded in the derivation process (cf. coherence in
Dung’s (1995) argumentation frameworks). In Section 7.2, we discuss some examples
with odd-cycles in detail.

Definition 7.8. Let s[i] or s[!] be an attacking sequent of a derivation tuple T . Then T
is coherent, if at the end of the revision process following the introduction of T , the most
recent status of s is [i] or [!].

A derivation is coherent if all its tuples are coherent, and there is no tuple such that
the most recent statuses of both its attacking and attacked sequents are in {[!], [i]} (where
attacks are defined by applications of Def, React, and Final).

In the above definition, we require the most recent status of an attacking sequent in
a coherent tuple to be either [i] or [!]. The reason is that the attacking sequent in the
tuple initiating the revision process can be either s[i] or s[!] (cf. the variations of Def on
page 260). We discuss this in detail in Remark 7.1 on page 270.

Last, we define the inference relation induced by AC.

Definition 7.9 (Skeptic and credulous inference AC). Let S ⊆ L and let AC be an
annotated calculus. We define skeptic inference in AC (|∼s

AC), respectively credulous
inference in AC (|∼c

AC), accordingly:

• S |∼s
AC ψ if there is an S-based AC-derivation D and Γ ⇒[!] ψ is derived in D, with

Γ ⊆ S.

• S |∼c
AC ψ if there is a S-based AC-derivation D and Γ ⇒[i] ψ is derived in D, with

Γ ⊆ S and [i] is the sequent’s most recent status.

Henceforth, we omit the subscript AC.
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In other words, skeptic inference corresponds to the derivability of finally accepted
sequents and credulous inference corresponds to derivability of accepted sequents. This
suffices for now.

7.2 Examples
Below we provide some illustrations and discussions of derivations in Annotated Calculi
AC. In all of the examples, we use the proof system of Definition 7.5. To preserve the
readability of the examples, we only represent the sequents of tuples occurring in a
derivation (complete tuples may be easily reconstructed). What is more, AC-derivations
may be represented in various ways. Instead of writing those derivations as lists of tuples,
we can often, without loss of generality, represent them as tree-like structures. This is
illustrated in Example 7.1 (we come back to this in Section 7.6, page 291).

Example 7.1. Let LC be an adequate calculus for classical logic and let s1 = p ⇒ p and
s2 = ¬p ⇒ ¬p. The AC-derivation,

T1 = (s1[i],Ax, ∅)

T2 = (s2[i],Ax, ∅)

T3 = (s2[i],Ax, ∅)

T4 = (s1[e],Def, ⟨1, 2, 3⟩)

T5 = (s2[i],Ax, ∅)

T6 = (s1[i],Ax, ∅)

T7 = (s1[i],Ax, ∅)

T8 = (s2[e],Def, ⟨5, 6, 7⟩)

T9 = (s2[i],Ax, ∅)

T10 = (s1[i],React, ⟨4, 8, 9⟩)

can be represented by the tree-like derivation,

Ax
s1[i] Ax

s2[i] Ax
s2[i] Def

s1[e]

Ax
s2[i] Ax

s1[i] Ax
s1[i] Def

s2[e] Ax
s2[i]

React
s1[i]

where the root of the proof is the derivation’s conclusion, and the leaves are the initial
sequents.

In the above example, the rule Ax signifies that the introduced sequent is an initial
sequent of LC. In what follows, we often omit the inferences from the underlying calculus
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LC and focus instead on the annotation rules. Furthermore, we point out that different
orderings of the tuples may give rise to identical tree-like representation.7 However,
the notion of coherence ensures that problematic deviations in orderings of a derivation
are excluded.8 In the remainder of this chapter, we only consider examples that have
a tree-like structure. In Section 7.6, we discuss some future work concerning AC and
derivation trees.

Example 7.2. Consider the set of assumptions S = {p,¬p, q} and let L be classical
logic. To see that q ⇒ q is finally accepted from S (i.e., there is a derivation of q ⇒[!] q),
note that q ⇒[i] q and ⇒[i] p ∨ ¬p are derivable (e.g., using Gentzen’s sequent calculus
LK). Moreover, by the final acceptability rule Final, ⇒ p ∨ ¬p is finally accepted (since
its left-hand side is empty and thus cannot be attacked). Now, the S-based attackers of
q ⇒ q are p,¬p ⇒ ¬q and p,¬p, q ⇒ ¬q and so Att(q) = {{p,¬p}, {p,¬p, q}}. These
attackers are also derivable, but ⇒[!] p ∨ ¬p attacks both of them. For instance, we have,

p,¬p ⇒[i] ¬q ⇒[!] p ∨ ¬p p ∨ ¬p ⇒[i] ¬(p ∧ ¬p) Def
p,¬p ⇒[e] ¬q

Consequently, by the final acceptability rule Final we derive q ⇒[!] q and so S |∼s q.

The situation regarding the other formulas in S is different, and we have that S |̸∼s p
and S |̸∼s ¬p. Indeed, while both p ⇒[i] p and ¬p ⇒[i] ¬p are derivable, none of them is
finally accepted. This may be explained by the fact that each attacks the other, causing
an iterated revision of their statuses. Indeed, after

¬p ⇒[i] ¬p p ⇒[i] p p ⇒[i] ¬¬p Def
¬p ⇒[e] ¬p

p ⇒ p is accepted and ¬p ⇒ ¬p is eliminated. However, by subsequently extending the
derivation with the retrospective attack

¬p ⇒[e] ¬p

p ⇒[i] p ¬p ⇒[e] ¬p ¬p ⇒[i] ¬p
Retro

p ⇒[e] p
...

p ⇒[e] p p ⇒[i] ¬¬p
React

¬p ⇒[i] ¬p
7One could enhance the tree-like derivation with numbers assigned to sequents, indicating the order

of construction of the proof.
8This means that AC-derivability is not yet invariant under the order of proof’s construction. We

address this when we discuss future work in Section 7.6.
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Figure 7.2: Derivations for an attack cycle of length four (Example 7.3). The numbers
represent the order of the derivation steps. Strict arrows are applications of attack rules,
and dashed arrows denote rules applied in the corresponding annotation revision process.
The terms attack, retrospective attack, and reactivation correspond to applications of
the rules Def, Retro, and React, respectively.

the situation is reversed, and now ¬p ⇒ ¬p is accepted while p ⇒ p is eliminated. Another
application of the retrospective attack rule, this time with p ⇒[e] p retrospectively attacking
¬p ⇒[i] ¬p, again reverses their statuses, and so forth.

Example 7.3. The previous example demonstrates a cyclic attack of size two where
p ⇒ p and ¬p ⇒ ¬p reciprocally attack each other. Figure 7.2 shows a cycle of size four.
The left-hand side of the figure, Stage I, represents a 3-chain of attacks. In the middle
of the figure (Stage II), the chain turns into a 4-cycle. Note that in order to close the
cycle, a retrospective attack is needed. After the revision process (denoted by the dashed
arrows), s2 and s4 are accepted, while s1 and s3 are eliminated. These statuses may be
reversed by an application of another retrospective attack, as shown in Stage III of the
figure. As a result, s1 and s3 are accepted while s2 and s4 are eliminated. The last two
steps may be repeated interchangeably, revising each time the statuses of the sequents
involved in the cycle of attacks. It follows that each of the four sequents is exposed to
repeated attacks, so none is finally accepted. Still, we find that the statuses of s1 and s3
are inevitably linked, and the same holds for s2 and s4. That is, these pairs are either
jointly accepted or jointly eliminated.

A similar analysis holds for any even-length cycle of attacks. Thus derivation tuples
in even-length cycles are coherent (Definition 7.8). In contrast, derivations with an
odd-length cyclic attack are incoherent. See, e.g., derivation step 3 in Figure 7.3 Stage II,
for a 3-cycle. Indeed, for ‘closing’ such a cycle with an attack rule, the attacker must
be eliminated at the end of the revision process (this may be verified by induction on the
length of the cycle). Moreover, if a retrospective attack is initiated in such cases, the
attacker cannot be reactivated.
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Figure 7.3: Derivations for an attack cycle of length three (Example 7.3). The numbers
represent the order of the derivation steps. Strict arrows are applications of attack rules,
and dashed arrows denote rules applied in the corresponding annotation revision process.
The terms attack and reactivation correspond to applications of the rules Def and React,
respectively.

Example 7.4. Consider a logic whose negation ¬ does not respect double-negation
introduction (i.e., p ̸⊢ ¬¬p), and suppose again that Def is the only attack rule. Let
S = {p, ¬p, ¬¬p, ¬¬¬p}. We denote by ¬ip the formula in which p is preceded by i-many
negations (in particular, ¬0 p is p) and by si[a] the annotated sequent ¬ip ⇒[a] ¬ip for
a ∈ {i, e, !}. By reflexivity, si[i] is derivable for every 0 ≤ i ≤ 3. Now, consider the
following coherent derivation:

s0[i]

s1[i] s2[i] s2[i] Def
s1[e]

s2[i] s3[i] s3[i] Def
s2[e] s2[e]

React
s1[i] s1[i] Def
s0[e]

At this point, the derived sequents and their most updated statuses are s0[e], s1[i], s2[e]
and s3[i]. (We discuss the order of tuples in a derivation in more detail in Section 7.6.)
Moreover, this is a kind of a ‘stable state’, in which all the sequents that are conditionally
accepted (and only those) can, in fact, be finally accepted (note that all their S-based
attackers are derived). Indeed, since S ̸∈ Att(¬3p), we have that Att(¬3p) = ∅ (i.e., s3
cannot be attacked by any S-based sequent), and so by the final acceptability rule Final
we can further extend the derivation and derive s3[!]. In turn, s3[!] attacks s2, the single
attacker of s1, thus s1[!] is derived too. Finally, s1[!] attacks s0, and so the latter cannot
be finally accepted. It follows, then, that S |∼s ¬p and S |∼s ¬¬¬p.

Now, suppose that ¬4p is added to the set of assertions, resulting in the set S ′ =
{p, ¬p, ¬¬p, ¬¬¬p, ¬¬¬¬p}. Then s4[i] is derived, and so the previous derivation may
be extended as follows:
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s0[e]
s1[i]

s2[e]
s3[i] s4[i] s4[i] Def

s3[e] s3[e]
React

s2[i] s2[i] Def
s1[e] s1[e]

React
s0[i]

In the resulting coherent derivation, the derived sequents and their most updated statuses
are now s0[i], s1[e], s2[i], s3[e] and s4[i]. Again, for similar reasons as before, all the
sequents that are conditionally accepted (and only them) are also finally accepted, so
this time we conclude that S ′ |∼s p and S ′ |∼s ¬¬p and S ′ |∼s ¬¬¬¬p. An alternative
representation of this derivation is presented in Figure 7.4.

7.3 Basic Properties of Annotated Calculi
Next, we consider some basic properties of the consequence relation |∼s induced by
annotated calculi AC, thus addressing Objective 1. We start with some observations
about derivations in annotated calculi.

Proposition 7.2. Let D be an AC-derivation. For a fixed set of assumptions, a finally
accepted sequent cannot be eliminated.

Proof. This result holds because a finally accepted sequent cannot be attacked (cf. Def
and Retro). QED

Remark 7.1. Although the sequent s[!] itself cannot be eliminated (Proposition 7.2), it
may be the case that the most recent status of s changes throughout the derivation. Recall
that AC contains two types of Def rules: one where the status of the attacking sequent
s is [i] and one where its status is [!]. The definition of coherence ensures that after a
revision process, the status of the attacking sequent s is [i] or [!]. However, it may be
the case that the attacking sequent’s status changes from [!] to [i] (for instance, during
the revision process). The following coherent derivation illustrates this. For the sake of
readability, we omit the attacking condition of Def and React rules, which in all cases
is the same as the attacking argument in the rule’s application.

s1[i] s2[i] Def
s1[e]

s2[i]

s1[i] s2[i] Def
s1[e]

s2[i] s1[i] Def
s2[e]

React
s1[i] s2[i]

s3[i] ∅ ∅
Final

s3[!]
Final

s1[!] Def
s2[e]

React
s1[i]

We can even prove a stronger result. Namely, Proposition 7.3 expresses that no derivation
D can be coherently extended (by further derivation steps and revisions), based on the
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1 2 3

s0[i] s1[i]

s1[e] s3[i]
5

s2[i]

s2[e]

s1[i]

s0[e] s4[i]
8

s3[e]

s2[i]

s1[e]

s0[i] s4[!]

s2[!]
s0[!]

4

6

Reactivation
(4)

7

9

Reactivation
(6)

Re-attack
(4)

Reactivation
(7)

12

11

10

Figure 7.4: The derivation of Example 7.4 for S ′ (progressing along the vertical axis
according to the circled numbers, which represent derivation steps). The solid arrows
are applications of attack rules, and the dashed arrows are the rules applied in the
corresponding annotation revision process. The gray rectangles highlight the status
changing of each sequent.

same set of assumptions, such that the most recent status of a sequent s[!] ∈ D is [e].
In other words, once a sequent s has been derived as finally accepted somewhere in the
derivation, it remains (finally) accepted in any coherent extension. This resembles the
notion of final derivability in adaptive logics (Batens, 2007; Straßer, 2014) and in (Arieli
and Straßer, 2019). As a corollary, we thus know that any attacker of a finally accepted
sequent s is permanently eliminated. In Section 7.5, we extend the framework with the
annotation [⊥] expressing permanently eliminated sequents.

Proposition 7.3. Let D be a coherent derivation with a fixed set of assumptions and let
s[!] ∈ D. The most recent status of s is either [!] or [i].
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Proof. Let ⟨s1, . . . , sn⟩ be the ordered set of all [!]-sequents in the order of their occurrence
in D. We prove by induction of n that the most recent status of si (1 ≤ i ≤ n) is either
[!] or [i]. Base case. Since s1 is the first derived s[!] sequent we know it has no attackers.
Hence, there is no possible attack rule applicable to s and, so, the most recent status of
s in D is [!]. Inductive step. Suppose si+1 was derived by an application of Final using
sj1 [!], . . . , sjm [!]. By IH we know that,

(†) the most recent status of sjk (1 ≤ k ≤ m) is [!] or [i].

Suppose towards a contradiction that the most recent status of si+1 is [e] at derivation
step l. Hence, Def was applied to si+1[i] (by Proposition 7.2) with attacker r[i] or r[!]
either (1) during a derivation step or (2) during a revision process. We consider both
cases.

(1) The application of Def initiates a revision process. By Definition 7.7, we know that
the status of si+1[e] did not change during the revision process. By coherence of D,
we know that the status of r did not change to [e] during the revision process and
hence is either r[i] or r[!]. There are two options. If r[i] or r[!] is the most recent
status of r then the derivation D is not coherent, since r is attacked by some sjk
whose most recent status by (†) is [!] or [i]. If r[i] or r[!] is not the most recent
status of r, then we know r[e] has been derived further down in the derivation
at a step l′ > l (after the end of the revision process initiated at l) through an
application of Def. Again, Def is applied (a) either during a derivation step or (b)
during a revision process. Consider (a): Then, at the start of the revision process
{r} = RevSeq and since si+1 ̸∈ RevSeq we know React has been applied to change
the annotation of si+1 to [i] at some step l′ > l. This contradicts the assumption
that the most recent status of si+1 occurs at l. Consider (b): Then, r ∈ RevSeq.
If si+1 ̸∈ RevSeq, we obtain a contradiction similar to item (a). If si+1 ∈ RevSeq,
then this means that the status of si+1 was changed during the revision process at
some step l′ > l, which contradicts the assumption that the most recent status of
si+1 occurred at l.

(2) The application of Def is part of a revision process. Hence, r ∈ RevSeq and
si+1 ∈ RevSeq. By Definition 7.7, their status did not change again during the
revision. Again, there are two options. If r[i] or r[!] is the most recent status of r
then the derivation D is not coherent, since r is attacked by some sjk whose most
recent status by (†) is [!] or [i]. If r[i] or r[!] is not the most recent status of r, then
we know r[e] has been derived further down in the derivation at a step l′ > l (after
the end of the revision process) through an application of Def. We then obtain a
contradiction by the same reasoning as for (a) and (b) of item (1).

Hence, the most recent status of si+1 is [i] or [!]. QED

Corollary 7.1. Let D be a coherent derivation with a fixed set of assumptions and let s
attack r somewhere in D such that s[!] ∈ D. The most recent status of r is [e].
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The following proposition demonstrates that the coherence of the revision process avoids
problematic odd-cycles during the process (recall Example 7.3 of Section 7.2.

Proposition 7.4. Let D be a coherent derivation (Definition 7.8). At the end of a
revision process initiated by a (retrospective-)attack rule, no sequent attacks another
sequent during the revision and is eliminated at the same time.

Proof. Suppose that s1 attacks s2. This may happen in one of the following two cases:

1. The attack is part of the derivation step initiating the revision. If this step contains
an application of the attack rule Def, then the status of s1 is [i] or [!], and thus by
coherence s1 cannot be eliminated during the revision. The other possibility is that
a retrospective attack rule Retro is applied, in which case s1 must be reactivated
during the revision, turning its status back to [i]. Since s1 ∈ RevSeq after the
reactivation, its status cannot be modified again in the revision process.

2. The attack is reinstated as part of the revision process. This may happen only if s1
was reactivated earlier in the revision process and, so, its status was changed to [i].
Since s1 ∈ RevSeq, its status cannot be changed again during the revision.

In both cases, s1 is not eliminated. QED

Next, we demonstrate that in the case of a consistent set of assertions S ⊆ L the
consequence relation |∼s coincides with the monotonic consequence relation ⊢ of the
underlying base logic. This is expressed by Proposition 7.5. Thereafter, we show that
in case of a set of inconsistent assertions S, the consequence relation |∼s behaves like
a nonmonotonic inference relation, satisfying paraconsistency. With a paraconsistent
consequence relation, we mean that from an inconsistent set S ⊆ L, we do not obtain
the explosive conclusion set L. This property is demonstrated in Proposition 7.6.

Proposition 7.5. Let LC be a calculus, L its language, and let AC be an annotated
calculus based on LC. If S ⊆ L is ⊢-consistent (i.e., S ̸⊢ ¬ψ for every ψ ∈ S), then
S ⊢ ψ iff S |∼s ψ.9

Proof. If S is ⊢-consistent, no attack rule is applied. Thus no sequent is eliminated (and
so no reactivation or retrospective attack is applied either). It follows that in this case, a
derivation consists only of rules of LC and the final acceptability rules. Moreover, for
every Γ ⊆ S it holds that Att(Γ) = ∅, thus any derived sequent is also finally accepted
(and, of course, any finally accepted sequent must be derived). It follows that S ⊢ ψ iff
S ⇒[i] ψ is derived, iff S ⇒ ψ is finally accepted in that derivation, iff S |∼s ψ. QED

9Recall, ⊢ is the consequence relation of the base logic and |∼s is the consequence relation AC given
by final acceptance.
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Proposition 7.6. Let LC be a base calculus and AC an annotated calculus based on LC.
If ⊢ is paraconsistent (i.e., p,¬p ̸⊢ q) or contrapositive (i.e., if Γ ⊢ ψ then Γ,¬ψ ⊢ ¬γ
for every γ ∈ Γ), then |∼s is paraconsistent .

Proof. If ⊢ is paraconsistent, then p,¬p ⇒[i] q is not LC-derivable and fortiori not AC-
derivable. Since neither p ⇒[i] q nor ¬p ⇒[i] q is LC-derivable (the logic is not trivial),
there is no derivable {p,¬p}-based sequent whose conclusion is q. Thus, no such sequent
is finally derived in AC and so p,¬p |̸∼s q. Suppose then that ⊢ is not paraconsistent.
Then p,¬p ⇒[i] is LC-derivable (by LC), and so by contraposition ⇒¬(p∧ ¬p) is also LC-
derivable. The latter can be derived as finally accepted in AC (by the final acceptability
rule Final). Moreover, {p,¬p} ∈ Att(q). Thus, even if p,¬p ⇒[i] q is AC-derived, the last
condition in the final acceptability rule is not met. So, Γ ⇒ q is not finally derived in AC
for Γ ⊆ {p,¬p}, thus p,¬p |̸∼s q in this case as well. QED

Last, we show that the consequence relation of AC is nonmonotonic. We say that
a consequence relation is nonmonotonic whenever it does not satisfy the property of
monotonicity as given in Definition 7.2.

Proposition 7.7. If ⊢ is paraconsistent or contrapositive, the consequence relation |∼s

of AC is nonmonotonic.

Proof. It suffices to consider an example. Consider the set C = {p} ⊆ L. Clearly, S |∼s p
since the derivable sequent p ⇒ p cannot be attacked relative to S (the logic is non-trivial
and S is consistent). A proper extension of S resulting in S ′ = {p,¬p} results in S ′ |̸∼s p
by similar reasoning to Proposition 7.6. QED

7.4 Relations to Formal Argumentation
Annotated calculi, particularly the attack rules, are inspired by similar concepts in
formal argumentation (Dung, 1995; Baroni et al., 2018; Gabbay et al., 2021). For
instance, the attack rule Def is similar to undermining attacks defined by (Toulmin,
1958; Pollock, 1987). The reactivation rule React is related to the argumentative notion
of reinstatement (Baroni et al., 2011). This section shows some relations between the
two formalisms, addressing Objective 2: we prove a correspondence between credulous
and skeptical AC-inference and stable and grounded semantics. First, we show under
which conditions the derivability of an accepted sequent s[i] corresponds to membership
of a stable extension set of a AC-induced argumentation framework. Second, we show
that the derivability of a finally accepted sequent s[!] yields membership of the grounded
extension set of a AC-induced argumentation framework.

Definition 7.10 (Argumentation Frameworks induced by AC). Let AC be an annotated
sequent calculus, let S ⊆ L, and let D be an S-based AC-derivation. Then:

• Derived(D) is the set of S-based sequents s s.t. s[i] ∈ D;
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• Accept(D) is the set of sequents s in Derived(D) such that their most updated status
is [i] or [!];

• Final(D) is the set of sequents s in Derived(D) such that s[!] ∈ D;

• Att(D) is the set of pairs (s1, s2) such that s1 attacks s2 by an application of either
Def, React, Retro, or Final in D, with s1, s2 ∈ Derived(D).

AF(D) = ⟨Derived(D),Att(D)⟩ is called the (sequent-based) argumentation framework
induced by D.

Concerning Att(D), we point out that the rule Final may contain a list of attackers.
Namely, the second condition of the rule enumerates all attackers si of the sequent s in
the first condition, and the third condition of the rule enumerates for each attacker si in
the second condition a finally derived attacker sj .

Furthermore, notice that the set Final(D) not only collects all sequents whose most
recent status is [!] but, in fact, contains all sequents whose status is [!] somewhere in the
derivation D. Recall Remark 7.1 illustrating that the most recent status of a s[!] may be
[i] (even though it can never be eliminated, as shown in Proposition 7.3).

Example 7.5. The possible attacks among the sequents in Example 7.2 and the argu-
mentation framework induced by the corresponding derivation are the following:

q ⇒ q

¬p ⇒ ¬p p ⇒ p

p,¬p ⇒ ¬q

p,¬p, q ⇒ ¬q
⇒ p ∨ ¬p

Definition 7.10 is a logic-based representation of argumentation frameworks, which
following Dung (1995) are pairs AF = ⟨Args,Att⟩, where Arg is a denumerable set
arguments a, b, c, . . . , and Att is a relation on Arg × Arg, whose instances are called
attacks. Given a framework AF , a key issue in its understanding is what combinations
of arguments can collectively be accepted in AF . This is determined by various semantic
definitions (Baroni et al., 2011) (see Chapter 6 for a discussion of formal argumentation
and semantic extensions).

Definition 7.11 (Semantics and Nonmonotonic Inference). Let AF = ⟨Arg,Att⟩ be an
argumentation framework, and let E ⊆ Arg.

• E attacks an argument a if there is an argument b ∈ E that attacks a, i.e., (a, b) ∈
Att. The set of arguments attacked by E is denoted by E+;
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• E defends a if E attacks every argument that attacks a;

• E is conflict-free if it does not attack any of its elements, i.e., E+ ∩ E = ∅;

• E is admissible if it is conflict-free and defends all of its elements;

• E is complete if it is admissible and contains all the arguments it defends;

• E is a stable extension of AF if it is conflict-free and E ∪ E+ = Arg;

• E is a grounded extension of AF if it is ⊆-minimal among the complete extensions
of AF .

Let Stable (Grounded) be the set of stable (grounded) extensions of AF .10 Let sem ∈
{Stable, Grounded}, we define skeptic (s) and credulous (c) nonmonotonic inference
over AF as follows:

• AF |∼s
sem φ iff for each E ∈ sem, there is an a ∈ E concluding φ;

• AF |∼c
sem φ iff there is an E ∈ sem s.t. there is an a ∈ E concluding φ.

We start with credulous inference. The following result shows the close relation between
acceptable sequents in AC-derivations D and credulous inference over stable semantics of
argumentation frameworks induced by D.

Proposition 7.8. Let D be coherent AC-derivation: Accept(D) is a stable extension of
AF(D).

Proof. It suffices to show that Accept(D) is conflict-free in AF(D) and attacks any
eliminated sequent. The former follows from the assumed coherence of D. For the latter,
let r be an eliminated sequent in AF(D). This means that the most recent status of r in
D is r[e]. Consequently, either Def or Retro was applied at the corresponding derivation
step i to derive r[e]. Hence, there is an attacker s of r in the conditions of the rule. In
both cases, the rule either (1) initiated a revision process or (2) is part of a revision
process.

(1) We first consider the two cases in which a revision process was initiated at i:

Def Then, s[i] or s[!] is in the conditions of Def at step i (recall that we have two versions
of Def). By coherence of D this means that the status of s is [i] or [!] at j ≥ i after
revision process (cf. Remark 7.1). We prove that the most recent status of s is
still [i] or [!] and thus s ∈ Accept(D). Suppose towards a contradiction that this
is not the case. This means that at a later step k > j in the derivation (after the

10Recall that the grounded extension is unique and, thus, credulous and skeptic inference over the
grounded extension coincide (Dung, 1995).
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revision process), the status of s changed to s[e]. There are two options, either (i)
at a later derivation step k > j a (retrospective-)attack rule was applied to change
the annotation of s or (ii) at some step k > j the annotation of s was changed
during another revision process.
Consider (i). In that case, a revision process is initiated at step k with s ∈ RevSeq.
Since the most recent annotation of r occurs at derivation step i, we know that r
does not occur at any derivation step k > i. Consequently, r ̸∈ RevSeq. However,
since s attacks r, s ∈ RevSeq, and r ̸∈ RevSeq, the revision process triggers the
application of React (on s and r) and so introduces the sequent r[i] at a derivation
step k > j ≥ i. This contradicts the assumption that the most recent annotation
of r[e] occurs at i.
Consider (ii). Then, the status of s was changed during some revision process.
In that case too, s ∈ RevSeq, but r ̸∈ RevSeq and so we reach a contradiction by
reasoning similar to (i).

Retro This means that s[e] is a condition of Retro at derivation step i. By the side-
condition on Retro, we know that s[i] is derived at derivation step j > i. Suppose
that the most recent annotated version of s is not [i] or [!]. This means that s[e] was
derived at some step l > j after the revision process initiated at i (by the coherence
of D): again, either through a derivation step in which a (retrospective-)attack was
applied or by another revision process. In both cases, we proceed as for the cases
(i) and (ii) of the previous item and obtain a contradiction.

(2) For the last case, if the derivation step i was part of a revision process, this means
that the annotation of s was revised during the process at some previous step j < i and
so s ∈ RevSeq. Furthermore, at i also r ∈ RevSeq and so r and s are not revised further
down the revision process. Then, to prove that the most recent annotation of s is still
[i] or [!] we suppose towards a contradiction that the status of s changed to [e]. This
must have occurred at a step k > i after the revision process of which i was part. Then,
proceed in accordance with the two cases of item (1).

Hence, s ∈ Accept(D). QED

Corollary 7.2 (Credulous inference and acceptability [i]). Let D be a coherent S-based
AC-derivation and let ∆ ⇒ φ ∈ Accept(D) (i.e., S |∼c φ), then AF(D) |∼c

Stable φ.

Remark 7.2. The coherence requirement in Theorem 7.8 is necessary. To illustrate,
consider the derivation D in Figure 7.3. Step 3 in Stage II is not coherent since the
attacker s3 in the derivation step initiating the revision process is eliminated at the end
of the revision. In that case, Accept(D) = {s2}, although AF(D) does not have a stable
extension.

Example 7.6. In Example 7.5, if the last (retrospective-)attack of p⇒ p on ¬p⇒ ¬p
is performed after the last (retrospective-)attack of ¬p ⇒ ¬p on p ⇒ p, then for the
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corresponding derivation D we have Accept(D) = {⇒p∨ ¬p, q⇒q, p⇒p}. This is indeed
a stable extension of AF(D). If the mutual attacks of p⇒p and ¬p⇒¬p are performed
in a reversed order, then Accept(D) = {⇒ p ∨ ¬p, q ⇒ q, ¬p⇒ ¬p}, which again is a
stable extension of AF(D).

We now show a correspondence between the set Final(D) of finally derived sequents in D
and the grounded extension of the argumentation framework induced by D. We need the
following definition.

Definition 7.12. An S-based derivation D is saturated if Final(D) is exhaustive in D,
i.e., the final acceptability rules are applied to every derived sequent in D to which it can
be applied.

We point out that saturation is a decidable property for a finite set S ⊆ L of assertions.
Namely, since an S-based derivation is a finite sequence of tuples, it contains finitely
many sequents. For each sequent, we can determine all its (finitely many) attackers based
on S. The following proposition shows the close relation between acceptable sequents in
AC-derivations D and skeptic inference over stable semantics of argumentation frameworks
induced by D.

Proposition 7.9. If an S-based derivation D is saturated, then Final(D) is the (unique)
grounded extension E of AF(D).

Proof. We show that Final(D) = E . Let ⟨s1[!], . . . , sn[!]⟩ be the ordered set of all [!]-
annotated sequents derived in D, in the order in which they occur in D.

Left-to-Right. We prove by an induction on i that si[!] ∈ E for i = 1, . . . , n. Base
case. Since s1[!] is derived by an application of a final applicability rule, and it is the
first sequent in D with this property, it has no attackers. Since E is complete, s1 ∈ E .
Inductive step. Suppose the sequent si+1[!] was derived by a final acceptability rule calling
upon the [!]-annotated sequents sj1 [!], . . . , sjm [!]. Then, j1, . . . , jm < i + 1 and by the
inductive hypothesis, sj1 , . . . , sjm ∈ E . Also, the sequents sj1 , . . . , sjm attack all attackers
of si+1, so si+1 is defended by E and by the completeness of E , si+1 ∈ E .

Right-to-Left. We show that Final(D) is complete in AF(D). Since E is ⊆-minimal
complete, then E ⊆ Final(D). We show conflict-freeness inductively by showing that for
each i = 1, . . . , n there is no k ≤ i such that sk ∈ Final(D) attacks si ∈ Final(D). Base
case. Trivial, since s1 does not have any attackers. Inductive step. Suppose there is a
k ≤ i s.t. sk attacks si+1. By the final acceptability rule, there is a j ≤ i s.t. sj attacks
sk, which contradicts the inductive hypothesis. Suppose now that si+1 attacks itself. By
the final acceptability rule, there is a k ≤ i such that sk attacks si+1, which we have
already excluded.

For admissibility, suppose that s ∈ Derived(D) \ Final(D) attacks some si ∈ Final(D).
Then by the application of the final acceptability rule that produces si[!] ∈ D, there is a
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k < i such that sk attacks s with sk ∈ Final(D). For completeness, let s ∈ Derived(D) be
defended by Final(D). Then we can apply the final applicability rule to derive s[!]. Since
D is saturated, s[!] ∈ Final(D). QED

Corollary 7.3 (Skeptic inference and final acceptability [!]). Let D be a saturated S-based
derivation, let ∆ ⇒ φ ∈ Final(D) (i.e., S |∼s φ), then AF(D) |∼s

Grounded φ.

The final proposition expresses that for each AC-sequent in the grounded extension of
an argumentation framework, we can construct a AC-derivation in which the sequent is
derived as finally acceptable.

Proposition 7.10. For a derivation D, let S = ⋃
{∆ | ∆ ⇒ φ ∈ D}. Let AF(S) =

⟨Arg(S),Att⟩ where Arg(S) = {Γ ⇒ ψ | Γ ⊆ S and Γ ⊢ ψ} and Att = {(s, t) | s = ∆ ⇒
φ, t = Γ ⇒ ψ ∈ Arg and φ ⊢ ¬

∧Γ}. Let E be the grounded extension of AF(S). For
every s ∈ E, there is an S-based derivation D′ of s[!] that does not contain applications
of the rules Def, React, and Retro.

Proof. We note that for each r ∈ Arg(S) there is an S-based derivation Dr concluding
r[i]. Since D is finite, we know the grounded extension can be characterized as follows:
E = ⋃

i≥1 Ei where E0 = ∅ and Ei+1 = {s ∈ Arg | Ei defends s} (Dung, 1995). Let s ∈ E .
We prove by induction on i, that for each s ∈ Ei (i = 1, . . . , n) there is an S-based
derivation D′

s of s[!] without attacks. Base case. Since s ∈ E1, s has no attackers. Let D′
s

be the extension of Ds by an application of the final acceptability rule that concludes
s[!]. Inductive step. Let s ∈ Ei+1. For each attacker r of s there is an s′ ∈

⋃i
j=1 Ej that

attacks r. By the IH there are derivations D′
s′ for each such defending s′. We obtain D′

s

by concatenating the proofs Dr of each attacker, the proofs D′
s′ for each defender, and

applying the final acceptability rule to conclude s[!]. QED

In fact, a stronger result than Proposition 7.10 is possible, where a coherent derivation is
constructed (without using the rules React and Retro). This derivation can be straight-
forwardly obtained since each attacker of the grounded extension E is counterattacked,
and thus eliminable, by a finally acceptable sequent from E .

7.5 Defeasible Normative Reasoning and Annotated
Calculi

This section addresses this chapter’s third and last goal (Objective 3). Namely, we extend
the monotonic Deontic Argumentation Calculi DAC from Chapter 6 with annotations
and annotation revision rules.11 We call the resulting proof systems Annotated Deontic
Argumentation Calculi (for short, ADAC). We prove that the consequence relation of
ADAC is nonmonotonic. We provide some first results by proving a correspondence

11Applications of annotated calculi to other types of base logics are likewise possible, e.g., think of
applications to modal logics such as epistemic logics. Such applications must be left to future work.

279



7. Defeasible Reasoning

Γ1, (φ,ψ) ⇒[i] ∆ Γ2 ⇒[i] ¬(φ,ψ)
DefxΓ1, (φ,ψ) ⇒[e] ∆

Γ1, (φ,ψ) ⇒[e] ∆ Γ2 ⇒[e] ¬(φ,ψ)
ReactxΓ1, (φ,ψ) ⇒[i] ∆

Γ2 ⇒[e] ¬(φ,ψ)

Γ1, (φ,ψ) ⇒[i] ∆ Γ2 ⇒[e] ¬(φ,ψ)
Retrox

Γ1, (φ,ψ) ⇒[e] ∆
...

Γ3 ⇒[e] ¬(θ, χ)
ReactaxΓ2 ⇒[i] ¬(φ,ψ)

(i) Γ1 ⇒[i] ∆1

(ii) (∀Γ2 ⇒ ∆2 ∈ Def(Γ1)) Γ2 ⇒[∗] ∆2

(iii) (∀Γ2 ⇒ ∆2 ∈ Def(Γ1), ∃Γ3 ⇒ ∆3 ∈ Def(Γ2)) Γ3 ⇒[!] ∆3
FinalxΓ1 ⇒[!] ∆1

Figure 7.5: The annotation revision rules Defx, Reactx, Retrox, and Finalx of ADAC
with the the underlying base calculus DACS . In Finalx, Def(Γ) = {∆ ⇒ ¬(φ,ψ) is
DACS-derivable | ∆ ⊆ Σ and (φ,ψ) ∈ Γ} for a finite set Σ ⊆ Lio. The side-condition (a)
stipulates that (θ, χ) ∈ Γ2. The rule Retrox is a system of rules, which stipulates that
each application of the topmost rule must be followed by an application of a corresponding
Reactx rule during the Retrox initiated revision process. For representational reasons,
the conditions (i)-(iii) of Finalx are given vertically.

between the inference relation of ADAC and specific semantic extensions of argumentation
frameworks. Last, we extend ADAC with the annotation [⊥] and a corresponding rule
capturing the notion of finally eliminated sequents.

First, we point out that the language of DAC differs from the ones employed for AC. It
allows us to simplify some of the annotation revision rules (Definition 7.5). Second, DAC
also assume underlying base logics and corresponding sound and complete calculi. In
fact, the requirements imposed on the base logics for DAC satisfy all requirements for
that of AC (see Remark 7.3 below). Last, throughout this section, we highlight various
future work directions. In what follows, we will not recall the definitions of DAC but
refer where necessary to Chapter 6 for details.

Remark 7.3. Comparing Definition 6.2 (Chapter 6, page 220) and Definition 7.2 it can
be straightforwardly checked that the base logics underlying DAC belong to the class of
base logics defined for AC.
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Definition 7.13 (The Labelled Input/Output Language Definition 6.6 (Chapter 6)).
Let Li with i ∈ {f, o, c} be defined through the following BNF grammar:

φi ::= pi | ⊤i | ⊥i | (¬φ)i | (φ ∧ φ)i | (φ ∨ φ)i | (φ → φ)i

with p ∈ Atoms. Let L↓ be the language Li stripped from its labels. Let Ln = {(φ,ψ) | φ,ψ ∈
L↓}. The language of norms is defined as Ln ∪ Ln, where Ln = {¬(φ,ψ) | (φ,ψ) ∈ Ln}
is the language expressing the inapplicability of norms. Let Lio = Lf ∪ Lo ∪ Lc ∪ Ln ∪ Ln
be the labelled I/O language.

Recall that the labels f , o, and c, express facts, obligations, and constraints, respectively.
In what follows, we directly restrict sequents to a given knowledge base K = ⟨F ,N , C⟩
where F ⊆ Lf represent the factual context, N ⊆ Ln a normative code, and C ⊆ Lc a
set of constraints with which the generated output has to be consistent. Furthermore, it
suffices for our present aims to take any derivable DAC sequents as initial sequents of
ADAC. This means that the rules of DAC are not directly incorporated in ADAC.

To facilitate readability, we recall the two types of dac arguments. First, we have
arguments that conclude obligations on the basis of facts and norms from K. For
instance,

φf , (φ,ψ), (ψ, θ) ⇒ θo

where φf ∈ F , (φ,ψ), (ψ, θ) ∈ N (and in this case, the calculus in question contains the
rule L-CT). The left-hand side of the sequent constitutes the reasons for the obligation θ.
Second, we have arguments that conclude the inapplicability of norms in a given context.
For instance,

φf , (φ,ψ),¬θc ⇒ ¬(ψ, θ)

where φf ∈ F , (φ,ψ) ∈ N , and ¬θc ∈ C. The latter type of arguments provide the
attacks in ADAC. Recall that this type of attack expresses an undercut, namely, an attack
on a reason (ψ, θ) provided in a sequent’s premises. Since such attacking arguments
directly provide their own attacking conditions, we can simplify the annotation revision
rules for ADAC (see Figure 7.5). In Definition 7.14, we define the calculi. We briefly
discuss the rules.

The rule Defx represents a straightforward adaptation of the notion of attack between
DAC arguments, namely, a sequent s1 attacks some other sequent s2 whenever the
former concludes the inapplicability of a norm used as a premise in the latter. The rule
Reactx reinstates sequents whose attacker has been eliminated. The rule Retrox allows
for eliminated attackers provided that the attacker is reinstated further down in the
derivation. The final acceptability rule Finalx deserves some more discussion. The set
Def(Γ) is the collection of all DAC-derivable arguments concluding the inapplicability of
some norm (φ,ψ) occurring in Γ. In the case that Γ ∩ Ln = ∅ the set Def(Γ) is trivially
empty. Consequently, the second condition of Finalx collects all attackers of the sequent
whose final acceptability is to be determined. The third condition specifies for each
of these attackers a finally accepted attacker counter-attacking it. For this rule to be
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well-defined, we restrict Def to a finite set Σ ⊆ Lio (e.g., a finite knowledge base K, see
the footnote on page 262). In order to obtain more concise derivations, we require that
the employed DAC arguments satisfy the relevance condition defined in Section 6.8. In
the sequel, we leave this assumption implicit.

Definition 7.14. Let DACr
S be a relevance-aware Deontic Argumentation Calculus from

Definition 6.13 (in what follows, we omit the index r). Let K = ⟨F ,N , C⟩ be a finite
knowledge base. An Annotated Deontic Argumentation Calculus (for short, ADACS)
consists of the following components.

• Annotated initial rules for each DACS-derivable sequents Γ ⇒ ∆ where each
initial sequent is labelled [i];

• The annotation revision rules Defx, Reactx, Retrox, and Finalx from Fig-
ure 7.5.

A K-based derivation D of ADACS is a finite sequence of tuples D = ⟨T1, . . . , Tn⟩ where
the index 1 ≤ i ≤ n determines the tuple’s order in the derivation D. Each Ti contains
the derived annotated sequent (the tuple’s sequent), the derivation rule that is applied
(the tuple’s rule), and the indexes of the tuples whose sequents serve as the conditions
of the tuple’s rule. Each sequent Γ ⇒[a] ∆ (with a ∈ {i, e, !}) is K-dependent, that is,
Γ ⊆ F ∪ N ∪ C.12

We impose the following restrictions on K-based derivations:

• During the construction of a derivation D, after each extension with a tuple Ti
containing an attack rule (Defx) or a retrospective attack rule (Retrox), an anno-
tation revision process is initiated, and the derivation is extended with new attack
or reactivation rules for updating the sequent annotations when necessary.

• Reactivation rules are applied only during a revision process.

The revision process is the one described in Definition 7.7, the notion of most recent
status is that of Definition 7.6, and the notion of coherence is that of Definition 7.8.

In what follows, we focus on coherent ADAC-derivations only (Definition 7.14). Fur-
thermore, since ADAC does not contain DAC rules—taking DAC sequents as initial
sequents—one may think of ADAC as a postliminary proof-theoretic approach for resolv-
ing normative conflicts in DAC; cf. (Bonatti and Olivetti, 2002).

Definition 7.15 (Skeptic and credulous inference ADAC). For an annotated deontic
argumentation calculus ADACS , we define skeptical (s) and credulous (c) inference as
follows:

12In the case where a derivation D involves applications of Finalx we require K to be finite.
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• K |∼s
ADACS

ψ if there is a K-based ADACS-derivation D such that Γ ⇒[!] ψ is derived
in D.

• K |∼c
ADACS

ψ if there is a K-based ADACS-derivation D such that Γ ⇒[i] ψ is derived
in D and [i] is the sequent’s most recent status.

Henceforth, reference to the subscript ADACS is omitted.

First, we observe that the following propositions that hold for AC are preserved in the
context of ADAC.

Proposition 7.11. Let D be a coherent K-based ADACS-derivation with a finite K and
let s[!] ∈ D. The most recent status of s is either [!] or [i].

Proof. It can be straightforwardly observed that the proof is identical to that of Proposi-
tion 7.3. QED

Corollary 7.4. Let D be a coherent K-based ADACS-derivation with a finite K and let s
attack r somewhere in D such that s[!] ∈ D. The most recent status of r is [e].

Next, we prove that the consequence relation |∼s
ADACS

satisfies certain desirable properties
(cf. Section 7.3). Proposition 7.12 expresses that ADACS preserves derivability in DACS
whenever a knowledge base is consistent. Proposition 7.13 expresses that the class of
ADAC is paraconsistent.

Proposition 7.12. Let ADACS be an annotated deontic argumentation calculus based
on DACS of Definition 6.8 (Section 6.1). Let K = ⟨F ,N , C⟩ be a knowledge base. We
say K ⊢DACS φo if there exists an DACS-derivable sequent Γ ⇒ φo with Γ ⊆ K. If
K is consistent, that is, N is the only maximal-consistent set of norms according to
Definition 6.5 (Section 6.1), then K ⊢DACS φ

o iff K |∼s
ADACS

φo.

Proof. Left-to-Right. Since K is consistent, this means that no argument Γ ⇒ ¬(φ,ψ)
is derivable such that Γ ⊆ K and (φ,ψ) ∈ N . This means there are no K-based attacking
sequents DACS-derivable. Hence, for each DACS-derivable Γ ⇒ φo, we can construct a
K-based ADACS-derivation that contains an application of Finalx to Γ ⇒ φo and so
Γ ⇒[!] φo is derivable. Hence, K |∼φo. Right-to-Left. Trivial. QED

Proposition 7.13. Let ADACS be an annotated deontic argumentation calculus based
on DACS . Let the knowledge base K be F = ∅, N = {(⊤, p), (⊤,¬p)} and C = ∅. Then,
ADAC is paraconsistent, i.e., K |̸∼ qo.

Proof. Among others, we have the following relevant DACS-derivable sequents as initial
ADACS sequents: a = ⊤, (⊤, p) ⇒[i] po, b = ⊤, (⊤,¬p) ⇒[i] ¬po, c = ⊤, (⊤, p), (⊤,¬p) ⇒[i]

qo, d = ⊤, (⊤, p) ⇒[i] ¬(⊤,¬p), and e = ⊤, (⊤,¬p) ⇒[i] ¬(⊤, p). Even though argument
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a =

 (⊤, r)

⇒ ro

 e =

 (⊤, p), (¬(r ∧ p))c

⇒ ¬(⊤, r)



d =

 (⊤, r), (¬(r ∧ p))c

⇒ ¬(⊤, p)

b =

 (⊤, p)

⇒ po



Figure 7.6: Defeasible normative reasoning examples: A deontic conflict (Example 7.7).
Argument e defends {b, e}, whereas argument d defends {a, d}.

c concludes qo from the inconsistent K, the reasons used to conclude qo are both attacked
by arguments d and e. Since d and e reciprocally attack each other and are the only
attacking arguments, we have that neither of these attackers can be finally derived.
Therefore c cannot be finally derived either. QED

Proposition 7.14. The consequence relation |∼ of ADAC is nonmonotonic.

Proof. It suffices to provide an example. Consider the knowledge base K consisting
of F = ∅, N = {(⊤, p), (q,¬p)}, and C = ∅. Clearly, K |∼ po since the argument
⊤f , (⊤, p) ⇒ po cannot be attacked relative to K. A proper extension K′ of K with either
F = {qf}, N = {(⊤, p), (q,¬p), (⊤,¬p)}, or C = {¬pc} would result in K′ |̸∼ po. QED

To illustrate the use of ADAC, we reconsider the deontic dilemma from Chapter 6,
page 218.

Example 7.7 (Deontic Dilemma, Figure 7.6). Joan has an obligation to return a borrowed
hammer to her friend Maxwell (⊤, r). Furthermore, Joan knows Max is planning to
commit a crime with the hammer, and she is under the obligation to prevent harm
from being done (⊤, p). Furthermore, the constraint is that Joan cannot secure both r
and p, i.e., ¬(r ∧ p)c. Joan is in a deontic dilemma. The knowledge base K is F = ∅,
N = {(⊤, r), (⊤, p)}, and C = {¬(r ∧ p)c}. We assume the underlying base logic to be
classical. The DAC arguments that can be constructed are presented in Figure 6.2. These
serve as initial sequents in ADAC. The two defeating arguments, d and e, express that
given the constraints, one of either two norms cannot be asserted.

The following coherent ADACS-derivation (with C-T ∈ S) expresses the conflict, consti-
tuting a stable set {e} for the argument e justifying that Joan is not under obligation to
return the hammer.

a[i]

e[i] d[i] Defxe[e]
d[i] e[i] Defxd[e] Reactx

e[i]
a[e]
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The derivation can be coherently extended with the following rule applications:

...
a[e]

e[i] d[i] Defxe[e] Reactx
a[i]

The resulting extension constitutes the stable set of arguments {d, a} justifying Joan’s
returning of the hammer. Observe that similar derivations can be obtained for the
argument b. However, the derivation cannot be extended in a tree-like manner in order
to include argument b. We come back to this below in Example 7.8. In both cases, we
have neither K |∼s ro nor K |∼s po, as desired.

7.5.1 Relations to Logical Argumentation

We show that the correspondence between AC and argumentation frameworks is preserved
in the case of ADAC.

Definition 7.16 (Argumentation Frameworks induced by ADAC). Let ADACS be an
annotated deontic argumentation calculus, let K be a knowledge base, and let D be a
K-based ADACS-derivation. Then:

• Derived(D) is the set of sequents s s.t. s[i] ∈ D;

• Accept(D) is the set of sequents s in Derived(D) such that their most updated status
is [i] or [!];

• Final(D) is the set of sequents s in Derived(D) such that s[!] ∈ D;

• Att(D) is the set of pairs (s1, s2) such that s1 attacks s2 by an application of either
Defx, Reactx, Retrox, or Finalx in D, with s1, s2 ∈ Derived(D).

AF(D) = ⟨Derived(D),Att(D)⟩ is called the (sequent-based) argumentation framework
induced by D. The definitions of semantic extensions of jointly acceptable arguments are
as in Definition 7.11.

Example 7.8 (Deontic Dilemma, Example 7.7 cont.). Reconsider the ADACS-derivation
in Example 7.7. There we saw that the derivation could not be extended with argument b
while simultaneously preserving the tree-like structure of the derivation. The resulting
argumentation framework from that derivation is as follows:

a e d
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In fact, the stable extensions {a, d} and {e} correspond to the related admissible sets
Ea and Ee, respectively. Recall that a related admissible set Ea identifies the relevant
arguments that justify the acceptability of a. There is an interesting correspondence
between tree-like ADAC-derviations and related admissibility. The tree-like structure
enforces that each argument occurring in the tree-like derivation D is indirectly related to
all other arguments in D by means of attack relations. We leave a formal investigation
for future work.

It can be observed that the correspondence results for AC are preserved in the context
of ADAC. The reason is that the proofs of Section 7.4 depend on the definition of most
recent status (Definition 7.6) and the definition of the revision process (Definition 7.7),
which in both cases are the same as for AC. The only difference is that the annotation
revision rules of ADAC do not contain the (third) attacking condition. However, it can
also be observed that the proofs do not depend on the rule’s third condition.

Proposition 7.15. Let D be coherent K-based ADACS-derivation: Accept(D) is a stable
extension of AF(D).

Proof. See proof of Proposition 7.8. QED

Corollary 7.5 (Credulous inference and acceptability [i]). Let D be a coherent K-based
ADACS-derivation, let ∆ ⇒ φ ∈ Accept(D) (i.e., K |∼c φ), then AF(D) |∼c

Stable φ.

Proposition 7.16. If an K-based ADACS-derivation D is saturated, then Final(D) is the
(unique) grounded extension E of AF(D).

Proof. See proof of Proposition 7.9. QED

Corollary 7.6 (Skeptic inference and final acceptability [!]). Let D be a saturated K-based
ADACS-derivation, let ∆ ⇒ φ ∈ Final(D) (i.e., K |∼s φ), then AF(D) |∼s

Grounded φ.

Proposition 7.17. Let ADACS be a calculus based on DACS . For a derivation D, let
K = ⋃

{∆ | ∆ ⇒ φo ∈ D}. Let AF(K) = ⟨Arg(K),Att⟩ where Arg(K) = {Γ ⇒ ψo |
K ⊢DACS Γ ⇒ ψo} and Att = {(s, t) | s = ∆ ⇒ ¬(φ,ψ), t = Γ, (φ,ψ) ⇒ Σ ∈ Arg}. Let E
be the grounded extension of AF(K). For every s ∈ E, there is an K-based derivation D′

of s[!] without applications of the rules Defx, Reactx, and Retrox.

Proof. See the proof of Proposition 7.10. QED

It remains an open question to determine the relation between maximally consistent sets
generated by the class of constraint Input/Output logics in Chapter 6, the argumentation
frameworks induced by DAC, and the annotated deontic argumentation calculi ADAC
presented in this section. We come back to this in Section 7.6.
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a =

 (¬h)f , (¬h,¬t)

⇒ (¬t)o

 b =

 (¬h)c

⇒ ¬(⊤, h)



c =

 (⊤, h)

⇒ ho


Figure 7.7: The contrary-to-duty scenario of Example 7.9.

7.5.2 Finally Eliminable Arguments

In this last part, we consider some extensions of ADAC with additional rules that serve the
explanatory aims underlying DAC (Chapter 6, page 212). First, we extend the set of labels
with a label [⊥], which expresses that a sequent is finally eliminated. As will be shown,
such sequents can never occur in a stable extension of its corresponding argumentation
framework. The identification of such arguments is relevant for explanations since they
express DAC-derivable arguments containing combinations of norms that can never be
jointly applicable. The rule FinalElimx is defined as follows:

Γ1, (φ,ψ) ⇒[∗] ∆ Γ2 ⇒[!] ¬(φ,ψ)
FinalElimxΓ1, (φ,ψ) ⇒[⊥] ∆

The rule functions like a regular attack rule Defx but results in a more informative
annotation. Intuitively, any argument attacked by a finally accepted argument is perma-
nently eliminated. The revision process of ADAC must also be adjusted to incorporate
FinalElimx. This is straightforward: it behaves like the clause for Defx. Furthermore,
since s[⊥] sequents are permanently eliminated, the rules Reactx and Retrox can be
refined to allow only eliminated sequents s[e] in the first condition, respectively, the
second condition of the rule such that there is no s[⊥] occurring in the derivation prior to
that rule’s application.13 Let us reconsider the contrary-to-duty scenario from Chapter 6,
page 217.

Example 7.9 (Contrary-to-Duty Reasoning, Figure 7.7). Reconsider (a simplification
of) the Contrary-to-Duty scenario from Example 6.1 of Section 6.1. Billy is obliged to
go and help her neighbors (⊤, h). If Billy does not go, she ought not to tell them she
goes (¬h,¬t). Furthermore, Billy does not go to help her neighbors ¬hf . Billy needs
to know her obligations consistent with the fact that she does not go to help, i.e., given
that she has violated the norm (⊤, h). Let the knowledge base K consist of F = {¬hf}
and N = {(⊤, h), (¬h,¬t)}, and let the constraints be C = {¬hc}. Figure 7.7 presents
the K-based DAC-derivable arguments a, b, and c. Given the CTD situation in which
Billy resides, she ought not to tell the neighbors she goes ¬to. First, observe that the

13The second condition of Reactx may contain a finally eliminated sequent.
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arguments a and b cannot be attacked. For that reason, we can provide ADAC-derivations
for ¬hf , (¬h,¬t) ⇒[!] ¬to and ⊤f ,¬hc ⇒[!] ¬(⊤, h). Hence, K |∼s ¬to as desired. What
is more, since b attacks c, we obtain the following derivation:

c[i]
b[i] ∅ ∅ Finalx

b[!] FinalElimx
c[⊥]

The derived argument ⊤f , (⊤, h) ⇒[⊥] ho tells us that the norm (⊤, h) is strictly inappli-
cable in the violation context K, i.e., incompatible with any maximally consistent set of
K = ⟨F ,N , C⟩.

The following final derivability rule Fin2x is admissible in the light of FinalElimx:

Γ1 ⇒[i] ∆1 (∀Γ2 ⇒ ∆2 ∈ Def(Γ1)) Γ2 ⇒[⊥] ∆2 Fin2xΓ1 ⇒[!] ∆1

The rule expresses that if all of an argument’s attackers are finally eliminated, the
argument in question is finally acceptable. In fact, the above rule may be considered as a
simplification of Finalx. To see this, consider an arbitrary application of Finalx which
derives s1[!]. Then, for each attacker s2[∗] of s1[i] there exists a derivable sequent s3[!]
attacking s2[∗]. Hence, we can apply the FinalElimx rule to each pair s2[∗] and s3[!] to
derive s2[⊥] and subsequently apply the above rule Fin2x to obtain s1[!].

Last, it can be easily seen that adding the annotation [⊥] and corresponding rule
FinalElimx do not change the desired correspondence with DAC-induced argumentation
frameworks. First, observe that finally accepted arguments s[!] of a coherent ADAC-
derivation D are member of the grounded extension E of the argumentation framework
AF(D). The grounded extension is the minimal complete extension subset of all complete
extensions, and a fortiori, a subset of all stable extensions (Definition 7.11). Consequently,
by the conflict-freeness of complete extensions, any sequent attacked by a finally accepted
sequent is excluded from any stable extension. Furthermore, Corollary 7.4 tells us that for
any coherent ADAC-derivation, the status of a sequent s1 attacked by a finally accepted
sequent s2 is permanently eliminated [e] and so, an application of FinalElimx would
preserve this fact by changing the status of s1 to [⊥].

We leave further investigation of finally eliminated sequents for future work.

7.6 Related Work and Future Research
In this last section, we discuss the proof systems and results presented in this chapter in
light of related literature. Along the way, we point out some open questions that should
be addressed in future research.
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Using Annotations. Annotated versions of sequent calculi have been introduced to
the literature. We briefly discuss three of them. Indrzejczak (1997) proposed a generalized
sequent formalism for propositional modal logics, where sequent arrows may become
annotated with modal operators together with an index to indicate the modal depth
of the formulae in the sequents (sequents may also lose their annotation throughout a
derivation). Similarly, Došen (1985) developed sequent-style calculi for modal logics (S5
and S) where sequent arrows may be annotated with natural numbers. Furthermore, the
notion of a sequent is generalized, i.e., a sequent can have sets (of sets) of sequents on the
left-hand and right-hand side of a sequent arrow. Roughly, such sequents express that
from sets of sequents, one can derive other sets of sequents. To illustrate, for ⇒1, there
are only formulae on the lhs and rhs; for ⇒2, there are only sets of sequents with formulae
on the lhs and rhs, etcetera. The main difference with the above two approaches is that in
our approach, annotations serve to indicate the derivability status of the sequent, whereas
the annotations in (Došen, 1985; Indrzejczak, 1997) express and preserve information
about the (modal) formulae within the sequent. Both systems characterize monotonic
inference relations, whereas the annotations in AC characterize nonmonotonic inferences.

Last, Bonatti and Olivetti (2002) use sequent annotations to characterize propositional
nonmonotonic logics. The resulting sequent-style calculi employ sequents with three
types of sequents: monotonic sequents, non-derivability sequents, and nonmonotonic
sequents. The calculi characterize circumscription logic, default logic, and autoepistemic
logic. The calculi are analytic. Similar to our approach, their calculi characterize both
credulous and skeptical inference. Concerning annotations, the main difference with our
approach is that for Bonatti and Olivetti (2002), once a sequent arrow changes to the
nonmonotonic sequent arrow, it does not change anymore.

Formal Argumentation. Various reasoning methods exist for abstract and structured
(or, more specifically, logical) argumentation frameworks. We refer to (Cerutti et al.,
2017) and (Besnard et al., 2020) for two extensive surveys on this subject. Most of the
approaches mentioned in these review papers are based on CSP/SAT/ASP/QBF-solvers.
As such, the reasoning engine is encapsulated in the solvers and often limited to specific
base logics. Our approach extends standard sequent calculi using the existing notions of
sequent systems (sequents, inference rules, etcetera), augmented with primary concepts
from argumentation theory for a better handling of conflicts among the sequents.

Adaptive and related logics. Some AC notions, such as final acceptability, are
borrowed from the dynamic proof systems developed by Arieli and Straßer (2019) and
adaptive logics by Batens (2007) and Straßer (2014). We discuss both in more detail.

The formal system presented by Arieli et al. (2022a) and those in this chapter can be seen
as a continuation of the dynamic proof systems developed by Arieli and Straßer (2019).
Their approach contains a proof-theoretic characterization of logical argumentation.
Arguments are taken as derivable sequents, and conflicts among them are captured
through sequent elimination rules. They, too, take the resulting proofs as lists (and not
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necessarily trees). Arieli and Straßer (2019) provide a large class of elimination rules
mimicking various known attack rules from the field of argumentation (e.g., undercuts,
rebuttals, undermines). They differentiate between accepted and eliminated sequents
by using two types of sequents (derived and non-derived). Their method, too, is highly
modular with respect to the underlying language, base logic, and elimination rules. Their
proof systems may be taken as the first study of sequent-style calculi for characterizing
semantic extensions of formal argumentation. The systems are shown to be nonmonotonic
and paraconsistent. Furthermore, logical properties of the consequence relation, such as
cautious monotonicity, are shown. We leave an investigation of such additional properties
for AC to future work. The main differences with the proof systems proposed in this
chapter are twofold: First, we integrate metareasoning about final acceptability in the
object language of the proof system, i.e., through using annotations, whereas Arieli and
Straßer (2019) define final acceptability by referring to all potential extensions of a given
proof and, thus, inference is not fully incorporated on the level of the proof. Second, we
additionally prove a correspondence between finally accepted sequents and the grounded
semantics of the corresponding argumentation framework.

It must be noted that Arieli and Straßer (2019) demonstrate soundness and completeness
between dynamic derivations and stable extension in argumentation frameworks. In
this chapter, we only proved one direction of the equivalence, i.e., how an AC-derivation
implies the existence of a stable extension in its corresponding argumentation framework
(Proposition 7.8). We leave the other direction for future work.

Open question 7.1. Can we provide a constructive proof of how a stable extension in a
given argumentation framework can be turned into a coherent AC-derivation?

Adaptive Logic, initially developed by Batens (2007), is a formalism for defeasible
reasoning. Adaptative logics are nonmonotonic. The primary mechanism concerns
blocking inferences in a proof whenever the assumed knowledge base is inconsistent.
Furthermore, adaptive logics were shown to correspond to Default Logic and formal
argumentation (Straßer, 2014). Adaptive logics consist of a base logic, referred to as the
lower limit logic, a set of abnormalities (such as φ ∧ ¬φ), and adaptive strategies for
dealing with abnormalities. The central idea is to reason with an (inconsistent) knowledge
base as “as normally as possible”, which means that as few as possible abnormalities
occur (Straßer, 2014). Its proof theory consists of dynamic proof systems. Proofs are lists
of tuples (as for AC). The marking of a line during a proof construction means that the
derived formula is defeated, i.e., inactive (for that time). In short, in a dynamic proof,
one reasons as if there are no abnormalities until an abnormality is encountered. Such an
encounter then yields specific lines inactive. Unmarked lines may be marked later in the
derivation and vice versa. Adaptive logics have several strategies for marking lines. Like
AC, dynamic proofs give a procedural way of revising the acceptability of conclusions.

A significant difference with our approach is that adaptive logics use Hilbert-style
proofs. Sequent-style systems are more derivation friendly (Arieli and Straßer, 2019).
Furthermore, the proofs generated by AC are uni-directional. This means that the status
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of a tuple is determined solely in view of tuples that occur further down in the proof.
Adaptive logics employ a bi-directional marking where a derivation line may be marked
because of a line previously occurring in the derivation. The main difference with our
approach is that the machinery for updating the statuses of derived sequents in AC is
included in the derivation itself and does not require an external evaluation procedure.
Namely, in adaptive logics, a formula is finally derivable if, for any derivation in which
the formula is marked, there is an extension of the derivation that unmarks it. In fact,
by allowing inference rules to reason about the acceptability statuses of arguments, our
approach fully integrates meta-argumentative reasoning into the object language of the
proof; cf. (Jakobovits and Vermeir, 1999; Boella et al., 2009).14

Tree-like derivations. Our approach, as well as adaptive logics Straßer (2014) and
the approach by (Arieli and Straßer, 2019), generates derivations that are not necessarily
representable as tree-like structures. At the moment, AC generate collections of trees, i.e.,
forests. We illustrate this with an example. Consider the following coherent derivation (we
leave the attacking conditions implicit since they are assumed identical to the attacking
sequent):

s1[i] s2[i]
Def

s1[e]
s2[i] s4[i]

Def
s2[e]

React
s1[i] s3[i]

Def
s1[e]

s3[i] s4[i]
Def

s3[e]
React

s1[i]

We refer to this derivation as D. The corresponding argumentation framework AF(D) is
graphically represented below on the left.

s1

s2

s3

s4

AF(D)

s1

s2

s3

s4s5

AF(D′)

Now, suppose we extend the above derivation with an argument s5 that only attacks s4.
That is, we extend D with the following derivation,

s4[i] s5[i]
Def

s4[e]
14Similarly, the Deontic Argumentation Calculi, developed in Chapter 6, capture meta-argumentative

aspects of defeasible (normative) reasoning concerning the applicability of norms.
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resulting in a derivation D′ (the corresponding AF(D′) is shown above on the right).
The elimination of s4 (above) triggers a revision process with s4 ∈ RevSeq. Since s4
attacks both s2 and s3, we need to revise both. It can be easily seen that the resulting
derivation forest D′′ cannot be turned into a tree-like structure:

D
...

s1[i]

s2[i] s4[i]
Def

s2[e]
s4[i] s5[i]

Def
s4[e]

React
s2[i]

React
s1[e]

s1[i]

s3[i] s4[i]
Def

s3[e]
s4[i] s5[i]

Def
s4[e]

React
s3[i]

Def
s1[e]

The resulting derivation (forest) is coherent and, as desired, the accepted arguments
{s5, s2, s3} form a stable extension. Notice that if an AC-derivation were restricted to
tree-like structures only, the resulting derivation (the topmost derivation) would not be
coherent since s3 would have remained eliminated.

It remains an open question to determine how AC can be modified to generate tree-like
proofs. One of the upshots of using trees is that the proof has a single conclusion (i.e., the
root), and all applications of rules are directly related to the derivation of the conclusion.

Open question 7.2. How can we modify AC and its corresponding revision process such
that all resulting AC-derivations are tree-like?

Proof theory for nonmonotonic deontic logics. In Section 7.5 we introduced
an extension of AC incorporating the language and sequents of Deontic Argumentation
Calculi from Chapter 6. The resulting Annotated Deontic Argumentation Calculi were
shown to be nonmonotonic. These preliminary results open the door for an integrated
approach to nonmonotonic normative reasoning (e.g., based on I/O logics). We briefly
discuss other nonmonotonic proof systems for deontic logics.

Governatori and Rotolo (2006) developed—in a series of papers—defeasible deontic logic,
which is a sequent-style proof system for reasoning with CTD obligations; see also (Gov-
ernatori et al., 2018). Their system resolves around the notion of ‘normative reparation’
(cf. reparational oughts, Chapter 2, page 54). Their approach’s central motivation is that
norms must be violable to be meaningful. Since violations are exceptional circumstances
(potentially) giving rise to new obligations, Governatori and Rotolo (2006) argue that
primary obligations and their CTD obligations must be considered as generating a single
norm. Roughly, if φ ⇒ Oψ and φ,¬ψ ⇒ Oθ, then this expresses the unique reparational
ought φ ⇒ ψ ⊗ θ which must be read as “in the context φ it is obligatory that ψ, but in
case one fails to comply (violates), then it is obligatory that θ” (a ⊗ formula must be
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read from left to right). The language contains only atoms, negation, and the operator ⊗.
Their proposed sequent-style systems modify strings of reparational oughts. Subsequently,
inferences are based on extensions generated by a context and a set of reparational oughts.
The logic is nonmonotonic since a change in context may ensue different obligations. We
refer to the work of Governatori and Rotolo (2006) for a discussion of the differences
between Defeasible Deontic Logic, Input/Output logic (Makinson and van der Torre,
2001), and the nonmonotonic deontic logic developed by Prakken and Sergot (1996). We
point out that Deontic Argumentation Calculi (Chapter 6) are developed explicitly for
Input/Output logics. We leave it for future work to formally investigate the relation
between DAC and defeasible deontic logic.

Lellmann et al. (2021) provide a proof-theoretic approach to nonmonotonic deontic
logic based on deontic theories of the ancient Sanskrit philosophy school called Mı̄-
mām. sā (see Chapter 5 for an extensive historical introduction to Mı̄mām. sā). They
developed a sequent-style proof system for reasoning with obligations, prohibitions,
and recommendations. Given a set of (deontic) assumptions, conflicts are dealt with
via a Mı̄mām. sā-inspired specificity principle. The principle is more involved than the
one proposed by Horty (1997) since it references underivability statements. Moreover,
it checks whether, e.g., obligations that override other obligations are themselves not
overridden by again more specific conflicting obligations. Their proof system satisfies
cut-elimination and is shown decidable. There is no sound and complete semantics
available for this proof system. Furthermore, their calculus contains a rule for vikalpa, a
Mı̄mām. sā principle that corresponds to the nonmonotonic principle called disjunctive
response (i.e., in case of conflicting commands, one is obliged to choose at least one
option) (cf. Chapter 3, page 112).

Horty (1997) developed one of the first nonmonotonic accounts of normative reasoning.
Although the approach does not involve proof theory. It is worth mentioning due to its
close relation to Default Logic, Input/Output logic, and consequently ADAC. See the
work of Parent (2011) for a correspondence result between I/O logic and Deontic Default
Logic. Horty’s motivation lies in commonsense normative reasoning, which often involves
rules of thumb—such as “Do not harm anyone”—and thus is defeasible. The formal
system developed by Horty (1997) is tailored to handling normative conflicts. It contains
a deontic extension of Reiter’s Default Logic (Reiter, 1980), which includes conditional
oughts. Furthermore, it involves a specificity principle, i.e., an obligation is overridden if
it conflicts with an obligation that has a strictly more specific antecedent. Some of the
open problems posed by Horty (1997), concerning the transitivity of conditional oughts
and reasoning with disjunctive contexts, were satisfactorily addressed by the constrained
Input/Output formalism introduced by Makinson and van der Torre (2001).

Concerning the above, future work must be directed to the following open problem.

Open question 7.3. What is the correspondence between maximally consistent sets of
norms generated by constrained Input/Output logics (Section 6.2) and coherent derivations
generated by the Annotated Deontic Argumentation Calculi ADAC (Section 7.5)?
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Answering the above question likewise opens the door to a formal comparison with
the systems developed by Horty (1997). Positive results appear promising because our
systems correspond to stable extensions in their induced argumentation frameworks (i.e.,
Proposition 6.2 and Proposition 7.15).

* * *

In this chapter, we introduced Annotated Calculi AC. A class of sequent-style proof
systems that is highly modular with respect to its language and base logic. We showed
that the consequence relation of AC is paraconsistent and nonmonotonic (Objective 1).
Moreover, we demonstrated a strong correspondence with logical argumentation (Objec-
tive 2). Last, we provided promising results on extending AC to the context of defeasible
normative reasoning by developing the class of nonmonotonic proof systems, called
Annotated Deontic Argumentation Calculi ADAC (Objective 3). For instance, ADAC
preserves the desired correspondence with semantic extensions in logical argumentation.
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CHAPTER 8
Conclusion

In this final chapter, we briefly recapitulate the main results of each individual chapter.
After that, we provide a more general reflection on the thesis and conclude with two
promising future research directions.

8.1 Summary
This thesis is about the logical analysis of normative reasoning. It supports the claim
that a better understanding of normative reasoning can be gained by involving agents
in its formal analysis. We identified various problems in deontic logic and some novel
challenges in AI. These were systematically addressed by dividing this thesis into three
parts, each consisting of two chapters. We briefly summarize the main results and insights
acquired in each chapter.

In Part I, we dealt with Agency and Normative Reasoning. We identified two general
challenges. In Chapter 2, we investigated reasoning about obligation and choice in an
explicitly indeterministic temporal setting (research question 1). In Chapter 3, we studied
the logical relations between various readings of Ought implies Can and determined the
consequences of these readings for formal normative reasoning (research question 2).

Chapter 2. We provided a sound and complete Temporal Deontic STIT logic, filling a
long-standing gap in the STIT literature. We showed how the proposed relational
semantics of our logic can be truth-preservingly transformed into the traditional
utilitarian STIT semantics of dominance ought. We applied the logic to assess certain
arguments made by Horty (2001) concerning the impact of temporal reasoning
on obligations based on utility assignments. For instance, we proved that two-
valued assignments are incomplete for Temporal Deontic STIT logic. Conceptually,
this result shows that deliberative agency and contrary-to-duty reasoning are
incompatible with two-valued utilitarian approaches in indeterministic time.
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Chapter 3. We provided a comprehensive philosophical and logical investigation of
Ought implies Can (OiC). We developed a class of sound and complete deontic
STIT logics axiomatizing ten OiC interpretations. The logics were employed to
provide a formal taxonomy of OiC, determining the (in)dependencies between the
various interpretations. We extended the resulting logics with other metaethical
principles, determining their relation to OiC. We argued that the possibility of
deontic dilemmas is logically independent of OiC and showed that by adopting
the principle of Deontic Contingency, various readings of OiC become equivalent,
leading to strictly fewer interpretations. Last, we demonstrated how to restore some
of the inferential power lost by adopting a non-normal modal approach to deontic
STIT logic. Conceptually, this chapter emphasizes the importance of concepts such
as ‘ability’, ‘violability’, and ‘control’ for the analysis of normative reasoning.

In Part II, we addressed Action and Normative Reasoning. We formulated two main
challenges. In Chapter 4, we investigated the formal representation of obligations and
prohibitions about instruments and studied their logical properties (research question
3). In Chapter 5, we provided an application of deontic action logic to ancient Sanskrit
philosophy by analyzing Man.d. ana’s theory of deontic reasoning (research question 4).

Chapter 4. We addressed the question of instrumentality statements in the context of
normative reasoning. We provided a sound and complete modal logic of action and
norms to reason about such statements. In particular, we formalized and analyzed a
novel yet ubiquitous norm category called norms of instrumentality and investigated
the logical relations between this category and the well-known categories of ought-
to-be and ought-to-do. In particular, we argued that the three categories are
reciprocally irreducible. Furthermore, we analyzed how instrumentality statements
in norms relate to metaethical principles such as No Vacuous Commands and
Ought implies Can. Last, we discussed possible extensions of the resulting logic
containing more refined instrumentality statements. Means-end reasoning is an
outstanding feature of practical reasoning, and if norms are to influence deliberation,
a proper formal understanding of instrumentality relations in the context of norms
is essential. This chapter provided such an analysis.

Chapter 5. We formally analyzed the deontic theory of the acclaimed Mı̄mām. sā author
Man.d. ana, whose theory consists of reducing all Vedic commands to statements
about actions as instruments leading to specific results. We provided a sound and
complete logic capturing this deontic reduction. We showed that some general
Mı̄mām. sā principles are not valid in the resulting logic, and argued that this is in
accordance with Man.d. ana’s view on instrumentality. We gave a logical analysis
of Man.d. ana’s solution to the Śyena controversy, argued that the controversy is
akin to the contemporary Gentle Murder Paradox, and satisfactorily evaluated the
proposed logic on some well-known contemporary deontic puzzles. Conceptually,
the results obtained in this chapter demonstrate how ancient sources can provide
substantial input for developments in deontic logic.
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In Part III, we took on a novel research topic concerning Argumentation and Normative
Reasoning. We addressed several challenges. In Chapter 6, we developed a modular class
of proof systems yielding argumentative characterizations of a large class of nonmonotonic
Input/Output logics, and showed how the resulting formalism accommodates deontic
explanations (research questions 5 and 6). In Chapter 7, we addressed the more general
challenge of integrating status revision considerations of defeasible reasoning into the
object level of sequent-style proof systems to yield nonmonotonic proof systems (research
question 7).

Chapter 6. We laid the formal foundations for deontic explanations in Formal Argu-
mentation and AI. We defined these explanations as answers to why questions such
as “Why am I obliged to do X, despite my conflicting obligation to do Y?”. We
introduced a highly modular proof theoretic formalism called Deontic Argumen-
tation Calculi, which explicitly and transparently formalizes reasons, integrating
meta-reasoning about the inapplicability of norms into the object language. We
proved that the calculi are sound and complete with respect to a large class of
monotonic Input/Output logics and demonstrated that argumentation frameworks
instantiated with arguments generated by these calculi are sound and complete
for the class of nonmonotonic constrained Input/Output logics. We discussed the
explanatory nature of the resulting argumentation frameworks and extended the
calculi with relevance rules that exclude deontic arguments containing irrelevant
reasons. Conceptually, this chapter shows that the characterization of defeasible
deontic reasoning using methods from formal argumentation is a promising research
direction for explainability in the context of (AI) agents.

Chapter 7. We introduced Annotated Calculi, a class of proof systems highly modular
with respect to their underlying base logic. Annotated Calculi incorporate revision
procedures of defeasible reasoning by annotating sequents with their status and
employing annotation revision rules. We showed that the consequence relations of
these calculi are nonmonotonic and paraconsistent. We demonstrated correspon-
dence between the different annotations on derivable sequents and various kinds of
semantic extensions employed in formal argumentation. We extended the calculi to
the context of defeasible normative reasoning, resulting in a class of nonmonotonic
Annotated Deontic Argumentation Calculi. In particular, the extended calculi
employ the transparent formalism of Chapter 6 facilitating deontic explanations.
We provided some promising results concerning this extension. For instance, the
calculi preserve the desired correspondence with formal argumentation.

8.2 General Reflection

Just as Makinson (1999) reminded us that there is “no logic of norms without attention
to the normative system in which they occur” (p.32), we say that there is no accurate
analysis of normative reasoning without considering the agents to which norms apply.

297



8. Conclusion

The thesis supports this view. In particular, the various studies conducted in this work
demonstrate that central challenges of normative reasoning are ultimately related to
deliberation, i.e., the act of practical reasoning, weighing choices, and making decisions.
Let us briefly reflect on this observation.

First, Ought implies Can ensures that norms are not overdemanding for agents (Chapter 3).
It requires obligations to be consistent with that which an agent can do. Thus, the
principle ensures that norms can be taken into account by the agent when deliberating,
choosing, and acting. This role of Ought implies Can is similar to that of the Mı̄mām. -
sā principle requiring norms to be meaningful, i.e., observable and violable by agents
(Chapter 5). As shown in Chapters 3–5, other metaethical principles—such as deontic
contingency, no vacuous commands, and no deontic dilemmas—fulfill a similar role with
respect to deliberation.

Second, defeasible mechanisms for reasoning about contrary-to-duty scenarios and deontic
dilemmas are about resolving and avoiding conflicts, keeping the actual obligations implied
by a normative code (jointly) consistent (Chapters 6 and 7). Thus, those mechanisms
keep duties meaningful for deliberating agents bound by the code. A normative code
projects an ideal image onto the world, and those who can actively shape the world
according to this image are agents. Agents are, so to say, the mediators between the
ideal world and the actual world (including subideal worlds). For this reason, resolving
conflicts is fundamental to deliberating agents actively shaping this world.

Last, deontic explanations serve deliberation. They elucidate why the normative code
requires the agent to behave in a particular way (Chapter 6). An improved understanding
of how normative codes yield obligations helps the agent to understand the normative
system in question better. More importantly, it helps the agent to make better-informed
choices. Such explanations not only motivate compliance but also provide reasons for
potential disagreement, facilitating discussion and group deliberation.

8.3 Future Research
In closing, we briefly reflect on the two most promising future research directions.

The first topic relates to the involvement of agency in defeasible normative reasoning.
Most, if not all, nonmonotonic accounts of deontic logic do not include agents or actions
in the analysis. This is surprising because practical reasoning, planning, and decision-
making are highly defeasible, strongly depending on incomplete information, abductive
statements, and rules of thumb. The nonmonotonic Input/Output logics treated in part
III of this thesis also do not explicitly involve agents in the formal language.

A promising way to introduce agency to defeasible normative reasoning is by furthering
our formal analysis of Ought implies Can. Agents often find themselves in situations
with incomplete information about what they can and cannot do. For example, I might
believe I am able to attend my band rehearsal on time, not realizing that my bike has
been stolen. Once I find out that my bike is stolen, there may be consequences for the
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obligations that apply to me (for instance, I may be permitted to arrive late). By taking
into account what agents can and cannot do when inferring obligations, we may interpret
Ought implies Can as a defeasible principle. The extension of Deontic Argumentation
Calculi (Chapter 6) to include an agent-sensitive language (such as the language of STIT)
in reasoning defeasibly about agents and their obligations is, therefore, highly promising.
An agent’s abilities can then be taken as constraints blocking certain deontic inferences.
As a possible application, such a formalism enables us to analyze why obligations that
hold over time cease to hold due to an agent’s changing abilities. The differentiation
between Ought implies Can and contrary-to-duty reasoning is of particular interest in
this respect. For instance, my inability to attend my band rehearsal on time due to my
bike being stolen may qualify as a case of Ought implies Can defeasibility. In contrast,
my inability to be on time due to (deliberately) sleeping in may be a case of violation,
inducing a contrary-to-duty situation. Differentiating between inability and violation
plays an essential role in studies of responsibility.

The second topic concerns deontic explanations. The investigation of explanations in
the context of AI, such as formal argumentation, is relatively new. Its importance
increases by the day, especially in light of autonomous AI that must reason and comply
with various normative codes. We argued that adequate normative explanations require
reference to aspects of normative reasoning often reserved for the meta-analysis of formal
models. In Chapter 6 and 7, we pursued this line of research: we internalized reference
to the applicability and inapplicability of norms, enabled reasoning about attacks and
defeats between arguments, and formalized how this influences the arguments’ respective
acceptability status. Furthermore, we proposed ways to reason about the relevance of
reasons within the language of the respective proof systems. These results are promising
for further work on explanatory reasoning, internalizing other aspects of normative
reasoning usually reserved for meta-analysis. In particular, future work must be directed
to expanding Deontic Argumentation Calculi to reason about sets of norms, priority
orderings over norms, the interplay between constitutive and regulative norms, and values
promoted by norms.

What is more, the fact that explanations typically occur in the context of dialogues
motivates the extension of our work to formal dialogue models. Such models employ
a rich language of speech acts, including various why-questions and critical questions.
Addressing deontic explanations in the setting of dialogues will enable us to model the
interactive exchange of reasons, questions, and explanatory arguments, thus, tailoring
the resulting explanations to the background of the explainee.

299





Index

ability, 81
act utilitarianism, 24

dominance, 54
action, 131

atomic, 129
constant, 132
could, 133
deliberative, 134
destroying, 128, 134
disjunctive, 131
forbearance, 135
joint, 131, 132
Mı̄mām. sā, 173
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semantics (argumentation)
admissibility, 242
admissible, 275
complete, 275
conflict-free, 240, 275
defense, 275
grounded, 275
related admissibility, 242
stable, 240, 275

sequent, 224
sequent calculus, 10, 224

admissibility, 226
annotated, see annotated calculus
cut-rule, 226
invertibility, 225

settledness, 27
soundness, 38
soundness and completeness

DAC and deriv, 235
constrained Input/Output logic and

DAC-induced argumentation frame-
work, 242

Standard Deontic Logic, 13
state

end, 127
initial, 127
STIT, 55

state of affairs, 127
STIT

DSn, 32
TDSn, 32
Achievement, 71

axiomatization, 31
Next, 71
quasi-agentive obligation, 32
state, 55

STIT language
basic, 29
deontic, 29
temporal, 29

strength (of a logic), 99

Talmudic logic, 207
taxonomy

metaethical principles, 114
ought implies can, 99

theorem, 32
timeline, 26
transition, 127
tree-like derivation, 291
truth lemma, 43
truth set, 90

universal necessity, 177
utility function, 55, 63

restricted to histories, 64
restricted to moments, 64
two-valued (binary), 67

validity, 35
valuation function, 34
Vedas, 169
violation

constant, 132
norm, 131

weakening, 226
Wright, von

theory of action, 127
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List of Symbols
Modalities

[i] Def. 2.1, p. 29
⟨i⟩ p. 29
[i]d p. 27
[Ag] Def. 2.1, p. 29
□ Def. 2.1, p. 29
♢ p. 29
G Def. 2.1, p. 29
H Def. 2.1, p. 29
F p. 29
P p. 29
⊗i Def. 2.1, p. 29 and

Def. 3.1, p. 85
⊗d
i p. 65

□S Def. 4.2, p. 132
□A Def. 4.2, p. 132

□S p. 132

□A p. 132
[∆i] p. 133
[∆i]would p. 133
[∆i]could p. 134
[∆i]will p. 134
Fi(φ) p. 146
Oi(φ) p. 146
Fi[∆] p. 147
Oi[∆] p. 147
Fi[∆](φ) p. 149
Oi[∆](φ) p. 148
■ p. 158

♦ p. 158
[∆i]p−instr∗

n p. 160
[∆i]exc−instr

∗
n p. 160

□U Def. 5.2, p. 178

□U p. 178
I(∆/φ/χ) Def. 5.10, p. 187
O(∆/χ) Def. 5.10, p. 187
F(∆/χ) Def. 5.10, p. 187
E(∆/φ/χ) Def. 5.10, p. 187

Other Syntax

p, q, r, . . . p. 29
φ,ψ, γ, . . . p. 29
∆,Γ,Σ, . . . p. 29
¬,∧,∨,→,≡ p. 29
⊤,⊥ p. 29
−,∪,∩, \,=,∈,⊆ set-theoretic syntax
w, v, u, . . . Def. 2.4, p. 33
X,Y, Z, . . . Def. 3.4, p. 89
δi,∆ ∪ Γ,∆,∆&Γ Def. 4.1, page 132
vi Def. 4.2, p. 132
dδi Def. 4.2, p. 132
ei p. 158
P Def. 5.2, p. 178
R Def. 5.2, p. 178
φf , φo, φc Def. 6.1, p. 216
(φ,ψ) Def. 6.1, p. 216
¬(φ,ψ) Def. 6.6, p. 224
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K,F ,N , C Def. 6.3, p. 220
∆f ,∆o,∆c,∆n Def. 6.6, p. 224
∆ ⇒ Γ Def. 6.7, p. 225
a, b, c, . . . Def. 6.9, p. 240
∆ ̸⇒ Γ p. 244
S, T , . . . p. 258
∆ ⇒[i] Γ Def. 7.4, p. 259
∆ ⇒[e] Γ Def. 7.4, p. 259
∆ ⇒[!] Γ Def. 7.4, p. 259
∆ ⇒[⊥] Γ p. 287

Languages

Ltdn Def. 2.1, p. 29
Ldn Def. 2.1, p. 29
LAct Def. 4.1, p. 132
LLAN Def. 4.2, p. 132
LLM Def. 5.2, p. 178
L Def. 6.1, p. 216
Lf Def. 6.1, p. 216
Lo Def. 6.1, p. 216
Lc Def. 6.1, p. 216
Ln Def. 6.1, p. 216
Ln Def. 6.6, p. 224
Lio Def. 6.6, p. 224

Logics

DSn Def. 2.2, p. 31
TDSn Def. 2.2, p. 31
TUSn Def. 2.14, p. 56
USn Def. 2.14, p. 56

hTUSn Def. 2.16, p. 65
OSn Def. 3.2, p. 86
OSnX Def. 3.3, p. 87
LAN Def. 4.4, p. 135
LM Def. 5.4, p. 179
L Def. 6.2, p. 220
derivR,L Def. 6.4, p. 221
LC Def. 6.7, p. 225
LCS Def. 6.8, p. 225
DACS Def. 6.8, p. 225
DACr

S Def. 6.13, p. 246
AC Def. 7.5, p. 263
ADACS Def. 7.14, p. 282

Truth and inference

⊢DSn Def. 2.2, p. 31
⊢TDSn Def. 2.2, p. 31
|=DSn Def. 2.5, p. 35
|=TDSn Def. 2.5, p. 35
|=USn Def. 2.14, p. 56
|=TUSn Def. 2.14, p. 56
⊢OSn Def. 3.2, p. 86
⊢OSnX Def. 3.3, p. 87
|=OSn Def. 3.5, p. 90
|=OSnX Def. 3.6, p. 92
⊢LAN Def. 4.4, p. 135
|=LAN Def. 4.7, p. 138
⊢LM Def. 5.4, p. 179
|=LM Def. 5.6, p. 181
⊢L Def. 6.2, p. 220
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|∼s
R,L, |∼

c
R,L Def. 6.5, p. 223

⊢LC Def. 6.7, p. 225
⊢S Def. 6.8, p. 225
AF |∼s,AF |∼s∗

, Def. 6.10, p. 241
AF |∼c

|∼s
AC Def. 7.9, p. 265

|∼s
ADACS

Def. 7.15, p. 282

Modal semantics

R□ Def. 2.4, p. 33
R[i] Def. 2.4, p. 33
R⊗i Def. 2.4, p. 33
R[Ag] Def. 2.4, p. 33
RG Def. 2.4, p. 33
RH Def. 2.4, p. 33
Rs

[i] p. 55
W Def. 2.4, p. 33
V Def. 2.4, p. 33
N⊗i Def. 3.4, p. 89
Wt(∆) Def. 4.5, p. 137
Wdδ

i
,Wvi Def. 4.6, p. 137

R□S Def. 4.6, p. 137
R□A Def. 4.6, p. 137
WP Def. 5.5, p. 180
WR Def. 5.5, p. 180
R□U Def. 5.5, p. 180

Argumentation

AF Def. 6.9, p. 240
AFS(K) Def. 6.9, p. 240
Arg Def. 6.9, p. 240

Att Def. 6.9, p. 240
E , Ea, E+, E− p. 242
Derived,Accept, Def. 7.10, p. 274
Final

Other symbols

Atoms Def. 2.1, p. 29
Agents Def. 2.1, p. 29
⪯,≺ p. 56
≤, < p. 56
util Def. 2.13, p. 55
utilm p. 64
utilh p. 64
h p. 64
M,C,N p. 88
||φ||M Def. 3.5, page 90
{|φ|}M Def. 3.8, page 95
Act Def. 4.1, page 132
Vio p. 132
Witi p. 132
t Def. 4.3, p. 133
maxfam Def. 6.5, p. 223
Connectives Def. 7.1, p. 258
D Def. 7.5, p. 263
T Def. 7.5, p. 263
RevSeq Def. 7.7, p. 264

309



Acronyms

AC Annotated Calculi, p. 256

ADAC Annotated Deontic Argumentation Calculi, p. 279

AF Argumentation Framework, p. 240

AI Artificial Intelligence, p. 2

ASTIT Achievement STIT, p. 71

BDI Belief-Desire-Intention, p. 6

BT+AC Branching Time with Agential Choice, p. 23

CTD Contrary-To-Duty, p. 14

DAC Deontic Argumentation Calculi, p. 211

DCg Deontic Contingency, p. 102

DCs Deontic Consistency, p. 102

DSn Deontic STIT Logic, p. 26

IoA Independence of Agents, p. 29

I/O Input/Output, p. 9

KR Knowledge Representation and Reasoning, p. 12

LAN Logic of Action and Norms, p. 124

LM Logic of Man.d. ana, p. 170

MCS Maximally Consistent Set, p. 42

XSTIT Next STIT, p. 71

NCbUH No Choice between Undivided Histories, p. 29

NDD No Deontic Dilemmas, p. 102
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NVC No Vacuous Commands, p. 102

NorMAS Normative Multi-agent Systems, p. 3

OiA Ought implies Ability, p. 81

OiA+O Ought implies Ability and Opportunity, p. 83

OiC Ought implies Can, p. 75

OiCtrl Ought implies Control, p. 83

OiLP Ought implies Logical Possibility, p. 79

OiNA Ought implies Normatively Able, p. 84

OiNC Ought implies Normatively Can, p. 84

OiO Ought implies Opportunity, p. 82

OiRz Ought implies Realizability, p. 80

OiRef Ought implies Refrainability, p. 82

OiV Ought implies Violability, p. 81

OSn Logic of Ought-implies-Can, p. 77

PDeL Deontic Propositional Dynamic Logic, p. 124

PDL Propositional Dynamic Logic, p. 6

PMS Pūrva Mı̄mām. sā Sūtra, p. 172

ŚBh Śabara’s Bhās.ya, p. 172

SDL Standard Deontic Logic, p. 13

STIT Seeing To It That, p. 23

TDSn Temporal Deontic STIT Logic, p. 23

TUSn Temporal Utilitarian STIT Logic, p. 54

USn Utilitarian STIT Logic, p. 54
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